summaryrefslogtreecommitdiffstats
path: root/tokio/src/time/driver/entry.rs
blob: e0926797fd588793b6b00c43437b686c7c281ec8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
//! Timer state structures.
//!
//! This module contains the heart of the intrusive timer implementation, and as
//! such the structures inside are full of tricky concurrency and unsafe code.
//!
//! # Ground rules
//!
//! The heart of the timer implementation here is the `TimerShared` structure,
//! shared between the `TimerEntry` and the driver. Generally, we permit access
//! to `TimerShared` ONLY via either 1) a mutable reference to `TimerEntry` or
//! 2) a held driver lock.
//!
//! It follows from this that any changes made while holding BOTH 1 and 2 will
//! be reliably visible, regardless of ordering. This is because of the acq/rel
//! fences on the driver lock ensuring ordering with 2, and rust mutable
//! reference rules for 1 (a mutable reference to an object can't be passed
//! between threads without an acq/rel barrier, and same-thread we have local
//! happens-before ordering).
//!
//! # State field
//!
//! Each timer has a state field associated with it. This field contains either
//! the current scheduled time, or a special flag value indicating its state.
//! This state can either indicate that the timer is on the 'pending' queue (and
//! thus will be fired with an `Ok(())` result soon) or that it has already been
//! fired/deregistered.
//!
//! This single state field allows for code that is firing the timer to
//! synchronize with any racing `reset` calls reliably.
//!
//! # Cached vs true timeouts
//!
//! To allow for the use case of a timeout that is periodically reset before
//! expiration to be as lightweight as possible, we support optimistically
//! lock-free timer resets, in the case where a timer is rescheduled to a later
//! point than it was originally scheduled for.
//!
//! This is accomplished by lazily rescheduling timers. That is, we update the
//! state field field with the true expiration of the timer from the holder of
//! the [`TimerEntry`]. When the driver services timers (ie, whenever it's
//! walking lists of timers), it checks this "true when" value, and reschedules
//! based on it.
//!
//! We do, however, also need to track what the expiration time was when we
//! originally registered the timer; this is used to locate the right linked
//! list when the timer is being cancelled. This is referred to as the "cached
//! when" internally.
//!
//! There is of course a race condition between timer reset and timer
//! expiration. If the driver fails to observe the updated expiration time, it
//! could trigger expiration of the timer too early. However, because
//! `mark_pending` performs a compare-and-swap, it will identify this race and
//! refuse to mark the timer as pending.

use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::Ordering;

use crate::sync::AtomicWaker;
use crate::time::Instant;
use crate::util::linked_list;

use super::Handle;

use std::cell::UnsafeCell as StdUnsafeCell;
use std::task::{Context, Poll, Waker};
use std::{marker::PhantomPinned, pin::Pin, ptr::NonNull};

type TimerResult = Result<(), crate::time::error::Error>;

const STATE_DEREGISTERED: u64 = u64::max_value();
const STATE_PENDING_FIRE: u64 = STATE_DEREGISTERED - 1;
const STATE_MIN_VALUE: u64 = STATE_PENDING_FIRE;

/// Not all platforms support 64-bit compare-and-swap. This hack replaces the
/// AtomicU64 with a mutex around a u64 on platforms that don't. This is slow,
/// unfortunately, but 32-bit platforms are a bit niche so it'll do for now.
///
/// Note: We use "x86 or 64-bit pointers" as the condition here because
/// target_has_atomic is not stable.
#[cfg(all(
    not(tokio_force_time_entry_locked),
    any(target_arch = "x86", target_pointer_width = "64")
))]
type AtomicU64 = crate::loom::sync::atomic::AtomicU64;

#[cfg(not(all(
    not(tokio_force_time_entry_locked),
    any(target_arch = "x86", target_pointer_width = "64")
)))]
#[derive(Debug)]
struct AtomicU64 {
    inner: crate::loom::sync::Mutex<u64>,
}

#[cfg(not(all(
    not(tokio_force_time_entry_locked),
    any(target_arch = "x86", target_pointer_width = "64")
)))]
impl AtomicU64 {
    fn new(v: u64) -> Self {
        Self {
            inner: crate::loom::sync::Mutex::new(v),
        }
    }

    fn load(&self, _order: Ordering) -> u64 {
        debug_assert_ne!(_order, Ordering::SeqCst); // we only provide AcqRel with the lock
        *self.inner.lock()
    }

    fn store(&self, v: u64, _order: Ordering) {
        debug_assert_ne!(_order, Ordering::SeqCst); // we only provide AcqRel with the lock
        *self.inner.lock() = v;
    }

    fn compare_exchange(
        &self,
        current: u64,
        new: u64,
        _success: Ordering,
        _failure: Ordering,
    ) -> Result<u64, u64> {
        debug_assert_ne!(_success, Ordering::SeqCst); // we only provide AcqRel with the lock
        debug_assert_ne!(_failure, Ordering::SeqCst);

        let mut lock = self.inner.lock();

        if *lock == current {
            *lock = new;
            Ok(current)
        } else {
            Err(*lock)
        }
    }

    fn compare_exchange_weak(
        &self,
        current: u64,
        new: u64,
        success: Ordering,
        failure: Ordering,
    ) -> Result<u64, u64> {
        self.compare_exchange(current, new, success, failure)
    }
}

/// This structure holds the current shared state of the timer - its scheduled
/// time (if registered), or otherwise the result of the timer completing, as
/// well as the registered waker.
///
/// Generally, the StateCell is only permitted to be accessed from two contexts:
/// Either a thread holding the corresponding &mut TimerEntry, or a thread
/// holding the timer driver lock. The write actions on the StateCell amount to
/// passing "ownership" of the StateCell between these contexts; moving a timer
/// from the TimerEntry to the driver requires _both_ holding the &mut
/// TimerEntry and the driver lock, while moving it back (firing the timer)
/// requires only the driver lock.
pub(super) struct StateCell {
    /// Holds either the scheduled expiration time for this timer, or (if the
    /// timer has been fired and is unregistered), [`u64::max_value()`].
    state: AtomicU64,
    /// If the timer is fired (an Acquire order read on state shows
    /// `u64::max_value()`), holds the result that should be returned from
    /// polling the timer. Otherwise, the contents are unspecified and reading
    /// without holding the driver lock is undefined behavior.
    result: UnsafeCell<TimerResult>,
    /// The currently-registered waker
    waker: CachePadded<AtomicWaker>,
}

impl Default for StateCell {
    fn default() -> Self {
        Self::new()
    }
}

impl std::fmt::Debug for StateCell {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "StateCell({:?})", self.read_state())
    }
}

impl StateCell {
    fn new() -> Self {
        Self {
            state: AtomicU64::new(STATE_DEREGISTERED),
            result: UnsafeCell::new(Ok(())),
            waker: CachePadded(AtomicWaker::new()),
        }
    }

    fn is_pending(&self) -> bool {
        self.state.load(Ordering::Relaxed) == STATE_PENDING_FIRE
    }

    /// Returns the current expiration time, or None if not currently scheduled.
    fn when(&self) -> Option<u64> {
        let cur_state = self.state.load(Ordering::Relaxed);

        if cur_state == u64::max_value() {
            None
        } else {
            Some(cur_state)
        }
    }

    /// If the timer is completed, returns the result of the timer. Otherwise,
    /// returns None and registers the waker.
    fn poll(&self, waker: &Waker) -> Poll<TimerResult> {
        // We must register first. This ensures that either `fire` will
        // observe the new waker, or we will observe a racing fire to have set
        // the state, or both.
        self.waker.0.register_by_ref(waker);

        self.read_state()
    }

    fn read_state(&self) -> Poll<TimerResult> {
        let cur_state = self.state.load(Ordering::Acquire);

        if cur_state == STATE_DEREGISTERED {
            // SAFETY: The driver has fired this timer; this involves writing
            // the result, and then writing (with release ordering) the state
            // field.
            Poll::Ready(unsafe { self.result.with(|p| *p) })
        } else {
            Poll::Pending
        }
    }

    /// Marks this timer as being moved to the pending list, if its scheduled
    /// time is not after `not_after`.
    ///
    /// If the timer is scheduled for a time after not_after, returns an Err
    /// containing the current scheduled time.
    ///
    /// SAFETY: Must hold the driver lock.
    unsafe fn mark_pending(&self, not_after: u64) -> Result<(), u64> {
        // Quick initial debug check to see if the timer is already fired. Since
        // firing the timer can only happen with the driver lock held, we know
        // we shouldn't be able to "miss" a transition to a fired state, even
        // with relaxed ordering.
        let mut cur_state = self.state.load(Ordering::Relaxed);

        loop {
            debug_assert!(cur_state < STATE_MIN_VALUE);

            if cur_state > not_after {
                break Err(cur_state);
            }

            match self.state.compare_exchange(
                cur_state,
                STATE_PENDING_FIRE,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => {