summaryrefslogtreecommitdiffstats
path: root/tokio/src/runtime/park.rs
diff options
context:
space:
mode:
authorCarl Lerche <me@carllerche.com>2019-11-21 23:28:39 -0800
committerGitHub <noreply@github.com>2019-11-21 23:28:39 -0800
commit8546ff826db8dba1e39b4119ad909fb6cab2492a (patch)
tree0c1cdd36aaf9d732079a4ff7a71e5c6b138e7d42 /tokio/src/runtime/park.rs
parent6866fe426cfab0e4da3e88c673f7bef141259bb6 (diff)
runtime: cleanup and add config options (#1807)
* runtime: cleanup and add config options This patch finishes the cleanup as part of the transition to Tokio 0.2. A number of changes were made to take advantage of having all Tokio types in a single crate. Also, fixes using Tokio types from `spawn_blocking`. * Many threads, one resource driver Previously, in the threaded scheduler, a resource driver (mio::Poll / timer combo) was created per thread. This was more or less fine, except it required balancing across the available drivers. When using a resource driver from **outside** of the thread pool, balancing is tricky. The change was original done to avoid having a dedicated driver thread. Now, instead of creating many resource drivers, a single resource driver is used. Each scheduler thread will attempt to "lock" the resource driver before parking on it. If the resource driver is already locked, the thread uses a condition variable to park. Contention should remain low as, under load, the scheduler avoids using the drivers. * Add configuration options to enable I/O / time New configuration options are added to `runtime::Builder` to allow enabling I/O and time drivers on a runtime instance basis. This is useful when wanting to create lightweight runtime instances to execute compute only tasks. * Bug fixes The condition variable parker is updated to the same algorithm used in `std`. This is motivated by some potential deadlock cases discovered by `loom`. The basic scheduler is fixed to fairly schedule tasks. `push_front` was accidentally used instead of `push_back`. I/O, time, and spawning now work from within `spawn_blocking` closures. * Misc cleanup The threaded scheduler is no longer generic over `P :Park`. Instead, it is hard coded to a specific parker. Tests, including loom tests, are updated to use `Runtime` directly. This provides greater coverage. The `blocking` module is moved back into `runtime` as all usage is within `runtime` itself.
Diffstat (limited to 'tokio/src/runtime/park.rs')
-rw-r--r--tokio/src/runtime/park.rs225
1 files changed, 225 insertions, 0 deletions
diff --git a/tokio/src/runtime/park.rs b/tokio/src/runtime/park.rs
new file mode 100644
index 00000000..7681e20f
--- /dev/null
+++ b/tokio/src/runtime/park.rs
@@ -0,0 +1,225 @@
+//! Parks the runtime.
+//!
+//! A combination of the various resource driver park handles.
+
+use crate::loom::sync::{Arc, Mutex, Condvar};
+use crate::loom::sync::atomic::AtomicUsize;
+use crate::park::{Park, Unpark};
+use crate::runtime::time;
+use crate::util::TryLock;
+
+use std::sync::atomic::Ordering::SeqCst;
+use std::time::Duration;
+
+pub(crate) struct Parker {
+ inner: Arc<Inner>,
+}
+
+pub(crate) struct Unparker {
+ inner: Arc<Inner>,
+}
+
+struct Inner {
+ /// Avoids entering the park if possible
+ state: AtomicUsize,
+
+ /// Used to coordinate access to the driver / condvar
+ mutex: Mutex<()>,
+
+ /// Condvar to block on if the driver is unavailable.
+ condvar: Condvar,
+
+ /// Resource (I/O, time, ...) driver
+ shared: Arc<Shared>,
+}
+
+const EMPTY: usize = 0;
+const PARKED_CONDVAR: usize = 1;
+const PARKED_DRIVER: usize = 2;
+const NOTIFIED: usize = 3;
+
+/// Shared across multiple Parker handles
+struct Shared {
+ /// Shared driver. Only one thread at a time can use this
+ driver: TryLock<time::Driver>,
+
+ /// Unpark handle
+ handle: <time::Driver as Park>::Unpark,
+}
+
+impl Parker {
+ pub(crate) fn new(driver: time::Driver) -> Parker {
+ let handle = driver.unpark();
+
+ Parker {
+ inner: Arc::new(Inner {
+ state: AtomicUsize::new(EMPTY),
+ mutex: Mutex::new(()),
+ condvar: Condvar::new(),
+ shared: Arc::new(Shared {
+ driver: TryLock::new(driver),
+ handle,
+ }),
+ }),
+ }
+ }
+}
+
+impl Clone for Parker {
+ fn clone(&self) -> Parker {
+ Parker {
+ inner: Arc::new(Inner {
+ state: AtomicUsize::new(EMPTY),
+ mutex: Mutex::new(()),
+ condvar: Condvar::new(),
+ shared: self.inner.shared.clone(),
+ }),
+ }
+ }
+}
+
+impl Park for Parker {
+ type Unpark = Unparker;
+ type Error = ();
+
+ fn unpark(&self) -> Unparker {
+ Unparker { inner: self.inner.clone() }
+ }
+
+ fn park(&mut self) -> Result<(), Self::Error> {
+ self.inner.park();
+ Ok(())
+ }
+
+ fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
+ // Only parking with zero is supported...
+ assert_eq!(duration, Duration::from_millis(0));
+
+ if let Some(mut driver) = self.inner.shared.driver.try_lock() {
+ driver.park_timeout(duration)
+ .map_err(|_| ())
+ } else {
+ Ok(())
+ }
+ }
+}
+
+impl Unpark for Unparker {
+ fn unpark(&self) {
+ self.inner.unpark();
+ }
+}
+
+impl Inner {
+ /// Park the current thread for at most `dur`.
+ fn park(&self) {
+ // If we were previously notified then we consume this notification and
+ // return quickly.
+ if self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() {
+ return;
+ }
+
+ if let Some(mut driver) = self.shared.driver.try_lock() {
+ self.park_driver(&mut driver);
+ } else {
+ self.park_condvar();
+ }
+ }
+
+ fn park_condvar(&self) {
+ // Otherwise we need to coordinate going to sleep
+ let mut m = self.mutex.lock().unwrap();
+
+ match self.state.compare_exchange(EMPTY, PARKED_CONDVAR, SeqCst, SeqCst) {
+ Ok(_) => {}
+ Err(NOTIFIED) => {
+ // We must read here, even though we know it will be `NOTIFIED`.
+ // This is because `unpark` may have been called again since we read
+ // `NOTIFIED` in the `compare_exchange` above. We must perform an
+ // acquire operation that synchronizes with that `unpark` to observe
+ // any writes it made before the call to unpark. To do that we must
+ // read from the write it made to `state`.
+ let old = self.state.swap(EMPTY, SeqCst);
+ debug_assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
+
+ return;
+ }
+ Err(actual) => panic!("inconsistent park state; actual = {}", actual),
+ }
+
+ loop {
+ m = self.condvar.wait(m).unwrap();
+
+ if self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() {
+ // got a notification
+ return;
+ }
+
+ // spurious wakeup, go back to sleep
+ }
+ }
+
+ fn park_driver(&self, driver: &mut time::Driver) {
+ match self.state.compare_exchange(EMPTY, PARKED_DRIVER, SeqCst, SeqCst) {
+ Ok(_) => {}
+ Err(NOTIFIED) => {
+ // We must read here, even though we know it will be `NOTIFIED`.
+ // This is because `unpark` may have been called again since we read
+ // `NOTIFIED` in the `compare_exchange` above. We must perform an
+ // acquire operation that synchronizes with that `unpark` to observe
+ // any writes it made before the call to unpark. To do that we must
+ // read from the write it made to `state`.
+ let old = self.state.swap(EMPTY, SeqCst);
+ debug_assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
+
+ return;
+ }
+ Err(actual) => panic!("inconsistent park state; actual = {}", actual),
+ }
+
+ // TODO: don't unwrap
+ driver.park().unwrap();
+
+ match self.state.swap(EMPTY, SeqCst) {
+ NOTIFIED => {} // got a notification, hurray!
+ PARKED_DRIVER => {} // no notification, alas
+ n => panic!("inconsistent park_timeout state: {}", n),
+ }
+ }
+
+ fn unpark(&self) {
+ // To ensure the unparked thread will observe any writes we made before
+ // this call, we must perform a release operation that `park` can
+ // synchronize with. To do that we must write `NOTIFIED` even if `state`
+ // is already `NOTIFIED`. That is why this must be a swap rather than a
+ // compare-and-swap that returns if it reads `NOTIFIED` on failure.
+ match self.state.swap(NOTIFIED, SeqCst) {
+ EMPTY => {}, // no one was waiting
+ NOTIFIED => {}, // already unparked
+ PARKED_CONDVAR => self.unpark_condvar(),
+ PARKED_DRIVER => self.unpark_driver(),
+ actual => panic!("inconsistent state in unpark; actual = {}", actual),
+ }
+ }
+
+ fn unpark_condvar(&self) {
+ // There is a period between when the parked thread sets `state` to
+ // `PARKED` (or last checked `state` in the case of a spurious wake
+ // up) and when it actually waits on `cvar`. If we were to notify
+ // during this period it would be ignored and then when the parked
+ // thread went to sleep it would never wake up. Fortunately, it has
+ // `lock` locked at this stage so we can acquire `lock` to wait until
+ // it is ready to receive the notification.
+ //
+ // Releasing `lock` before the call to `notify_one` means that when the
+ // parked thread wakes it doesn't get woken only to have to wait for us
+ // to release `lock`.
+ drop(self.mutex.lock().unwrap());
+
+ self.condvar.notify_one()
+ }
+
+ fn unpark_driver(&self) {
+ self.shared.handle.unpark();
+ }
+}