summaryrefslogtreecommitdiffstats
path: root/examples
diff options
context:
space:
mode:
authorRoman <humbug@deeptown.org>2018-04-10 23:08:55 +0300
committerCarl Lerche <me@carllerche.com>2018-04-10 13:08:55 -0700
commit5b677934fe6cfd3030c533c1e937615c158f04b1 (patch)
treeb356a6bd23e48dc1a87041efbc0109272899cd4d /examples
parentdbcd8353b05002a98ea77dc2227ffeb84f0fd466 (diff)
Add example that prints each packet from tcp client (#301)
Diffstat (limited to 'examples')
-rw-r--r--examples/README.md4
-rw-r--r--examples/print_each_packet.rs148
2 files changed, 152 insertions, 0 deletions
diff --git a/examples/README.md b/examples/README.md
index cd3c0ba3..19f33ff6 100644
--- a/examples/README.md
+++ b/examples/README.md
@@ -19,6 +19,10 @@ A high level description of each example is:
connections and then echos back any contents that are read from each connected
client.
+* [`print_each_packet`](print_each_packet.rs) - this server will create a TCP
+ listener, accept connections in a loop, and put down in the stdout everything
+ that's read off of each TCP connection.
+
* [`echo-udp`](echo-udp.rs) - again your standard "echo server", except for UDP
instead of TCP. This will echo back any packets received to the original
sender.
diff --git a/examples/print_each_packet.rs b/examples/print_each_packet.rs
new file mode 100644
index 00000000..bb054948
--- /dev/null
+++ b/examples/print_each_packet.rs
@@ -0,0 +1,148 @@
+//! A "print-each-packet" server with Tokio
+//!
+//! This server will create a TCP listener, accept connections in a loop, and
+//! put down in the stdout everything that's read off of each TCP connection.
+//!
+//! Because the Tokio runtime uses a thread pool, each TCP connection is
+//! processed concurrently with all other TCP connections across multiple
+//! threads.
+//!
+//! To see this server in action, you can run this in one terminal:
+//!
+//! cargo run --example print\_each\_packet
+//!
+//! and in another terminal you can run:
+//!
+//! cargo run --example connect 127.0.0.1:8080
+//!
+//! Each line you type in to the `connect` terminal should be written to terminal!
+//!
+//! Minimal js example:
+//!
+//! ```js
+//! var net = require("net");
+//!
+//! var listenPort = 8080;
+//!
+//! var server = net.createServer(function (socket) {
+//! socket.on("data", function (bytes) {
+//! console.log("bytes", bytes);
+//! });
+//!
+//! socket.on("end", function() {
+//! console.log("Socket received FIN packet and closed connection");
+//! });
+//! socket.on("error", function (error) {
+//! console.log("Socket closed with error", error);
+//! });
+//!
+//! socket.on("close", function (with_error) {
+//! if (with_error) {
+//! console.log("Socket closed with result: Err(SomeError)");
+//! } else {
+//! console.log("Socket closed with result: Ok(())");
+//! }
+//! });
+//!
+//! });
+//!
+//! server.listen(listenPort);
+//!
+//! console.log("Listening on:", listenPort);
+//! ```
+//!
+
+#![deny(warnings)]
+
+extern crate tokio;
+extern crate tokio_io;
+
+use tokio_io::codec::BytesCodec;
+use tokio::net::TcpListener;
+use tokio::prelude::*;
+
+use std::env;
+use std::net::SocketAddr;
+
+fn main() {
+ // Allow passing an address to listen on as the first argument of this
+ // program, but otherwise we'll just set up our TCP listener on
+ // 127.0.0.1:8080 for connections.
+ let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
+ let addr = addr.parse::<SocketAddr>().unwrap();
+
+ // Next up we create a TCP listener which will listen for incoming
+ // connections. This TCP listener is bound to the address we determined
+ // above and must be associated with an event loop, so we pass in a handle
+ // to our event loop. After the socket's created we inform that we're ready
+ // to go and start accepting connections.
+ let socket = TcpListener::bind(&addr).unwrap();
+ println!("Listening on: {}", addr);
+
+ // Here we convert the `TcpListener` to a stream of incoming connections
+ // with the `incoming` method. We then define how to process each element in
+ // the stream with the `for_each` method.
+ //
+ // This combinator, defined on the `Stream` trait, will allow us to define a
+ // computation to happen for all items on the stream (in this case TCP
+ // connections made to the server). The return value of the `for_each`
+ // method is itself a future representing processing the entire stream of
+ // connections, and ends up being our server.
+ let done = socket
+ .incoming()
+ .map_err(|e| println!("failed to accept socket; error = {:?}", e))
+ .for_each(move |socket| {
+ // Once we're inside this closure this represents an accepted client
+ // from our server. The `socket` is the client connection (similar to
+ // how the standard library operates).
+ //
+ // We're parsing each socket with the `BytesCodec` included in `tokio_io`,
+ // and then we `split` each codec into the reader/writer halves.
+ //
+ // See https://docs.rs/tokio-io/0.1/src/tokio_io/codec/bytes_codec.rs.html
+ let framed = socket.framed(BytesCodec::new());
+ let (_writer, reader) = framed.split();
+
+ let processor = reader
+ .for_each(|bytes| {
+ println!("bytes: {:?}", bytes);
+ Ok(())
+ })
+ // After our copy operation is complete we just print out some helpful
+ // information.
+ .and_then(|()| {
+ println!("Socket received FIN packet and closed connection");
+ Ok(())
+ })
+ .or_else(|err| {
+ println!("Socket closed with error: {:?}", err);
+ // We have to return the error to catch it in the next ``.then` call
+ Err(err)
+ })
+ .then(|result| {
+ println!("Socket closed with result: {:?}", result);
+ Ok(())
+ });
+
+ // And this is where much of the magic of this server happens. We
+ // crucially want all clients to make progress concurrently, rather than
+ // blocking one on completion of another. To achieve this we use the
+ // `tokio::spawn` function to execute the work in the background.
+ //
+ // This function will transfer ownership of the future (`msg` in this
+ // case) to the Tokio runtime thread pool that. The thread pool will
+ // drive the future to completion.
+ //
+ // Essentially here we're executing a new task to run concurrently,
+ // which will allow all of our clients to be processed concurrently.
+ tokio::spawn(processor)
+ });
+
+ // And finally now that we've define what our server is, we run it!
+ //
+ // This starts the Tokio runtime, spawns the server task, and blocks the
+ // current thread until all tasks complete execution. Since the `done` task
+ // never completes (it just keeps accepting sockets), `tokio::run` blocks
+ // forever (until ctrl-c is pressed).
+ tokio::run(done);
+}