summaryrefslogtreecommitdiffstats
path: root/svgbob/src/buffer/fragment_buffer/fragment/circle.rs
blob: 058b738669fd8ecf56fca035140c030bc58d149a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
use crate::{fragment::Bounds, util, Cell, Point};
use nalgebra::Point2;
use ncollide2d::shape::ConvexPolygon;
use ncollide2d::shape::Polyline;
use std::{cmp::Ordering, fmt};

use sauron::{
    html::attributes::*,
    svg::{attributes::*, *},
    Node,
};

#[derive(Debug, Clone)]
pub struct Circle {
    pub radius: f32,
    pub center: Point,
    pub is_filled: bool,
}

impl Circle {
    pub(in crate) fn new(center: Point, radius: f32, is_filled: bool) -> Self {
        Circle {
            center,
            radius,
            is_filled,
        }
    }

    /// the top most point of this circle for sorting.
    /// center.y - radius
    fn top_left_bound(&self) -> Point {
        Point::new(self.center.x - self.radius, self.center.y - self.radius)
    }
    fn top_right_bound(&self) -> Point {
        Point::new(self.center.x + self.radius, self.center.y - self.radius)
    }

    fn bottom_right_bound(&self) -> Point {
        Point::new(self.center.x + self.radius, self.center.y + self.radius)
    }

    fn bottom_left_bound(&self) -> Point {
        Point::new(self.center.x - self.radius, self.center.y + self.radius)
    }

    /// offset the circles parameter from the arg cell
    pub(in crate) fn absolute_position(&self, cell: Cell) -> Self {
        Circle {
            center: cell.absolute_position(self.center),
            ..*self
        }
    }

    pub fn scale(&self, scale: f32) -> Self {
        Circle {
            center: self.center.scale(scale),
            radius: self.radius * scale,
            ..*self
        }
    }
}

impl Bounds for Circle {
    fn bounds(&self) -> (Point, Point) {
        (self.top_left_bound(), self.bottom_right_bound())
    }
}

impl fmt::Display for Circle {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "C {} {}", self.center, self.radius)
    }
}

impl<MSG> Into<Node<MSG>> for Circle {
    fn into(self) -> Node<MSG> {
        circle(
            vec![
                cx(self.center.x),
                cy(self.center.y),
                r(self.radius),
                classes_flag([
                    ("filled", self.is_filled),
                    ("nofill", !self.is_filled),
                ]),
            ],
            vec![],
        )
    }
}

impl Eq for Circle {}

///This is needed since circle contains radius which is an f32 which rust doesn't provide trait
///implementation for Eq
impl Ord for Circle {
    fn cmp(&self, other: &Self) -> Ordering {
        self.mins()
            .cmp(&other.mins())
            .then(self.maxs().cmp(&other.maxs()))
            .then(util::ord(self.radius, other.radius))
            .then(self.is_filled.cmp(&other.is_filled))
    }
}

impl PartialOrd for Circle {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for Circle {
    fn eq(&self, other: &Self) -> bool {
        self.cmp(other) == Ordering::Equal
    }
}

impl Into<Polyline> for Circle {
    fn into(self) -> Polyline {
        let points: Vec<Point2<f32>> = extract_circle_points(self.radius, 64)
            .into_iter()
            .map(|p| Point2::new(p.x + self.center.x, p.y + self.center.y))
            .collect();

        Polyline::new(points, None)
    }
}

impl Into<ConvexPolygon> for Circle {
    fn into(self) -> ConvexPolygon {
        let points: Vec<Point2<f32>> = extract_circle_points(self.radius, 64)
            .into_iter()
            .map(|p| Point2::new(p.x + self.center.x, p.y + self.center.y))
            .collect();

        ConvexPolygon::from_convex_polyline(points)
            .expect("must create a convex polygon")
    }
}

fn extract_circle_points(radius: f32, nsubdivs: u32) -> Vec<Point> {
    let two_pi = std::f32::consts::TAU;
    let dtheta = two_pi / nsubdivs as f32;
    push_xy_arc(radius, nsubdivs, dtheta)
}

/// Pushes a discretized counterclockwise circle to a buffer.
/// The circle is contained on the plane spanned by the `x` and `y` axis.
fn push_xy_arc(radius: f32, nsubdiv: u32, dtheta: f32) -> Vec<Point> {
    let mut out: Vec<Point> = vec![];
    let mut curr_theta: f32 = 0.0;

    for _ in 0..nsubdiv {
        let x = curr_theta.cos() * radius;
        let y = curr_theta.sin() * radius;
        out.push(Point::new(x, y));

        curr_theta = curr_theta + dtheta;
    }
    out
}