summaryrefslogtreecommitdiffstats
path: root/packages/svgbob/src/buffer/fragment_buffer/fragment_tree.rs
blob: 714beba4ba51c1933baf6e5abbc47aa3c469717e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
use crate::Fragment;
use sauron::{html::attributes::*, Node};

/// A tree of fragments where a fragment can contain other fragments
/// when those fragments are inside in this fragment
/// The main purpose of this struct is for tagging fragments
/// such as rect and circles to have a CellText fragment inside that are special
/// text commands such as css classes, which the user can style the containing fragment
#[derive(Debug, Clone, PartialEq)]
pub struct FragmentTree {
    fragment: Fragment,
    css_tag: Vec<String>,
    enclosing: Vec<FragmentTree>,
}

impl FragmentTree {
    pub(crate) fn new(fragment: Fragment) -> Self {
        FragmentTree {
            fragment,
            css_tag: vec![],
            enclosing: vec![],
        }
    }

    fn can_fit(&self, other: &Self) -> bool {
        self.fragment.can_fit(&other.fragment)
    }

    /// check if this fragment can fit to this fragment tree.
    /// this also check if any of the children of this tree can fit
    /// the fragment
    fn enclose(&mut self, other: &Self) -> bool {
        if self.can_fit(other) {
            self.enclosing.push(other.clone());
            return true;
        } else {
            for child in &mut self.enclosing {
                if child.enclose(other) {
                    return true;
                }
            }
            false
        }
    }

    /// Try to put the other fragment somwhere in the tree, but traversing the depth first.
    /// This is needed for accurately tagging which shapes by putting the right cell_text into
    /// it's direct parent instead of just checking whether the text is bounded by some shapes.
    fn enclose_deep_first(&mut self, other: &Self) -> bool {
        for child in &mut self.enclosing {
            if child.enclose_deep_first(other) {
                return true;
            }
        }
        if self.can_fit(other) {
            let css_tags = other.fragment.as_css_tag();
            if !css_tags.is_empty() {
                self.css_tag.extend(css_tags);
            } else {
                self.enclosing.push(other.clone());
            }
            true
        } else {
            false
        }
    }

    pub(crate) fn enclose_fragments(fragments: Vec<Fragment>) -> Vec<Self> {
        let fragment_trees: Vec<Self> = fragments
            .into_iter()
            .map(|frag| FragmentTree::new(frag))
            .collect();
        Self::enclose_recursive(fragment_trees)
    }

    pub(crate) fn enclose_recursive(fragment_trees: Vec<Self>) -> Vec<Self> {
        let original_len = fragment_trees.len();
        let merged = Self::second_pass_enclose(fragment_trees);
        if merged.len() < original_len {
            Self::enclose_recursive(merged)
        } else {
            merged
        }
    }

    /// make all the fragments a fragment tree and try to fit each other
    fn second_pass_enclose(fragment_trees: Vec<Self>) -> Vec<Self> {
        let mut new_trees: Vec<Self> = vec![];
        for frag_tree in fragment_trees {
            let is_enclosed = new_trees
                .iter_mut()
                .rev()
                .any(|new_tree| new_tree.enclose_deep_first(&frag_tree));
            if !is_enclosed {
                new_trees.push(frag_tree);
            }
        }
        new_trees
    }

    /// convert back into fragments
    fn into_nodes<MSG>(self) -> Vec<Node<MSG>> {
        let mut nodes = vec![];
        let mut fragment_node: Node<MSG> = self.fragment.into();
        let _css_tag_len = self.css_tag.len();
        fragment_node =
            fragment_node.merge_attributes(vec![classes(self.css_tag)]);

        nodes.push(fragment_node);
        for child in self.enclosing {
            nodes.extend(child.into_nodes())
        }
        nodes
    }

    /// convert fragments to node, where cell_text and text may become
    /// css class of the contain fragment
    pub(crate) fn fragments_to_node<MSG>(
        fragments: Vec<Fragment>,
    ) -> Vec<Node<MSG>> {
        let fragment_trees: Vec<FragmentTree> =
            Self::enclose_fragments(fragments);
        fragment_trees
            .into_iter()
            .flat_map(|frag_tree| frag_tree.into_nodes())
            .collect()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        buffer::Cell,
        fragment::{rect, CellText},
        Point,
    };

    #[test]
    fn test_enclose() {
        let mut rect1 = FragmentTree::new(rect(
            Point::new(0.0, 0.0),
            Point::new(10.0, 10.0),
            false,
            false,
        ));
        let rect2 = FragmentTree::new(rect(
            Point::new(1.0, 1.0),
            Point::new(9.0, 9.0),
            false,
            false,
        ));
        let text1 = FragmentTree::new(Fragment::CellText(CellText::new(
            Cell::new(2, 2),
            "{doc}".to_string(),
        )));
        let text2 = FragmentTree::new(Fragment::CellText(CellText::new(
            Cell::new(2, 2),
            "This is a hello world!".to_string(),
        )));

        assert!(rect1.enclose(&rect2));
        assert!(rect1.enclose(&text1));
        assert!(!rect1.enclose(&text2));
        dbg!(rect1);
    }

    #[test]
    fn test_enclose_recursive() {
        let rect1 =
            rect(Point::new(0.0, 0.0), Point::new(10.0, 10.0), false, false);
        let rect2 =
            rect(Point::new(1.0, 1.0), Point::new(9.0, 9.0), false, false);
        let text1 = Fragment::CellText(CellText::new(
            Cell::new(2, 2),
            "{doc}".to_string(),
        ));
        let text2 = Fragment::CellText(CellText::new(
            Cell::new(2, 2),
            "This is a hello world!".to_string(),
        ));

        let fragments = vec![rect1, rect2, text1, text2];
        let fragment_trees = FragmentTree::enclose_fragments(fragments);
        dbg!(&fragment_trees);

        assert_eq!(
            fragment_trees,
            vec![
                FragmentTree {
                    fragment: rect(
                        Point::new(0.0, 0.0),
                        Point::new(10.0, 10.0),
                        false,
                        false
                    ),
                    css_tag: vec![],
                    enclosing: vec![FragmentTree {
                        fragment: rect(
                            Point::new(1.0, 1.0),
                            Point::new(9.0, 9.0),
                            false,
                            false
                        ),
                        css_tag: vec!["doc".to_string()],
                        enclosing: vec![],
                    },],
                },
                FragmentTree {
                    fragment: Fragment::CellText(CellText::new(
                        Cell::new(2, 2),
                        "This is a hello world!".to_string(),
                    )),
                    css_tag: vec![],
                    enclosing: vec![],
                },
            ]
        );
    }

    #[test]
    fn test_enclose_recursive_different_order() {
        let rect1 =
            rect(Point::new(0.0, 0.0), Point::new(10.0, 10.0), false, false);
        let rect2 =
            rect(Point::new(1.0, 1.0), Point::new(9.0, 9.0), false, false);
        let text1 = Fragment::CellText(CellText::new(
            Cell::new(2, 2),
            "{doc}".to_string(),
        ));
        let text2 = Fragment::CellText(CellText::new(
            Cell::new(2, 2),
            "This is a hello world!".to_string(),
        ));

        let fragments = vec![rect1, rect2, text1, text2];
        let fragment_trees = FragmentTree::enclose_fragments(fragments);
        dbg!(&fragment_trees);

        assert_eq!(
            fragment_trees,
            vec![
                FragmentTree {
                    fragment: rect(
                        Point::new(0.0, 0.0),
                        Point::new(10.0, 10.0),
                        false,
                        false
                    ),
                    css_tag: vec![],
                    enclosing: vec![FragmentTree {
                        fragment: rect(
                            Point::new(1.0, 1.0),
                            Point::new(9.0, 9.0),
                            false,
                            false
                        ),
                        css_tag: vec!["doc".to_string()],
                        enclosing: vec![],
                    },],
                },
                FragmentTree {
                    fragment: Fragment::CellText(CellText::new(
                        Cell::new(2, 2),
                        "This is a hello world!".to_string(),
                    )),
                    css_tag: vec![],
                    enclosing: vec![],
                },
            ]
        );