summaryrefslogtreecommitdiffstats
path: root/packages/svgbob/src/buffer/cell_buffer/span.rs
blob: 42c5f255170ec45af28695290cb633290f07e075 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
use crate::buffer::cell_buffer::Endorse;
use crate::buffer::fragment_buffer::FragmentSpan;
use crate::fragment::Circle;
use crate::{
    buffer::{
        cell_buffer::Contacts, FragmentBuffer, Property, PropertyBuffer,
        StringBuffer,
    },
    fragment,
    map::{circle_map, UNICODE_FRAGMENTS},
    Cell, Fragment, Merge, Settings,
};
use itertools::Itertools;
use std::{
    fmt,
    ops::{Deref, DerefMut},
};

/// A describes where a char came from relative to the source ascii text
/// The primary purpose of span is to group adjacent cell together
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Span(pub Vec<(Cell, char)>);

impl Deref for Span {
    type Target = Vec<(Cell, char)>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

pub struct Bounds {
    top_left: Cell,
    bottom_right: Cell,
}

impl DerefMut for Span {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl From<Vec<(Cell, char)>> for Span {
    fn from(cell_chars: Vec<(Cell, char)>) -> Self {
        Span(cell_chars)
    }
}

impl Span {
    pub(crate) fn new(cell: Cell, ch: char) -> Self {
        Span(vec![(cell, ch)])
    }

    pub(super) fn is_adjacent(&self, cell: &Cell) -> bool {
        self.iter()
            .rev()
            .any(|(ex_cell, _)| ex_cell.is_adjacent(cell))
    }

    /// if any cell of this span is adjacent to any cell of the other
    /// Use .rev() to check the last cell of this Span agains the first cell of the other Span
    /// They have a high change of matching faster
    pub(super) fn can_merge(&self, other: &Self) -> bool {
        self.iter().rev().any(|(cell, _)| {
            other
                .iter()
                .any(|(other_cell, _)| cell.is_adjacent(other_cell))
        })
    }

    /// paste the other Span at cell location `loc`
    pub fn paste_at(&self, loc: Cell, other: &Self) -> Self {
        let mut this = self.clone();
        for (cell, ch) in other.deref() {
            this.push((*cell + loc, *ch));
        }
        this.sort();
        this.dedup();
        this
    }

    /// returns the top_left most cell which aligns the top most and the left most cell.
    pub(crate) fn bounds(&self) -> Option<(Cell, Cell)> {
        if let Some((min_y, max_y)) =
            self.iter().map(|(cell, _)| cell.y).minmax().into_option()
        {
            if let Some((min_x, max_x)) =
                self.iter().map(|(cell, _)| cell.x).minmax().into_option()
            {
                Some((Cell::new(min_x, min_y), Cell::new(max_x, max_y)))
            } else {
                None
            }
        } else {
            None
        }
    }

    pub fn cell_bounds(&self) -> Option<Bounds> {
        if let Some((top_left, top_right)) = self.bounds() {
            Some(Bounds::new(top_left, top_right))
        } else {
            None
        }
    }

    /// shift the cells relative to the top_left most bound
    pub(crate) fn localize(self) -> Self {
        if let Some((tl, _br)) = self.bounds() {
            let mut new_self = Span(vec![]);
            for (cell, ch) in self.iter() {
                let local_cell = tl.localize_cell(*cell);
                new_self.push((local_cell, *ch));
            }
            new_self
        } else {
            self
        }
    }

    /// convert this span into fragments applying endorsement
    /// of group into fragments
    ///
    /// returns (fragments, contacts) -
    /// The first element of the tuple: `fragments` are the resulting fragment after
    /// the endorsement such as rect, rounded rect from lines and arcs.
    ///
    /// The second element of the tuple: `contacts` are fragments that are touching together
    /// but can not form a fragment shape. These will be grouped in the svg nodes
    /// to keep them go together, when dragged (editing)
    pub(crate) fn endorse(self) -> Endorse<FragmentSpan, Contacts> {
        let mut accepted = vec![];
        let (top_left, _) = self.bounds().expect("must have bounds");
        let un_endorsed_span: Span = if let Some((circle, un_endorsed_span)) =
            circle_map::endorse_circle_span(&self)
        {
            let circle = circle.absolute_position(top_left);
            let circle_frag_span =
                FragmentSpan::new(self.clone(), circle.into());
            accepted.push(circle_frag_span);
            un_endorsed_span
        } else if let Some((half_arc, un_endorsed_span)) =
            circle_map::endorse_half_arc_span(&self)
        {
            let half_arc = half_arc.absolute_position(top_left);
            let half_arc_frag_span =
                FragmentSpan::new(self.clone(), half_arc.into());
            accepted.push(half_arc_frag_span);
            un_endorsed_span
        } else if let Some((arc, un_endorsed_span)) =
            circle_map::endorse_quarter_arc_span(&self)
        {
            let arc = arc.absolute_position(top_left);
            let arc_frag_span = FragmentSpan::new(self.clone(), arc.into());
            accepted.push(arc_frag_span);
            un_endorsed_span
        } else {
            self
        };

        let un_endorsed_contacts: Vec<Contacts> = un_endorsed_span.into();
        let rect_endorse: Endorse<FragmentSpan, Contacts> =
            Contacts::endorse_rects(un_endorsed_contacts);

        let mut endorse = Endorse {
            accepted,
            rejects: vec![],
        };
        endorse.extend(rect_endorse);
        endorse
    }

    /// create a span of the cells that is inside of the start and end bound cells
    pub(crate) fn extract(&self, bound1: Cell, bound2: Cell) -> Self {
        Span(
            self.iter()
                .map(|(cell, ch)| (*cell, *ch))
                .filter(|(cell, _ch)| cell.is_bounded(bound1, bound2))
                .collect(),
        )
    }

    /// returns true if any cell on this span
    /// is within the bounds of `bound1` and `bound2`
    pub fn is_bounded(&self, bound1: Cell, bound2: Cell) -> bool {
        self.iter()
            .all(|(cell, ch)| cell.is_bounded(bound1, bound2))
    }

    pub fn hit_cell(&self, needle: Cell) -> bool {
        self.iter().any(|(cell, ch)| *cell == needle)
    }

    /// merge as is without checking it it can
    pub fn merge_no_check(&self, other: &Self) -> Self {
        let mut cells = self.0.clone();
        cells.extend(&other.0);
        Span(cells)
    }
}

impl Merge for Span {
    fn merge(&self, other: &Self) -> Option<Self> {
        if self.can_merge(other) {
            Some(self.merge_no_check(other))
        } else {
            None
        }
    }
}

impl Bounds {
    pub fn new(cell1: Cell, cell2: Cell) -> Self {
        let (top_left, bottom_right) = Cell::rearrange_bound(cell1, cell2);
        Self {
            top_left,
            bottom_right,
        }
    }

    pub fn top_left(&self) -> Cell {
        self.top_left
    }

    pub fn bottom_right(&self) -> Cell {
        self.bottom_right
    }

    pub fn top_right(&self) -> Cell {
        Cell::new(self.bottom_right.x, self.top_left.y)
    }
    pub fn bottom_left(&self) -> Cell {
        Cell::new(self.top_left.x, self.bottom_right.y)
    }
}

/// create a property buffer for all the cells of this span
impl<'p> From<Span> for PropertyBuffer<'p>