summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAndrew Gallant <jamslam@gmail.com>2023-06-21 20:38:02 -0400
committerAndrew Gallant <jamslam@gmail.com>2023-06-22 14:43:03 -0400
commit47744a47c63fc6c22530504cba5d394fd7fa7e2d (patch)
tree5a5150ba2fcb49159d732c49d4f3e084b33d5692
parent27014862ecdf30ec9e927f456a27f7ffb53f5e69 (diff)
regex: add new inner literal extractorag/regex-automata
This is mostly a copy of the prefix literal extractor in regex-syntax, but with a tweaked notion of Seq that keeps track of whether it's a prefix of an expression or not. If it isn't, then we can't cross it as a suffix to another Seq. This new extractor should be a lot more robust than the old one. We actually will keep going through the regex to try and find the "best" literals to search for (according to some heuristic).
-rw-r--r--crates/regex/src/literal.rs967
-rw-r--r--crates/regex/src/matcher.rs10
2 files changed, 958 insertions, 19 deletions
diff --git a/crates/regex/src/literal.rs b/crates/regex/src/literal.rs
index 518e54bf..e52fb899 100644
--- a/crates/regex/src/literal.rs
+++ b/crates/regex/src/literal.rs
@@ -1,15 +1,42 @@
-#![allow(warnings)]
-
use {
regex_automata::meta::Regex,
regex_syntax::hir::{
- literal::{self, Seq},
+ self,
+ literal::{Literal, Seq},
Hir,
},
};
-use crate::config::ConfiguredHIR;
+use crate::{config::ConfiguredHIR, error::Error};
+/// A type that encapsulates "inner" literal extractiong from a regex.
+///
+/// It uses a huge pile of heuristics to try to pluck out literals from a regex
+/// that are in turn used to build a simpler regex that is more amenable to
+/// optimization.
+///
+/// The main idea underyling the validity of this technique is the fact
+/// that ripgrep searches individuals lines and not across lines. (Unless
+/// -U/--multiline is enabled.) Namely, we can pluck literals out of the regex,
+/// search for them, find the bounds of the line in which that literal occurs
+/// and then run the original regex on only that line. This overall works
+/// really really well in throughput oriented searches because it potentially
+/// allows ripgrep to spend a lot more time in a fast vectorized routine for
+/// finding literals as opposed to the (much) slower regex engine.
+///
+/// This optimization was far more important in the old days, but since then,
+/// Rust's regex engine has actually grown its own (albeit limited) support for
+/// inner literal optimizations. So this technique doesn't apply as much as it
+/// used to.
+///
+/// A good example of a regex where this particular extractor helps is
+/// `\s+(Sherlock|[A-Z]atso[a-z]|Moriarty)\s+`. The `[A-Z]` before the `atso`
+/// in particular is what inhibits the regex engine's own inner literal
+/// optimizations from kicking in. This particular regex also did not have any
+/// inner literals extracted in the old implementation (ripgrep <=13). So this
+/// particular implementation represents a strict improvement from both the old
+/// implementation and from the regex engine's own optimizations. (Which could
+/// in theory be improved still.)
#[derive(Clone, Debug)]
pub(crate) struct InnerLiterals {
seq: Seq,
@@ -26,10 +53,35 @@ impl InnerLiterals {
/// because it will query some state about the compiled regex. That state
/// may influence inner literal extraction.
pub(crate) fn new(chir: &ConfiguredHIR, re: &Regex) -> InnerLiterals {
- let seq = Seq::infinite();
- if chir.config().line_terminator.is_none() || re.is_accelerated() {
+ // If there's no line terminator, then the inner literal optimization
+ // at this level is not valid.
+ if chir.config().line_terminator.is_none() {
+ log::trace!(
+ "skipping inner literal extraction, \
+ no line terminator is set"
+ );
+ return InnerLiterals::none();
+ }
+ // If we believe the regex is already accelerated, then just let
+ // the regex engine do its thing. We'll skip the inner literal
+ // optimization.
+ if re.is_accelerated() {
+ log::trace!(
+ "skipping inner literal extraction, \
+ existing regex is believed to already be accelerated",
+ );
return InnerLiterals::none();
}
+ // In this case, we pretty much know that the regex engine will handle
+ // it as best as possible, even if it isn't reported as accelerated.
+ if chir.hir().properties().is_alternation_literal() {
+ log::trace!(
+ "skipping inner literal extraction, \
+ found alternation of literals, deferring to regex engine",
+ );
+ return InnerLiterals::none();
+ }
+ let seq = Extractor::new().extract_untagged(chir.hir());
InnerLiterals { seq }
}
@@ -45,10 +97,905 @@ impl InnerLiterals {
/// generated these literal sets. The idea here is that the pattern
/// returned by this method is much cheaper to search for. i.e., It is
/// usually a single literal or an alternation of literals.
- pub(crate) fn one_regex(&self) -> Option<String> {
- if !self.seq.is_finite() {
- return None;
+ pub(crate) fn one_regex(&self) -> Result<Option<Regex>, Error> {
+ let Some(lits) = self.seq.literals() else { return Ok(None) };
+ if lits.is_empty() {
+ return Ok(None);
+ }
+ let mut alts = vec![];
+ for lit in lits.iter() {
+ alts.push(Hir::literal(lit.as_bytes()));
+ }
+ let hir = Hir::alternation(alts);
+ log::debug!("extracted fast line regex: {:?}", hir.to_string());
+ let re = Regex::builder()
+ .configure(Regex::config().utf8_empty(false))
+ .build_from_hir(&hir)
+ .map_err(Error::regex)?;
+ Ok(Some(re))
+ }
+}
+
+/// An inner literal extractor.
+///
+/// This is a somewhat stripped down version of the extractor from
+/// regex-syntax. The main difference is that we try to identify a "best" set
+/// of required literals while traversing the HIR.
+#[derive(Debug)]
+struct Extractor {
+ limit_class: usize,
+ limit_repeat: usize,
+ limit_literal_len: usize,
+ limit_total: usize,
+}
+
+impl Extractor {
+ /// Create a new inner literal extractor with a default configuration.
+ fn new() -> Extractor {
+ Extractor {
+ limit_class: 10,
+ limit_repeat: 10,
+ limit_literal_len: 100,
+ limit_total: 64,
+ }
+ }
+
+ /// Execute the extractor at the top-level and return an untagged sequence
+ /// of literals.
+ fn extract_untagged(&self, hir: &Hir) -> Seq {
+ let mut seq = self.extract(hir);
+ log::trace!("extracted inner literals: {:?}", seq.seq);
+ seq.seq.optimize_for_prefix_by_preference();
+ log::trace!(
+ "extracted inner literals after optimization: {:?}",
+ seq.seq
+ );
+ if !seq.is_good() {
+ log::trace!(
+ "throwing away inner literals because they might be slow"
+ );
+ seq.make_infinite();
+ }
+ seq.seq
+ }
+
+ /// Execute the extractor and return a sequence of literals.
+ fn extract(&self, hir: &Hir) -> TSeq {
+ use regex_syntax::hir::HirKind::*;
+
+ match *hir.kind() {
+ Empty | Look(_) => TSeq::singleton(self::Literal::exact(vec![])),
+ Literal(hir::Literal(ref bytes)) => {
+ let mut seq =
+ TSeq::singleton(self::Literal::exact(bytes.to_vec()));
+ self.enforce_literal_len(&mut seq);
+ seq
+ }
+ Class(hir::Class::Unicode(ref cls)) => {
+ self.extract_class_unicode(cls)
+ }
+ Class(hir::Class::Bytes(ref cls)) => self.extract_class_bytes(cls),
+ Repetition(ref rep) => self.extract_repetition(rep),
+ Capture(hir::Capture { ref sub, .. }) => self.extract(sub),
+ Concat(ref hirs) => self.extract_concat(hirs.iter()),
+ Alternation(ref hirs) => self.extract_alternation(hirs.iter()),
+ }
+ }
+
+ /// Extract a sequence from the given concatenation. Sequences from each of
+ /// the child HIR expressions are combined via cross product.
+ ///
+ /// This short circuits once the cross product turns into a sequence
+ /// containing only inexact literals.
+ fn extract_concat<'a, I: Iterator<Item = &'a Hir>>(&self, it: I) -> TSeq {
+ let mut seq = TSeq::singleton(self::Literal::exact(vec![]));
+ let mut prev: Option<TSeq> = None;
+ for hir in it {
+ // If every element in the sequence is inexact, then a cross
+ // product will always be a no-op. Thus, there is nothing else we
+ // can add to it and can quit early. Note that this also includes
+ // infinite sequences.
+ if seq.is_inexact() {
+ // If a concatenation has an empty sequence anywhere, then
+ // it's impossible for the concatenantion to ever match. So we
+ // can just quit now.
+ if seq.is_empty() {
+ return seq;
+ }
+ if seq.is_really_good() {
+ return seq;
+ }
+ prev = Some(match prev {
+ None => seq,
+ Some(prev) => prev.choose(seq),
+ });
+ seq = TSeq::singleton(self::Literal::exact(vec![]));
+ seq.make_not_prefix();
+ }
+ // Note that 'cross' also dispatches based on whether we're
+ // extracting prefixes or suffixes.
+ seq = self.cross(seq, self.extract(hir));
+ }
+ if let Some(prev) = prev {
+ prev.choose(seq)
+ } else {
+ seq
+ }
+ }
+
+ /// Extract a sequence from the given alternation.
+ ///
+ /// This short circuits once the union turns into an infinite sequence.
+ fn extract_alternation<'a, I: Iterator<Item = &'a Hir>>(
+ &self,
+ it: I,
+ ) -> TSeq {
+ let mut seq = TSeq::empty();
+ for hir in it {
+ // Once our 'seq' is infinite, every subsequent union
+ // operation on it will itself always result in an
+ // infinite sequence. Thus, it can never change and we can
+ // short-circuit.
+ if !seq.is_finite() {
+ break;
+ }
+ seq = self.union(seq, &mut self.extract(hir));
+ }
+ seq
+ }
+
+ /// Extract a sequence of literals from the given repetition. We do our
+ /// best, Some examples:
+ ///
+ /// 'a*' => [inexact(a), exact("")]
+ /// 'a*?' => [exact(""), inexact(a)]
+ /// 'a+' => [inexact(a)]
+ /// 'a{3}' => [exact(aaa)]
+ /// 'a{3,5} => [inexact(aaa)]
+ ///
+ /// The key here really is making sure we get the 'inexact' vs 'exact'
+ /// attributes correct on each of the literals we add. For example, the
+ /// fact that 'a*' gives us an inexact 'a' and an exact empty string means
+ /// that a regex like 'ab*c' will result in [inexact(ab), exact(ac)]
+ /// literals being extracted, which might actually be a better prefilter
+ /// than just 'a'.
+ fn extract_repetition(&self, rep: &hir::Repetition) -> TSeq {
+ let mut subseq = self.extract(&rep.sub);
+ match *rep {
+ hir::Repetition { min: 0, max, greedy, .. } => {
+ // When 'max=1', we can retain exactness, since 'a?' is
+ // equivalent to 'a|'. Similarly below, 'a??' is equivalent to
+ // '|a'.
+ if max != Some(1) {
+ subseq.make_inexact();
+ }
+ let mut empty = TSeq::singleton(Literal::exact(vec![]));
+ if !greedy {
+ std::mem::swap(&mut subseq, &mut empty);
+ }
+ self.union(subseq, &mut empty)
+ }
+ hir::Repetition { min, max: Some(max), .. } if min == max => {
+ assert!(min > 0); // handled above
+ let limit =
+ u32::try_from(self.limit_repeat).unwrap_or(u32::MAX);
+ let mut seq = TSeq::singleton(Literal::exact(vec![]));
+ for _ in 0..std::cmp::min(min, limit) {
+ if seq.is_inexact() {
+ break;
+ }
+ seq = self.cross(seq, subseq.clone());
+ }
+ if usize::try_from(min).is_err() || min > limit {
+ seq.make_inexact();
+ }
+ seq
+ }
+ hir::Repetition { min, max: Some(max), .. } if min < max => {
+ assert!(min > 0); // handled above
+ let limit =
+ u32::try_from(self.limit_repeat).unwrap_or(u32::MAX);
+ let mut seq = TSeq::singleton(Literal::exact(vec![]));
+ for _ in 0..std::cmp::min(min, limit) {
+ if seq.is_inexact() {
+ break;
+ }
+ seq = self.cross(seq, subseq.clone());
+ }
+ seq.make_inexact();
+ seq
+ }
+ hir::Repetition { .. } => {
+ subseq.make_inexact();
+ subseq
+ }
+ }
+ }
+
+ /// Convert the given Unicode class into a sequence of literals if the
+ /// class is small enough. If the class is too big, return an infinite
+ /// sequence.
+ fn extract_class_unicode(&self, cls: &hir::ClassUnicode) -> TSeq {
+ if self.class_over_limit_unicode(cls) {
+ return TSeq::infinite();
+ }
+ let mut seq = TSeq::empty();
+ for r in cls.iter() {
+ for ch in r.start()..=r.end() {
+ seq.push(Literal::from(ch));
+ }
+ }
+ self.enforce_literal_len(&mut seq);
+ seq
+ }
+
+ /// Convert the given byte class into a sequence of literals if the class
+ /// is small enough. If the class is too big, return an infinite sequence.
+ fn extract_class_bytes(&self, cls: &hir::ClassBytes) -> TSeq {
+ if self.class_over_limit_bytes(cls) {
+ return TSeq::infinite();
+ }
+ let mut seq = TSeq::empty();
+ for r in cls.iter() {
+ for b in r.start()..=r.end() {
+ seq.push(Literal::from(b));
+ }
+ }
+ self.enforce_literal_len(&mut seq);
+ seq
+ }
+
+ /// Returns true if the given Unicode class exceeds the configured limits
+ /// on this extractor.
+ fn class_over_limit_unicode(&self, cls: &hir::ClassUnicode) -> bool {
+ let mut count = 0;
+ for r in cls.iter() {
+ if count > self.limit_class {
+ return true;
+ }
+ count += r.len();
+ }
+ count > self.limit_class
+ }
+
+ /// Returns true if the given byte class exceeds the configured limits on
+ /// this extractor.
+ fn class_over_limit_bytes(&self, cls: &hir::ClassBytes) -> bool {
+ let mut count = 0;
+ for r in cls.iter() {
+ if count > self.limit_class {
+ return true;
+ }
+ count += r.len();
+ }
+ count > self.limit_class
+ }
+
+ /// Compute the cross product of the two sequences if the result would be
+ /// within configured limits. Otherwise, make `seq2` infinite and cross the
+ /// infinite sequence with `seq1`.
+ fn cross(&self, mut seq1: TSeq, mut seq2: TSeq) -> TSeq {
+ if !seq2.prefix {
+ return seq1.choose(seq2);
+ }
+ if seq1
+ .max_cross_len(&seq2)
+ .map_or(false, |len| len > self.limit_total)
+ {
+ seq2.make_infinite();
}
- None
+ seq1.cross_forward(&mut seq2);
+ assert!(seq1.len().map_or(true, |x| x <= self.limit_total));
+ self.enforce_literal_len(&mut seq1);
+ seq1
+ }
+
+ /// Union the two sequences if the result would be within configured
+ /// limits. Otherwise, make `seq2` infinite and union the infinite sequence
+ /// with `seq1`.
+ fn union(&self, mut seq1: TSeq, seq2: &mut TSeq) -> TSeq {
+ if seq1.max_union_len(seq2).map_or(false, |len| len > self.limit_total)
+ {
+ // We try to trim our literal sequences to see if we can make
+ // room for more literals. The idea is that we'd rather trim down
+ // literals already in our sequence if it means we can add a few
+ // more and retain a finite sequence. Otherwise, we'll union with
+ // an infinite sequence and that infects everything and effectively
+ // stops literal extraction in its tracks.
+ //
+ // We do we keep 4 bytes here? Well, it's a bit of an abstraction
+ // leakage. Downstream, the literals may wind up getting fed to
+ // the Teddy algorithm, which supports searching literals up to
+ // length 4. So that's why we pick that number here. Arguably this
+ // should be a tuneable parameter, but it seems a little tricky to
+ // describe. And I'm still unsure if this is the right way to go
+ // about culling literal sequences.
+ seq1.keep_first_bytes(4);
+ seq2.keep_first_bytes(4);
+ seq1.dedup();
+ seq2.dedup();
+ if seq1
+ .max_union_len(seq2)
+ .map_or(false, |len| len > self.limit_total)
+ {
+ seq2.make_infinite();
+ }
+ }
+ seq1.union(seq2);
+ assert!(seq1.len().map_or(true, |x| x <= self.limit_total));
+ seq1
+ }
+
+ /// Applies the literal length limit to the given sequence. If none of the
+ /// literals in the sequence exceed the limit, then this is a no-op.
+ fn enforce_literal_len(&self, seq: &mut TSeq) {
+ seq.keep_first_bytes(self.limit_literal_len);
+ }
+}
+
+#[derive(Clone, Debug)]
+struct TSeq {
+ seq: Seq,
+ prefix: bool,
+}
+
+#[allow(dead_code)]
+impl TSeq {
+ fn empty() -> TSeq {
+ TSeq { seq: Seq::empty(), prefix: true }
+ }
+
+ fn infinite() -> TSeq {
+ TSeq { seq: Seq::infinite(), prefix: true }
+ }
+
+ fn singleton(lit: Literal) -> TSeq {
+ TSeq { seq: Seq::singleton(lit), prefix: true }
+ }
+
+ fn new<I, B>(it: I) -> TSeq
+ where
+ I: IntoIterator<Item = B>,
+ B: AsRef<[u8]>,
+ {
+ TSeq { seq: Seq::new(it), prefix: true }
+ }
+
+ fn literals(&self) -> Option<&[Literal]> {
+ self.seq.literals()
+ }
+
+ fn push(&mut self, lit: Literal) {
+ self.seq.push(lit);
+ }
+
+ fn make_inexact(&mut self) {
+ self.seq.make_inexact();
+ }
+
+ fn make_infinite(&mut self) {
+ self.seq.make_infinite();
+ }
+
+ fn cross_forward(&mut self, other: &mut TSeq) {
+ assert!(other.prefix);
+ self.seq.cross_forward(&mut other.seq);
+ }
+
+ fn union(&mut self, other: &mut TSeq) {
+ self.seq.union(&mut other.seq);
+ }
+
+ fn dedup(&mut self) {
+ self.seq.dedup();
+ }
+
+ fn sort(&mut self) {
+ self.seq.sort();
+ }
+
+ fn keep_first_bytes(&mut self, len: usize) {
+ self.seq.keep_first_bytes(len);
+ }
+
+ fn is_finite(&self) -> bool {
+ self.seq.is_finite()
+ }
+
+ fn is_empty(&self) -> bool {
+ self.seq.is_empty()
+ }
+
+ fn len(&self) -> Option<usize> {
+ self.seq.len()
+ }
+
+ fn is_exact(&self) -> bool {
+ self.seq.is_exact()
+ }
+
+ fn is_inexact(&self) -> bool {
+ self.seq.is_inexact()
+ }
+
+ fn max_union_len(&self, other: &TSeq) -> Option<usize> {
+ self.seq.max_union_len(&other.seq)
+ }
+
+ fn max_cross_len(&self, other: &TSeq) -> Option<usize> {
+ assert!(other.prefix);
+ self.seq.max_cross_len(&other.seq)
+ }
+
+ fn min_literal_len(&self) -> Option<usize> {
+ self.seq.min_literal_len()
+ }
+
+ fn max_literal_len(&self) -> Option<usize> {
+ self.seq.max_literal_len()
+ }
+
+ // Below are methods specific to a TSeq that aren't just forwarding calls
+ // to a Seq method.
+
+ /// Tags this sequence as "not a prefix." When this happens, this sequence
+ /// can't be crossed as a suffix of another sequence.
+ fn make_not_prefix(&mut self) {
+ self.prefix = false;
+ }
+
+ /// Returns true if it's believed that the sequence given is "good" for
+ /// acceleration. This is useful for determining whether a sequence of
+ /// literals has any shot of being fast.
+ fn is_good(&self) -> bool {
+ if self.has_poisonous_literal() {
+ return false;
+ }
+ let Some(min) = self.min_literal_len() else { return false };
+ let Some(len) = self.len() else { return false };
+ // If we have some very short literals, then let's require that our
+ // sequence is itself very small.
+ if min <= 1 {
+ return len <= 3;
+ }
+ min >= 2 && len <= 64
+ }
+
+ /// Returns true if it's believed that the sequence given is "really
+ /// good" for acceleration. This is useful for short circuiting literal
+ /// extraction.
+ fn is_really_good(&self) -> bool {
+ if self.has_poisonous_literal() {
+ return false;
+ }
+ let Some(min) = self.min_literal_len() else { return false };
+ let Some(len) = self.len() else { return false };
+ min >= 3 && len <= 8
+ }
+
+ /// Returns true if the given sequence contains a poisonous literal.
+ fn has_poisonous_literal(&self) -> bool {
+ let Some(lits) = self.literals() else { return false };
+ lits.iter().any(is_poisonous)
+ }
+
+ /// Compare the two sequences and return the one that is believed to be best
+ /// according to a hodge podge of heuristics.
+ fn choose(self, other: TSeq) -> TSeq {
+ let (seq1, seq2) = (self, other);
+ if !seq1.is_finite() {
+ return seq2;
+ } else if !seq2.is_finite() {
+ return seq1;
+ }
+ if seq1.has_poisonous_literal() {
+ return seq2;
+ } else if seq2.has_poisonous_literal() {
+ return seq1;
+ }
+ let Some(min1) = seq1.min_literal_len() else { return seq2 };
+ let Some(min2) = seq2.min_literal_len() else { return seq1 };
+ if min1 < min2 {
+ return seq2;
+ } else if min2 < min1 {
+ return seq1;
+ }
+ // OK because we know both sequences are finite, otherwise they wouldn't
+ // have a minimum literal length.
+ let len1 = seq1.len().unwrap();
+ let len2 = seq2.len().unwrap();
+ if len1 < len2 {
+ return seq2;
+ } else if len2 < len1 {
+ return seq1;
+ }
+ // We could do extra stuff like looking at a background frequency
+ // distribution of bytes and picking the one that looks more rare, but for
+ // now we just pick one.
+ seq1
+ }
+}
+
+impl FromIterator<Literal> for TSeq {
+ fn from_iter<T: IntoIterator<Item = Literal>>(it: T) -> TSeq {
+ TSeq { seq: Seq::from_iter(it), prefix: true }
+ }
+}
+
+/// Returns true if it is believe that this literal is likely to match very
+/// frequently, and is thus not a good candidate for a prefilter.
+fn is_poisonous(lit: &Literal) -> bool {
+ use regex_syntax::hir::literal::rank;
+
+ lit.is_empty() || (lit.len() == 1 && rank(lit.as_bytes()[0]) >= 250)
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ fn e(pattern: impl AsRef<str>) -> Seq {
+ let pattern = pattern.as_ref();
+ let hir = regex_syntax::ParserBuilder::new()
+ .utf8(false)
+ .build()
+ .parse(pattern)
+ .unwrap();
+ Extractor::new().extract_untagged(&hir)
+ }
+
+ #[allow(non_snake_case)]
+ fn E(x: &str) -> Literal {
+ Literal::exact(x.as_bytes())
+ }
+
+ #[allow(non_snake_case)]
+ fn I(x: &str) -> Literal {
+ Literal::inexact(x.as_bytes())
+ }
+
+ fn seq<I: IntoIterator<Item = Literal>>(it: I) -> Seq {
+ Seq::from_iter(it)
+ }
+
+ fn inexact<I>(it: I) -> Seq
+ where
+ I: IntoIterator<Item = Literal>,
+ {
+ Seq::from_iter(it)
+ }
+
+ fn exact<B: AsRef<[u8]>, I: IntoIterator<Item = B>>(it: I) -> Seq {
+ Seq::new(it)
+ }
+
+ #[test]
+ fn various() {
+ assert_eq!(e(r"foo"), seq([E("foo")]));
+ assert_eq!(e(r"[a-z]foo[a-z]"), seq([I("foo")]));
+ assert_eq!(e(r"[a-z](foo)(bar)[a-z]"), seq([I("foobar")]));
+ assert_eq!(e(r"[a-z]([a-z]foo)(bar[a-z])[a-z]"), seq([I("foobar")]));
+ assert_eq!(e(r"[a-z]([a-z]foo)([a-z]foo)[a-z]"), seq([I("foo")]));
+ assert_eq!(e(r"(\d{1,3}\.){3}\d{1,3}"), seq([I(".")]));
+ assert_eq!(e(r"[a-z]([a-z]foo){3}[a-z]"), seq([I("foo")]));
+ assert_eq!(e(r"[a-z](foo[a-z]){3}[a-z]"), seq([I("foo")]));
+ assert_eq!(e(r"[a-z]([a-z]foo[a-z]){3}[a-z]"), seq([I("foo")]));
+ assert_eq!(
+ e(r"[a-z]([a-z]foo){3}(bar[a-z]){3}[a-z]"),
+ seq([I("foobar")])
+ );
+ }
+
+ // These test that some of our suspicious heuristics try to "pick better
+ // literals."
+ #[test]
+ fn heuristics() {
+ // Here, the first literals we stumble across are {ab, cd, ef}. But we
+ // keep going and our heuristics decide that {hiya} is better. (And it
+ // should be, since it's just one literal and it's longer.)
+ assert_eq!(e(r"[a-z]+(ab|cd|ef)[a-z]+hiya[a-z]+"), seq([I("hiya")]));
+ // But here, the first alternation becomes "good enough" that literal
+ // extraction short circuits early. {hiya} is probably still a better
+ // choice here, but {abc, def, ghi} is not bad.
+ assert_eq!(
+ e(r"[a-z]+(abc|def|ghi)[a-z]+hiya[a-z]+"),
+ seq([I("abc"), I("def"), I("ghi")])
+ );
+ }
+
+ #[test]
+ fn literal() {
+ assert_eq!(exact(["a"]), e("a"));
+ assert_eq!(exact(["aaaaa"]), e("aaaaa"));
+ assert_eq!(exact(["A", "a"]), e("(?i-u)a"));
+ assert_eq!(exact(["AB", "Ab", "aB", "ab"]), e("(?i-u)ab"));
+ assert_eq!(exact(["abC", "abc"]), e("ab(?i-u)c"));
+
+ assert_eq!(Seq::infinite(), e(r"(?-u:\xFF)"));
+ assert_eq!(exact([b"Z"]), e(r"Z"));
+
+ assert_eq!(exact(["☃"]), e("☃"));
+ assert_eq!(exact(["☃"]), e("(?i)☃"));
+ assert_eq!(exact(["☃☃☃☃☃"]), e("☃☃☃☃☃"));
+
+ assert_eq!(exact(["Δ"]), e("Δ"));
+ assert_eq!(exact(["δ"]), e("δ"));
+ assert_eq!(exact(["Δ", "δ"]), e("(?i)Δ"));
+ assert_eq!(exact(["Δ", "δ"]), e("(?i)δ"));
+
+ assert_eq!(exact(["S", "s", "ſ"]), e("(?i)S"));
+ assert_eq!(exact(["S", "s", "ſ"]), e("(?i)s"));
+ assert_eq!(exact(["S", "s", "ſ"]), e("(?i)ſ"));
+
+ let letters = "ͱͳͷΐάέήίΰαβγδεζηθικλμνξοπρςστυφχψωϊϋ";
+ assert_eq!(exact([letters]), e(letters));
+ }
+
+ #[test]
+ fn class() {
+ assert_eq!(exact(["a", "b", "c"]), e("[abc]"));
+ assert_eq!(exact(["a1b", "a2b", "a3b"]), e("a[123]b"));
+ assert_eq!(exact(["δ", "ε"]), e("[εδ]"));
+ assert_eq!(exact(["Δ", "Ε", "δ", "ε", "ϵ"]), e(r"(?i)[εδ]"));
+ }
+
+ #[test]
+ fn look() {
+ assert_eq!(exact(["ab"]), e(r"a\Ab"));
+ assert_eq!(exact(["ab"]), e(r"a\zb"));
+ assert_eq!(exact(["ab"]), e(r"a(?m:^)b"));
+ assert_eq!(exact(["ab"]), e(r"a(?m:$)b"));
+ assert_eq!(exact(["ab"]), e(r"a\bb"));
+ assert_eq!(exact(["ab"]), e(r"a\Bb"));
+ assert_eq!(exact(["ab"]), e(r"a(?-u:\b)b"));
+ assert_eq!(exact(["ab"]), e(r"a(?-u:\B)b"));
+
+ assert_eq!(exact(["ab"]), e(r"^ab"));
+ assert_eq!(exact(["ab"]), e(r"$ab"));
+ assert_eq!(exact(["ab"]), e(r"(?m:^)ab"));
+ assert_eq!(exact(["ab"]), e(r"(?m:$)ab"));
+ assert_eq!(exact(["ab"]), e(r"\bab"));
+ assert_eq!(exact(["ab"]), e(r"\Bab"));
+ assert_eq!(exact(["ab"]), e(r"(?-u:\b)ab"));
+ assert_eq!(exact(["ab"]), e(r"(?-u:\B)ab"));
+
+ assert_eq!(exact(["ab"]), e(r"ab^"));
+ assert_eq!(exact(["ab"]), e(r"ab$"));
+ assert_eq!(exact(["ab"]), e(r"ab(?m:^)"));
+ assert_eq!(exact(["ab"]), e(r"ab(?m:$)"));
+ assert_eq!(exact(["ab"]), e(r"ab\b"));
+ assert_eq!(exact(["ab"]), e(r"ab\B"));
+ assert_eq!(exact(["ab"]), e(r"ab(?-u:\b)"));
+ assert_eq!(exact(["ab"]), e(r"ab(?-u:\B)"));
+
+ assert_eq!(seq([I("aZ"), E("ab")]), e(r"^aZ*b"));
+ }
+
+ #[test]
+ fn repetition() {
+ assert_eq!(Seq::infinite(), e(r"a?"));
+ assert_eq!(Seq::infinite(), e(r"a??"));
+ assert_eq!(Seq::infinite(), e(r"a*"));
+ assert_eq!(Seq::infinite(), e(r"a*?"));
+ assert_eq!(inexact([I("a")]), e(r"a+"));
+ assert_eq!(inexact([I("a")]), e(r"(a+)+"));
+
+ assert_eq!(exact(["ab"]), e(r"aZ{0}b"));
+ assert_eq!(exact(["aZb", "ab"]), e(r"aZ?b"));
+ assert_eq!(exact(["ab", "aZb"]), e(r"aZ??b"));
+ assert_eq!(inexact([I("aZ"), E("ab")]), e(r"aZ*b"));
+ assert_eq!(inexact([E("ab"), I("aZ")]), e(r"aZ*?b"));
+ assert_eq!(inexact([I("aZ")]), e(r"aZ+b"));
+ assert_eq!(inexact([I("aZ")]), e(r"aZ+?b"));
+
+ assert_eq!(exact(["aZZb"]), e(r"aZ{2}b"));
+ assert_eq!(inexact([I("aZZ")]), e(r"aZ{2,3}b"));
+
+ assert_eq!(Seq::infinite(), e(r"(abc)?"));
+ assert_eq!(Seq::infinite(), e(r"(abc)??"));
+
+ assert_eq!(inexact([I("a"), E("b")]), e(r"a*b"));
+ assert_eq!(inexact([E("b"), I("a")]), e(r"a*?b"));
+ assert_eq!(inexact([I("ab")]), e(r"ab+"));
+ assert_eq!(inexact([I("a"), I("b")]), e(r"a*b+"));
+
+ assert_eq!(inexact([I("a"), I("b"), E("c")]), e(r"a*b*c"));
+ assert_eq!(inexact([I("a"), I("b"), E("c")]), e(r"(a+)?(b+)?c"));
+ assert_eq!(inexact([I("a"), I("b"), E("c")]), e(r"(a+|)(b+|)c"));
+ // A few more similarish but not identical regexes. These may have a
+ // similar problem as above.
+ assert_eq!(Seq::infinite(), e(r"a*b*c*"));
+ assert_eq!(inexact([I("a"), I("b"), I("c")]), e(r"a*b*c+"));
+ assert_eq!(inexact([I("a"), I("b")]), e(r"a*b+c"));
+ assert_eq!(inexact([I("a"), I("b")]), e(r"a*b+c*"));
+ assert_eq!(inexact([I("ab"), E("a")]), e(r"ab*"));
+ assert_eq!(inexact([I("ab"), E("ac")]), e(r"ab*c"));
+ assert_eq!(inexact([I("ab")]), e(r"ab+"));
+ assert_eq!(inexact([I("ab")]), e(r"ab+c"));
+
+ assert_eq!(inexact([I("z"), E("azb")]), e(r"z*azb"));
+
+ let expected =
+ exact(["aaa", "aab", "aba", "abb", "baa", "bab", "bba", "bbb"]);
+ assert_eq!(expected, e(r"[ab]{3}"));
+ let expected = inexact([
+ I("aaa"),
+ I("aab"),
+ I("aba"),
+ I("abb"),
+ I("baa"),
+ I("bab"),
+ I("bba"),
+ I("bbb"),
+ ]);
+ assert_eq!(expected, e(r"[ab]{3,4}"));
+ }
+
+ #[test]
+ fn concat() {
+ assert_eq!(exact(["abcxyz"]), e(r"abc()xyz"));
+ assert_eq!(exact(["abcxyz"]), e(r"(abc)(xyz)"));
+ assert_eq!(exact(["abcmnoxyz"]), e(r"abc()mno()xyz"));
+ assert_eq!(Seq::infinite(), e(r"abc[a&&b]xyz"));
+ assert_eq!(exact(["abcxyz"]), e(r"abc[a&&b]*xyz"));
+ }
+
+ #[test]
+ fn alternation() {
+ assert_eq!(exact(["abc", "mno", "xyz"]), e(r"abc|mno|xyz"));
+ assert_eq!(
+ inexact([E("abc"), I("mZ"), E("mo"), E("xyz")]),
+ e(r"abc|mZ*o|xyz")
+ );
+ assert_eq!(exact(["abc", "xyz"]), e(r"abc|M[a&&b]N|xyz"));
+ assert_eq!(exact(["abc", "MN", "xyz"]), e(r"abc|M[a&&b]*N|xyz"));
+
+ assert_eq!(exact(["aaa"]), e(r"(?:|aa)aaa"));
+ assert_eq!(Seq::infinite(), e(r"(?:|aa)(?:aaa)*"));
+ assert_eq!(Seq::infinite(), e(r"(?:|aa)(?:aaa)*?"));
+
+ assert_eq!(Seq::infinite(), e(r"a|b*"));
+ assert_eq!(inexact([E("a"), I("b")]), e(r"a|b+"));
+
+ assert_eq!(inexact([I("a"), E("b"), E("c")]), e(r"a*b|c"));
+
+ assert_eq!(Seq::infinite(), e(r"a|(?:b|c*)"));
+
+ assert_eq!(inexact([I("a"), I("b"), E("c")]), e(r"(a|b)*c|(a|ab)*c"));
+
+ assert_eq!(
+ exact(["abef", "abgh", "cdef", "cdgh"]),
+ e(r"(ab|cd)(ef|gh)")
+ );
+ assert_eq!(
+ exact([
+ "abefij", "abefkl", "abghij", "abghkl", "cdefij", "cdefkl",
+ "cdghij", "cdghkl",
+ ]),
+ e(r"(ab|cd)(ef|gh)(ij|kl)")
+ );
+ }
+
+ #[test]
+ fn impossible() {
+ // N.B. The extractor in this module "optimizes" the sequence and makes
+ // it infinite if it isn't "good." An empty sequence (generated by a
+ // concatenantion containing an expression that can never match) is
+ // considered "not good." Since infinite sequences are not actionably
+ // and disable optimizations, this winds up being okay.
+ //
+ // The literal extractor in regex-syntax doesn't combine these two
+ // steps and makes the caller choose to optimize. That is, it returns
+ // the sequences as they are. Which in this case, for some of the tests
+ // below, would be an empty Seq and not an infinite Seq.
+ assert_eq!(Seq::infinite(), e(r"[a&&b]"));
+ assert_eq!(Seq::infinite(), e(r"a[a&&b]"));
+ assert_eq!(Seq::infinite(), e(r"[a&&b]b"));
+ assert_eq!(Seq::infinite(), e(r"a[a&&b]b"));
+ assert_eq!(exact(["a", "b"]), e(r"a|[a&&b]|b"));
+ assert_eq!(exact(["a", "b"]), e(r"a|c[a&&b]|b"));
+ assert_eq!(exact(["a", "b"]), e(r"a|[a&&b]d|b"));
+ assert_eq!(exact(["a", "b"]), e(r"a|c[a&&b]d|b"));
+ assert_eq!(Seq::infinite(), e(r"[a&&b]*"));
+ assert_eq!(exact(["MN"]), e(r"M[a&&b]*N"));
+ }
+
+ // This tests patterns that contain something that defeats literal
+ // detection, usually because it would blow some limit on the total number
+ // of literals that can be returned.
+ //
+ // The main idea is that when literal extraction sees something that
+ // it knows will blow a limit, it replaces it with a marker that says
+ // "any literal will match here." While not necessarily true, the
+ // over-estimation is just fine for the purposes of literal extraction,
+ // because the imprecision doesn't matter: too big is too big.
+ //
+ // This is one of the trickier parts of literal extraction, since we need
+ // to make sure all of our literal extraction operations correctly compose
+ // with the markers.
+ //
+ // Note that unlike in regex-syntax, some of these have "inner" literals
+ // extracted where a prefix or suffix would otherwise not be found.
+ #[test]
+ fn anything() {
+ assert_eq!(Seq::infinite(), e(r"."));
+ assert_eq!(Seq::infinite(), e(r"(?s)."));
+ assert_eq!(Seq::infinite(), e(r"[A-Za-z]"));
+ assert_eq!(Seq::infinite(), e(r"[A-Z]"));
+ assert_eq!(Seq::infinite(), e(r"[A-Z]{0}"));
+ assert_eq!(Seq::infinite(), e(r"[A-Z]?"));
+ assert_eq!(Seq::infinite(), e(r"[A-Z]*"));
+ assert_eq!(Seq::infinite(), e(r"[A-Z]+"));
+ assert_eq!(seq([I("1")]), e(r"1[A-Z]"));
+ assert_eq!(seq([I("1")]), e(r"1[A-Z]2"));
+ assert_eq!(seq([E("123")]), e(r"[A-Z]+123"));
+ assert_eq!(seq([I("123")]), e(r"[A-Z]+123[A-Z]+"));
+ assert_eq!(Seq::infinite(), e(r"1|[A-Z]|3"));
+ assert_eq!(seq([E("1"), I("2"), E("3")]), e(r"1|2[A-Z]|3"),);
+ assert_eq!(seq([E("1"), I("2"), E("3")]), e(r"1|[A-Z]2[A-Z]|3"),);
+ assert_eq!(seq([E("1"), E("2"), E("3")]), e(r"1|[A-Z]2|3"),);
+ assert_eq!(seq([E("1"), I("2"), E("4")]), e(r"1|2[A-Z]3|4"),);
+ assert_eq!(seq([E("2")]), e(r"(?:|1)[A-Z]2"));
+ assert_eq!(inexact([I("a")]), e(r"a.z"));
+ }
+
+ #[test]
+ fn empty() {
+ assert_eq!(Seq::infinite(), e(r""));
+ assert_eq!(Seq::infinite(), e(r"^"));
+ assert_eq!(Seq::infinite(), e(r"$"));
+ assert_eq!(Seq::infinite(), e(r"(?m:^)"));
+ assert_eq!(Seq::infinite(), e(r"(?m:$)"));
+ assert_eq!(Seq::infinite(), e(r"\b"));
+