summaryrefslogtreecommitdiffstats
path: root/ssl/record/methods/tls_pad.c
diff options
context:
space:
mode:
Diffstat (limited to 'ssl/record/methods/tls_pad.c')
-rw-r--r--ssl/record/methods/tls_pad.c325
1 files changed, 325 insertions, 0 deletions
diff --git a/ssl/record/methods/tls_pad.c b/ssl/record/methods/tls_pad.c
new file mode 100644
index 0000000000..7311c8266a
--- /dev/null
+++ b/ssl/record/methods/tls_pad.c
@@ -0,0 +1,325 @@
+/*
+ * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <openssl/rand.h>
+#include <openssl/evp.h>
+#include "internal/constant_time.h"
+#include "internal/cryptlib.h"
+
+/*
+ * This file has no dependencies on the rest of libssl because it is shared
+ * with the providers. It contains functions for low level CBC TLS padding
+ * removal. Responsibility for this lies with the cipher implementations in the
+ * providers. However there are legacy code paths in libssl which also need to
+ * do this. In time those legacy code paths can be removed and this file can be
+ * moved out of libssl.
+ */
+
+static int ssl3_cbc_copy_mac(size_t *reclen,
+ size_t origreclen,
+ unsigned char *recdata,
+ unsigned char **mac,
+ int *alloced,
+ size_t block_size,
+ size_t mac_size,
+ size_t good,
+ OSSL_LIB_CTX *libctx);
+
+int ssl3_cbc_remove_padding_and_mac(size_t *reclen,
+ size_t origreclen,
+ unsigned char *recdata,
+ unsigned char **mac,
+ int *alloced,
+ size_t block_size, size_t mac_size,
+ OSSL_LIB_CTX *libctx);
+
+int tls1_cbc_remove_padding_and_mac(size_t *reclen,
+ size_t origreclen,
+ unsigned char *recdata,
+ unsigned char **mac,
+ int *alloced,
+ size_t block_size, size_t mac_size,
+ int aead,
+ OSSL_LIB_CTX *libctx);
+
+/*-
+ * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
+ * record in |recdata| by updating |reclen| in constant time. It also extracts
+ * the MAC from the underlying record and places a pointer to it in |mac|. The
+ * MAC data can either be newly allocated memory, or a pointer inside the
+ * |recdata| buffer. If allocated then |*alloced| is set to 1, otherwise it is
+ * set to 0.
+ *
+ * origreclen: the original record length before any changes were made
+ * block_size: the block size of the cipher used to encrypt the record.
+ * mac_size: the size of the MAC to be extracted
+ * aead: 1 if an AEAD cipher is in use, or 0 otherwise
+ * returns:
+ * 0: if the record is publicly invalid.
+ * 1: if the record is publicly valid. If the padding removal fails then the
+ * MAC returned is random.
+ */
+int ssl3_cbc_remove_padding_and_mac(size_t *reclen,
+ size_t origreclen,
+ unsigned char *recdata,
+ unsigned char **mac,
+ int *alloced,
+ size_t block_size, size_t mac_size,
+ OSSL_LIB_CTX *libctx)
+{
+ size_t padding_length;
+ size_t good;
+ const size_t overhead = 1 /* padding length byte */ + mac_size;
+
+ /*
+ * These lengths are all public so we can test them in non-constant time.
+ */
+ if (overhead > *reclen)
+ return 0;
+
+ padding_length = recdata[*reclen - 1];
+ good = constant_time_ge_s(*reclen, padding_length + overhead);
+ /* SSLv3 requires that the padding is minimal. */
+ good &= constant_time_ge_s(block_size, padding_length + 1);
+ *reclen -= good & (padding_length + 1);
+
+ return ssl3_cbc_copy_mac(reclen, origreclen, recdata, mac, alloced,
+ block_size, mac_size, good, libctx);
+}
+
+/*-
+ * tls1_cbc_remove_padding_and_mac removes padding from the decrypted, TLS, CBC
+ * record in |recdata| by updating |reclen| in constant time. It also extracts
+ * the MAC from the underlying record and places a pointer to it in |mac|. The
+ * MAC data can either be newly allocated memory, or a pointer inside the
+ * |recdata| buffer. If allocated then |*alloced| is set to 1, otherwise it is
+ * set to 0.
+ *
+ * origreclen: the original record length before any changes were made
+ * block_size: the block size of the cipher used to encrypt the record.
+ * mac_size: the size of the MAC to be extracted
+ * aead: 1 if an AEAD cipher is in use, or 0 otherwise
+ * returns:
+ * 0: if the record is publicly invalid.
+ * 1: if the record is publicly valid. If the padding removal fails then the
+ * MAC returned is random.
+ */
+int tls1_cbc_remove_padding_and_mac(size_t *reclen,
+ size_t origreclen,
+ unsigned char *recdata,
+ unsigned char **mac,
+ int *alloced,
+ size_t block_size, size_t mac_size,
+ int aead,
+ OSSL_LIB_CTX *libctx)
+{
+ size_t good = -1;
+ size_t padding_length, to_check, i;
+ size_t overhead = ((block_size == 1) ? 0 : 1) /* padding length byte */
+ + mac_size;
+
+ /*
+ * These lengths are all public so we can test them in non-constant
+ * time.
+ */
+ if (overhead > *reclen)
+ return 0;
+
+ if (block_size != 1) {
+
+ padding_length = recdata[*reclen - 1];
+
+ if (aead) {
+ /* padding is already verified and we don't need to check the MAC */
+ *reclen -= padding_length + 1 + mac_size;
+ return 1;
+ }
+
+ good = constant_time_ge_s(*reclen, overhead + padding_length);
+ /*
+ * The padding consists of a length byte at the end of the record and
+ * then that many bytes of padding, all with the same value as the
+ * length byte. Thus, with the length byte included, there are i+1 bytes
+ * of padding. We can't check just |padding_length+1| bytes because that
+ * leaks decrypted information. Therefore we always have to check the
+ * maximum amount of padding possible. (Again, the length of the record
+ * is public information so we can use it.)
+ */
+ to_check = 256; /* maximum amount of padding, inc length byte. */
+ if (to_check > *reclen)
+ to_check = *reclen;
+
+ for (i = 0; i < to_check; i++) {
+ unsigned char mask = constant_time_ge_8_s(padding_length, i);
+ unsigned char b = recdata[*reclen - 1 - i];
+ /*
+ * The final |padding_length+1| bytes should all have the value
+ * |padding_length|. Therefore the XOR should be zero.
+ */
+ good &= ~(mask & (padding_length ^ b));
+ }
+
+ /*
+ * If any of the final |padding_length+1| bytes had the wrong value, one
+ * or more of the lower eight bits of |good| will be cleared.
+ */
+ good = constant_time_eq_s(0xff, good & 0xff);
+ *reclen -= good & (padding_length + 1);
+ }
+
+ return ssl3_cbc_copy_mac(reclen, origreclen, recdata, mac, alloced,
+ block_size, mac_size, good, libctx);
+}
+
+/*-
+ * ssl3_cbc_copy_mac copies |md_size| bytes from the end of the record in
+ * |recdata| to |*mac| in constant time (independent of the concrete value of
+ * the record length |reclen|, which may vary within a 256-byte window).
+ *
+ * On entry:
+ * origreclen >= mac_size
+ * mac_size <= EVP_MAX_MD_SIZE
+ *
+ * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
+ * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
+ * a single or pair of cache-lines, then the variable memory accesses don't
+ * actually affect the timing. CPUs with smaller cache-lines [if any] are
+ * not multi-core and are not considered vulnerable to cache-timing attacks.
+ */
+#define CBC_MAC_ROTATE_IN_PLACE
+
+static int ssl3_cbc_copy_mac(size_t *reclen,
+ size_t origreclen,
+ unsigned char *recdata,
+ unsigned char **mac,
+ int *alloced,
+ size_t block_size,
+ size_t mac_size,
+ size_t good,
+ OSSL_LIB_CTX *libctx)
+{
+#if defined(CBC_MAC_ROTATE_IN_PLACE)
+ unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
+ unsigned char *rotated_mac;
+ char aux1, aux2, aux3, mask;
+#else
+ unsigned char rotated_mac[EVP_MAX_MD_SIZE];
+#endif
+ unsigned char randmac[EVP_MAX_MD_SIZE];
+ unsigned char *out;
+
+ /*
+ * mac_end is the index of |recdata| just after the end of the MAC.
+ */
+ size_t mac_end = *reclen;
+ size_t mac_start = mac_end - mac_size;
+ size_t in_mac;
+ /*
+ * scan_start contains the number of bytes that we can ignore because the
+ * MAC's position can only vary by 255 bytes.
+ */
+ size_t scan_start = 0;
+ size_t i, j;
+ size_t rotate_offset;
+
+ if (!ossl_assert(origreclen >= mac_size
+ && mac_size <= EVP_MAX_MD_SIZE))
+ return 0;
+
+ /* If no MAC then nothing to be done */
+ if (mac_size == 0) {
+ /* No MAC so we can do this in non-constant time */
+ if (good == 0)
+ return 0;
+ return 1;
+ }
+
+ *reclen -= mac_size;
+
+ if (block_size == 1) {
+ /* There's no padding so the position of the MAC is fixed */
+ if (mac != NULL)
+ *mac = &recdata[*reclen];
+ if (alloced != NULL)
+ *alloced = 0;
+ return 1;
+ }
+
+ /* Create the random MAC we will emit if padding is bad */
+ if (RAND_bytes_ex(libctx, randmac, mac_size, 0) <= 0)
+ return 0;
+
+ if (!ossl_assert(mac != NULL && alloced != NULL))
+ return 0;
+ *mac = out = OPENSSL_malloc(mac_size);
+ if (*mac == NULL)
+ return 0;
+ *alloced = 1;
+
+#if defined(CBC_MAC_ROTATE_IN_PLACE)
+ rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
+#endif
+
+ /* This information is public so it's safe to branch based on it. */
+ if (origreclen > mac_size + 255 + 1)
+ scan_start = origreclen - (mac_size + 255 + 1);
+
+ in_mac = 0;
+ rotate_offset = 0;
+ memset(rotated_mac, 0, mac_size);
+ for (i = scan_start, j = 0; i < origreclen; i++) {
+ size_t mac_started = constant_time_eq_s(i, mac_start);
+ size_t mac_ended = constant_time_lt_s(i, mac_end);
+ unsigned char b = recdata[i];
+
+ in_mac |= mac_started;
+ in_mac &= mac_ended;
+ rotate_offset |= j & mac_started;
+ rotated_mac[j++] |= b & in_mac;
+ j &= constant_time_lt_s(j, mac_size);
+ }
+
+ /* Now rotate the MAC */
+#if defined(CBC_MAC_ROTATE_IN_PLACE)
+ j = 0;
+ for (i = 0; i < mac_size; i++) {
+ /*
+ * in case cache-line is 32 bytes,
+ * load from both lines and select appropriately
+ */
+ aux1 = rotated_mac[rotate_offset & ~32];
+ aux2 = rotated_mac[rotate_offset | 32];
+ mask = constant_time_eq_8(rotate_offset & ~32, rotate_offset);
+ aux3 = constant_time_select_8(mask, aux1, aux2);
+ rotate_offset++;
+
+ /* If the padding wasn't good we emit a random MAC */
+ out[j++] = constant_time_select_8((unsigned char)(good & 0xff),
+ aux3,
+ randmac[i]);
+ rotate_offset &= constant_time_lt_s(rotate_offset, mac_size);
+ }
+#else
+ memset(out, 0, mac_size);
+ rotate_offset = mac_size - rotate_offset;
+ rotate_offset &= constant_time_lt_s(rotate_offset, mac_size);
+ for (i = 0; i < mac_size; i++) {
+ for (j = 0; j < mac_size; j++)
+ out[j] |= rotated_mac[i] & constant_time_eq_8_s(j, rotate_offset);
+ rotate_offset++;
+ rotate_offset &= constant_time_lt_s(rotate_offset, mac_size);
+
+ /* If the padding wasn't good we emit a random MAC */
+ out[i] = constant_time_select_8((unsigned char)(good & 0xff), out[i],
+ randmac[i]);
+ }
+#endif
+
+ return 1;
+}