summaryrefslogtreecommitdiffstats
path: root/src/analyzer/analyzerwaveform.h
blob: 085194707da11483c3326cb473ce44a71bcd3518 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#ifndef ANALYZER_ANALYZERWAVEFORM_H
#define ANALYZER_ANALYZERWAVEFORM_H

#include <QImage>

#include <limits>

#include "analyzer/analyzer.h"
#include "waveform/waveform.h"
#include "util/math.h"
#include "util/performancetimer.h"

//NOTS vrince some test to segment sound, to apply color in the waveform
//#define TEST_HEAT_MAP

class EngineFilterIIRBase;
class AnalysisDao;

inline CSAMPLE scaleSignal(CSAMPLE invalue, FilterIndex index = FilterCount) {
    if (invalue == 0.0) {
        return 0;
    } else if (index == Low || index == Mid) {
        //return pow(invalue, 2 * 0.5);
        return invalue;
    } else {
        return pow(invalue, 2.0f * 0.316f);
    }
}

struct WaveformStride {
    WaveformStride(double samples, double averageSamples)
            : m_position(0),
              m_length(samples),
              m_averageLength(averageSamples),
              m_averagePosition(0),
              m_averageDivisor(0),
              m_postScaleConversion(static_cast<float>(
                      std::numeric_limits<unsigned char>::max())) {
        for (int i = 0; i < ChannelCount; ++i) {
            m_overallData[i] = 0.0f;
            m_averageOverallData[i] = 0.0f;
            for (int f = 0; f < FilterCount; ++f) {
                m_filteredData[i][f] = 0.0f;
                m_averageFilteredData[i][f] = 0.0f;
            }
        }
    }

    inline void reset() {
        m_position = 0;
        m_averageDivisor = 0;
        for (int i = 0; i < ChannelCount; ++i) {
            m_overallData[i] = 0.0f;
            m_averageOverallData[i] = 0.0f;
            for (int f = 0; f < FilterCount; ++f) {
                m_filteredData[i][f] = 0.0f;
                m_averageFilteredData[i][f] = 0.0f;
            }
        }
    }

    inline void store(WaveformData* data) {
        for (int i = 0; i < ChannelCount; ++i) {
            WaveformData& datum = *(data + i);
            datum.filtered.all = static_cast<unsigned char>(math_min(255.0,
                    m_postScaleConversion * scaleSignal(m_overallData[i]) + 0.5));
            datum.filtered.low = static_cast<unsigned char>(math_min(255.0,
                    m_postScaleConversion * scaleSignal(m_filteredData[i][Low], Low) + 0.5));
            datum.filtered.mid = static_cast<unsigned char>(math_min(255.0,
                    m_postScaleConversion * scaleSignal(m_filteredData[i][Mid], Mid) + 0.5));
            datum.filtered.high = static_cast<unsigned char>(math_min(255.0,
                    m_postScaleConversion * scaleSignal(m_filteredData[i][High], High) + 0.5));
        }
        m_averageDivisor++;
        for (int i = 0; i < ChannelCount; ++i) {
            m_averageOverallData[i] += m_overallData[i];
            m_overallData[i] = 0.0f;
            for (int f = 0; f < FilterCount; ++f) {
                m_averageFilteredData[i][f] += m_filteredData[i][f];
                m_filteredData[i][f] = 0.0f;
            }
        }
    }

    inline void averageStore(WaveformData* data) {
        if (m_averageDivisor) {
            for (int i = 0; i < ChannelCount; ++i) {
                WaveformData& datum = *(data + i);
                datum.filtered.all = static_cast<unsigned char>(math_min(255.0,
                        m_postScaleConversion * scaleSignal(m_averageOverallData[i] / m_averageDivisor) + 0.5));
                datum.filtered.low = static_cast<unsigned char>(math_min(255.0,
                        m_postScaleConversion * scaleSignal(m_averageFilteredData[i][Low] / m_averageDivisor, Low) + 0.5));
                datum.filtered.mid = static_cast<unsigned char>(math_min(255.0,
                        m_postScaleConversion * scaleSignal(m_averageFilteredData[i][Mid] / m_averageDivisor, Mid) + 0.5));
                datum.filtered.high = static_cast<unsigned char>(math_min(255.0,
                        m_postScaleConversion * scaleSignal(m_averageFilteredData[i][High] / m_averageDivisor, High) + 0.5));
            }
        } else {
            // This is the case if The Overview Waveform has more samples than the detailed waveform
            for (int i = 0; i < ChannelCount; ++i) {
                WaveformData& datum = *(data + i);
                datum.filtered.all = static_cast<unsigned char>(math_min(255.0,
                        m_postScaleConversion * scaleSignal(m_overallData[i]) + 0.5));
                datum.filtered.low = static_cast<unsigned char>(math_min(255.0,
                        m_postScaleConversion * scaleSignal(m_filteredData[i][Low], Low) + 0.5));
                datum.filtered.mid = static_cast<unsigned char>(math_min(255.0,
                        m_postScaleConversion * scaleSignal(m_filteredData[i][Mid], Mid) + 0.5));
                datum.filtered.high = static_cast<unsigned char>(math_min(255.0,
                        m_postScaleConversion * scaleSignal(m_filteredData[i][High], High) + 0.5));
            }
        }

        m_averageDivisor = 0;
        for (int i = 0; i < ChannelCount; ++i) {
            m_averageOverallData[i] = 0.0f;
            for (int f = 0; f < FilterCount; ++f) {
                m_averageFilteredData[i][f] = 0.0f;
            }
        }
    }

    int m_position;
    double m_length;
    double m_averageLength;
    int m_averagePosition;
    int m_averageDivisor;

    float m_overallData[ChannelCount];
    float m_filteredData[ChannelCount][FilterCount];

    float m_averageOverallData[ChannelCount];
    float m_averageFilteredData[ChannelCount][FilterCount];

    float m_postScaleConversion;
};

class AnalyzerWaveform : public Analyzer {
  public:
    explicit AnalyzerWaveform(
            AnalysisDao* pAnalysisDao);
    ~AnalyzerWaveform() override;

    bool initialize(TrackPointer tio, int sampleRate, int totalSamples) override;
    bool isDisabledOrLoadStoredSuccess(TrackPointer tio) const override;
    void process(const CSAMPLE *buffer, const int bufferLength) override;
    void cleanup(TrackPointer tio) override;
    void finalize(TrackPointer tio) override;

  private:
    void storeCurentStridePower();
    void resetCurrentStride();

    void createFilters(int sampleRate);
    void destroyFilters();
    void storeIfGreater(float* pDest, float source);

    AnalysisDao* m_pAnalysisDao;

    bool m_skipProcessing;

    WaveformPointer m_waveform;
    WaveformPointer m_waveformSummary;
    WaveformData* m_waveformData;
    WaveformData* m_waveformSummaryData;

    WaveformStride m_stride;

    int m_currentStride;
    int m_currentSummaryStride;

    EngineFilterIIRBase* m_filter[FilterCount];
    std::vector<float> m_buffers[FilterCount];

    PerformanceTimer m_timer;

#ifdef TEST_HEAT_MAP
    QImage* test_heatMap;
#endif
};

#endif /* ANALYZER_ANALYZERWAVEFORM_H */