summaryrefslogtreecommitdiffstats
path: root/kernel/sched/psi.c
blob: fe24de3fbc93805f0c1e913a85657a15d141ad2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
/*
 * Pressure stall information for CPU, memory and IO
 *
 * Copyright (c) 2018 Facebook, Inc.
 * Author: Johannes Weiner <hannes@cmpxchg.org>
 *
 * When CPU, memory and IO are contended, tasks experience delays that
 * reduce throughput and introduce latencies into the workload. Memory
 * and IO contention, in addition, can cause a full loss of forward
 * progress in which the CPU goes idle.
 *
 * This code aggregates individual task delays into resource pressure
 * metrics that indicate problems with both workload health and
 * resource utilization.
 *
 *			Model
 *
 * The time in which a task can execute on a CPU is our baseline for
 * productivity. Pressure expresses the amount of time in which this
 * potential cannot be realized due to resource contention.
 *
 * This concept of productivity has two components: the workload and
 * the CPU. To measure the impact of pressure on both, we define two
 * contention states for a resource: SOME and FULL.
 *
 * In the SOME state of a given resource, one or more tasks are
 * delayed on that resource. This affects the workload's ability to
 * perform work, but the CPU may still be executing other tasks.
 *
 * In the FULL state of a given resource, all non-idle tasks are
 * delayed on that resource such that nobody is advancing and the CPU
 * goes idle. This leaves both workload and CPU unproductive.
 *
 * (Naturally, the FULL state doesn't exist for the CPU resource.)
 *
 *	SOME = nr_delayed_tasks != 0
 *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
 *
 * The percentage of wallclock time spent in those compound stall
 * states gives pressure numbers between 0 and 100 for each resource,
 * where the SOME percentage indicates workload slowdowns and the FULL
 * percentage indicates reduced CPU utilization:
 *
 *	%SOME = time(SOME) / period
 *	%FULL = time(FULL) / period
 *
 *			Multiple CPUs
 *
 * The more tasks and available CPUs there are, the more work can be
 * performed concurrently. This means that the potential that can go
 * unrealized due to resource contention *also* scales with non-idle
 * tasks and CPUs.
 *
 * Consider a scenario where 257 number crunching tasks are trying to
 * run concurrently on 256 CPUs. If we simply aggregated the task
 * states, we would have to conclude a CPU SOME pressure number of
 * 100%, since *somebody* is waiting on a runqueue at all
 * times. However, that is clearly not the amount of contention the
 * workload is experiencing: only one out of 256 possible exceution
 * threads will be contended at any given time, or about 0.4%.
 *
 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
 * given time *one* of the tasks is delayed due to a lack of memory.
 * Again, looking purely at the task state would yield a memory FULL
 * pressure number of 0%, since *somebody* is always making forward
 * progress. But again this wouldn't capture the amount of execution
 * potential lost, which is 1 out of 4 CPUs, or 25%.
 *
 * To calculate wasted potential (pressure) with multiple processors,
 * we have to base our calculation on the number of non-idle tasks in
 * conjunction with the number of available CPUs, which is the number
 * of potential execution threads. SOME becomes then the proportion of
 * delayed tasks to possibe threads, and FULL is the share of possible
 * threads that are unproductive due to delays:
 *
 *	threads = min(nr_nonidle_tasks, nr_cpus)
 *	   SOME = min(nr_delayed_tasks / threads, 1)
 *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
 *
 * For the 257 number crunchers on 256 CPUs, this yields:
 *
 *	threads = min(257, 256)
 *	   SOME = min(1 / 256, 1)             = 0.4%
 *	   FULL = (256 - min(257, 256)) / 256 = 0%
 *
 * For the 1 out of 4 memory-delayed tasks, this yields:
 *
 *	threads = min(4, 4)
 *	   SOME = min(1 / 4, 1)               = 25%
 *	   FULL = (4 - min(3, 4)) / 4         = 25%
 *
 * [ Substitute nr_cpus with 1, and you can see that it's a natural
 *   extension of the single-CPU model. ]
 *
 *			Implementation
 *
 * To assess the precise time spent in each such state, we would have
 * to freeze the system on task changes and start/stop the state
 * clocks accordingly. Obviously that doesn't scale in practice.
 *
 * Because the scheduler aims to distribute the compute load evenly
 * among the available CPUs, we can track task state locally to each
 * CPU and, at much lower frequency, extrapolate the global state for
 * the cumulative stall times and the running averages.
 *
 * For each runqueue, we track:
 *
 *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
 *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
 *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
 *
 * and then periodically aggregate:
 *
 *	tNONIDLE = sum(tNONIDLE[i])
 *
 *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
 *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
 *
 *	   %SOME = tSOME / period
 *	   %FULL = tFULL / period
 *
 * This gives us an approximation of pressure that is practical
 * cost-wise, yet way more sensitive and accurate than periodic
 * sampling of the aggregate task states would be.
 */

#include <linux/sched/loadavg.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/seqlock.h>
#include <linux/cgroup.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/psi.h>
#include "sched.h"

static int psi_bug __read_mostly;

DEFINE_STATIC_KEY_FALSE(psi_disabled);

#ifdef CONFIG_PSI_DEFAULT_DISABLED
bool psi_enable;
#else
bool psi_enable = true;
#endif
static int __init setup_psi(char *str)
{
	return kstrtobool(str, &psi_enable) == 0;
}
__setup("psi=", setup_psi);

/* Running averages - we need to be higher-res than loadavg */
#define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
#define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
#define EXP_60s		1981		/* 1/exp(2s/60s) */
#define EXP_300s	2034		/* 1/exp(2s/300s) */

/* Sampling frequency in nanoseconds */
static u64 psi_period __read_mostly;

/* System-level pressure and stall tracking */
static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
static struct psi_group psi_system = {
	.pcpu = &system_group_pcpu,
};

static void psi_update_work(struct work_struct *work);

static void group_init(struct psi_group *group)
{
	int cpu;

	for_each_possible_cpu(cpu)
		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
	group->next_update = sched_clock() + psi_period;
	INIT_DELAYED_WORK(&group->clock_work, psi_update_work);
	mutex_init(&group->stat_lock);
}

void __init psi_init(void)
{
	if (!psi_enable) {
		static_branch_enable(&psi_disabled);
		return;
	}

	psi_period = jiffies_to_nsecs(PSI_FREQ);
	group_init(&psi_system);
}

static bool test_state(unsigned int *tasks, enum psi_states state)
{
	switch (state) {
	case PSI_IO_SOME:
		return tasks[NR_IOWAIT];
	case PSI_IO_FULL:
		return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
	case PSI_MEM_SOME:
		return tasks[NR_MEMSTALL];
	case PSI_MEM_FULL:
		return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
	case PSI_CPU_SOME:
		return tasks[NR_RUNNING] > 1;
	case PSI_NONIDLE:
		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
			tasks[NR_RUNNING];
	default:
		return false;
	}
}

static void get_recent_times(struct psi_group *group, int cpu, u32 *times)
{
	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
	unsigned int tasks[NR_PSI_TASK_COUNTS];
	u64 now, state_start;
	unsigned int seq;
	int s;

	/* Snapshot a coherent view of the CPU state */
	do {
		seq = read_seqcount_begin(&groupc->seq);
		now = cpu_clock(cpu);
		memcpy(times, groupc->times, sizeof(groupc->times));
		memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
		state_start = groupc->state_start;
	} while (read_seqcount_retry(&groupc->seq, seq));

	/* Calculate state time deltas against the previous snapshot */
	for (s = 0; s < NR_PSI_STATES; s++) {
		u32 delta;
		/*
		 * In addition to already concluded states, we also
		 * incorporate currently active states on the CPU,
		 * since states may last for many sampling periods.
		 *
		 * This way we keep our delta sampling buckets small
		 * (u32) and our reported pressure close to what's
		 * actually happening.
		 */
		if (test_state(tasks, s))
			times[s] += now - state_start;

		delta = times[s] - groupc->times_prev[s];
		groupc->times_prev[s] = times[s];

		times[s] = delta;
	}
}

static void calc_avgs(unsigned long avg[3], int missed_periods,
		      u64 time, u64 period)
{
	unsigned long pct;

	/* Fill in zeroes for periods of no activity */
	if (missed_periods) {
		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
	}

	/* Sample the most recent active period */
	pct = div_u6