summaryrefslogtreecommitdiffstats
path: root/drivers/net/ipa/gsi_trans.c
blob: 6c3ed5b17b80c42f2f7d30b32867e162a1653429 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
// SPDX-License-Identifier: GPL-2.0

/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
 * Copyright (C) 2019-2020 Linaro Ltd.
 */

#include <linux/types.h>
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/refcount.h>
#include <linux/scatterlist.h>
#include <linux/dma-direction.h>

#include "gsi.h"
#include "gsi_private.h"
#include "gsi_trans.h"
#include "ipa_gsi.h"
#include "ipa_data.h"
#include "ipa_cmd.h"

/**
 * DOC: GSI Transactions
 *
 * A GSI transaction abstracts the behavior of a GSI channel by representing
 * everything about a related group of IPA commands in a single structure.
 * (A "command" in this sense is either a data transfer or an IPA immediate
 * command.)  Most details of interaction with the GSI hardware are managed
 * by the GSI transaction core, allowing users to simply describe commands
 * to be performed.  When a transaction has completed a callback function
 * (dependent on the type of endpoint associated with the channel) allows
 * cleanup of resources associated with the transaction.
 *
 * To perform a command (or set of them), a user of the GSI transaction
 * interface allocates a transaction, indicating the number of TREs required
 * (one per command).  If sufficient TREs are available, they are reserved
 * for use in the transaction and the allocation succeeds.  This way
 * exhaustion of the available TREs in a channel ring is detected
 * as early as possible.  All resources required to complete a transaction
 * are allocated at transaction allocation time.
 *
 * Commands performed as part of a transaction are represented in an array
 * of Linux scatterlist structures.  This array is allocated with the
 * transaction, and its entries are initialized using standard scatterlist
 * functions (such as sg_set_buf() or skb_to_sgvec()).
 *
 * Once a transaction's scatterlist structures have been initialized, the
 * transaction is committed.  The caller is responsible for mapping buffers
 * for DMA if necessary, and this should be done *before* allocating
 * the transaction.  Between a successful allocation and commit of a
 * transaction no errors should occur.
 *
 * Committing transfers ownership of the entire transaction to the GSI
 * transaction core.  The GSI transaction code formats the content of
 * the scatterlist array into the channel ring buffer and informs the
 * hardware that new TREs are available to process.
 *
 * The last TRE in each transaction is marked to interrupt the AP when the
 * GSI hardware has completed it.  Because transfers described by TREs are
 * performed strictly in order, signaling the completion of just the last
 * TRE in the transaction is sufficient to indicate the full transaction
 * is complete.
 *
 * When a transaction is complete, ipa_gsi_trans_complete() is called by the
 * GSI code into the IPA layer, allowing it to perform any final cleanup
 * required before the transaction is freed.
 */

/* Hardware values representing a transfer element type */
enum gsi_tre_type {
	GSI_RE_XFER	= 0x2,
	GSI_RE_IMMD_CMD	= 0x3,
};

/* An entry in a channel ring */
struct gsi_tre {
	__le64 addr;		/* DMA address */
	__le16 len_opcode;	/* length in bytes or enum IPA_CMD_* */
	__le16 reserved;
	__le32 flags;		/* TRE_FLAGS_* */
};

/* gsi_tre->flags mask values (in CPU byte order) */
#define TRE_FLAGS_CHAIN_FMASK	GENMASK(0, 0)
#define TRE_FLAGS_IEOT_FMASK	GENMASK(9, 9)
#define TRE_FLAGS_BEI_FMASK	GENMASK(10, 10)
#define TRE_FLAGS_TYPE_FMASK	GENMASK(23, 16)

int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
			u32 max_alloc)
{
	void *virt;

#ifdef IPA_VALIDATE
	if (!size || size % 8)
		return -EINVAL;
	if (count < max_alloc)
		return -EINVAL;
	if (!max_alloc)
		return -EINVAL;
#endif /* IPA_VALIDATE */

	/* By allocating a few extra entries in our pool (one less
	 * than the maximum number that will be requested in a
	 * single allocation), we can always satisfy requests without
	 * ever worrying about straddling the end of the pool array.
	 * If there aren't enough entries starting at the free index,
	 * we just allocate free entries from the beginning of the pool.
	 */
	virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL);
	if (!virt)
		return -ENOMEM;

	pool->base = virt;
	/* If the allocator gave us any extra memory, use it */
	pool->count = ksize(pool->base) / size;
	pool->free = 0;
	pool->max_alloc = max_alloc;
	pool->size = size;
	pool->addr = 0;		/* Only used for DMA pools */

	return 0;
}

void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
{
	kfree(pool->base);
	memset(pool, 0, sizeof(*pool));
}

/* Allocate the requested number of (zeroed) entries from the pool */
/* Home-grown DMA pool.  This way we can preallocate and use the tre_count
 * to guarantee allocations will succeed.  Even though we specify max_alloc
 * (and it can be more than one), we only allow allocation of a single
 * element from a DMA pool.
 */
int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
			    size_t size, u32 count, u32 max_alloc)
{
	size_t total_size;
	dma_addr_t addr;
	void *virt;

#ifdef IPA_VALIDATE
	if (!size || size % 8)
		return -EINVAL;
	if (count < max_alloc)
		return -EINVAL;
	if (!max_alloc)
		return -EINVAL;
#endif /* IPA_VALIDATE */

	/* Don't let allocations cross a power-of-two boundary */
	size = __roundup_pow_of_two(size);
	total_size = (count + max_alloc - 1) * size;

	/* The allocator will give us a power-of-2 number of pages.  But we
	 * can't guarantee that, so request it.  That way we won't waste any
	 * memory that would be available beyond the required space.
	 *
	 * Note that gsi_trans_pool_exit_dma() assumes the total allocated
	 * size is exactly (count * size).
	 */
	total_size = get_order(total_size) << PAGE_SHIFT;

	virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
	if (!virt)
		return -ENOMEM;

	pool->base = virt;
	pool->count = total_size / size;
	pool->free = 0;
	pool->size = size;
	pool->max_alloc = max_alloc;
	pool->addr = addr;

	return 0;
}

void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
{
	size_t total_size = pool->count * pool->size;

	dma_free_coherent(dev, total_size, pool->base, pool->addr);
	memset(pool, 0, sizeof(*pool));
}

/* Return the byte offset of the next free entry in the pool */
static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
{
	u32 offset;

	/* assert(count > 0); */
	/* assert(count <= pool->max_alloc); */

	/* Allocate from beginning if wrap would occur */
	if (count > pool->count - pool->free)
		pool->free = 0;

	offset = pool->free * pool->size;
	pool->free += count;
	memset(pool->base + offset, 0, count * pool->size);

	return offset;
}

/* Allocate a contiguous block of zeroed entries from a pool */
void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
{
	return pool->base + gsi_trans_pool_alloc_common(pool, count);
}

/* Allocate a single zeroed entry from a DMA pool */
void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
{
	u32 offset = gsi_trans_pool_alloc_common(pool, 1);

	*addr = pool->addr + offset;

	return pool->base + offset;
}

/* Return the pool element that immediately follows the one given.
 * This only works done if elements are allocated one at a time.
 */
void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element)