summaryrefslogtreecommitdiffstats
path: root/tools/perf/bench
AgeCommit message (Collapse)Author
2020-11-12tools arch: Update arch/x86/lib/mem{cpy,set}_64.S copies used in 'perf bench ↵Arnaldo Carvalho de Melo
mem memcpy' To bring in the change made in this cset: 4d6ffa27b8e5116c ("x86/lib: Change .weak to SYM_FUNC_START_WEAK for arch/x86/lib/mem*_64.S") 6dcc5627f6aec4cb ("x86/asm: Change all ENTRY+ENDPROC to SYM_FUNC_*") I needed to define SYM_FUNC_START_LOCAL() as SYM_L_GLOBAL as mem{cpy,set}_{orig,erms} are used by 'perf bench'. This silences these perf tools build warnings: Warning: Kernel ABI header at 'tools/arch/x86/lib/memcpy_64.S' differs from latest version at 'arch/x86/lib/memcpy_64.S' diff -u tools/arch/x86/lib/memcpy_64.S arch/x86/lib/memcpy_64.S Warning: Kernel ABI header at 'tools/arch/x86/lib/memset_64.S' differs from latest version at 'arch/x86/lib/memset_64.S' diff -u tools/arch/x86/lib/memset_64.S arch/x86/lib/memset_64.S Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Fangrui Song <maskray@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-17Merge tag 'perf-tools-for-v5.10-2020-10-15' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux Pull perf tools updates from Arnaldo Carvalho de Melo: - cgroup improvements for 'perf stat', allowing for compact specification of events and cgroups in the command line. - Support per thread topdown metrics in 'perf stat'. - Support sample-read topdown metric group in 'perf record' - Show start of latency in addition to its start in 'perf sched latency'. - Add min, max to 'perf script' futex-contention output, in addition to avg. - Allow usage of 'perf_event_attr->exclusive' attribute via the new ':e' event modifier. - Add 'snapshot' command to 'perf record --control', using it with Intel PT. - Support FIFO file names as alternative options to 'perf record --control'. - Introduce branch history "streams", to compare 'perf record' runs with 'perf diff' based on branch records and report hot streams. - Support PE executable symbol tables using libbfd, to profile, for instance, wine binaries. - Add filter support for option 'perf ftrace -F/--funcs'. - Allow configuring the 'disassembler_style' 'perf annotate' knob via 'perf config' - Update CascadelakeX and SkylakeX JSON vendor events files. - Add support for parsing perchip/percore JSON vendor events. - Add power9 hv_24x7 core level metric events. - Add L2 prefetch, ITLB instruction fetch hits JSON events for AMD zen1. - Enable Family 19h users by matching Zen2 AMD vendor events. - Use debuginfod in 'perf probe' when required debug files not found locally. - Display negative tid in non-sample events in 'perf script'. - Make GTK2 support opt-in - Add build test with GTK+ - Add missing -lzstd to the fast path feature detection - Add scripts to auto generate 'mmap', 'mremap' string<->id tables for use in 'perf trace'. - Show python test script in verbose mode. - Fix uncore metric expressions - Msan uninitialized use fixes. - Use condition variables in 'perf bench numa' - Autodetect python3 binary in systems without python2. - Support md5 build ids in addition to sha1. - Add build id 'perf test' regression test. - Fix printable strings in python3 scripts. - Fix off by ones in 'perf trace' in arches using libaudit. - Fix JSON event code for events referencing std arch events. - Introduce 'perf test' shell script for Arm CoreSight testing. - Add rdtsc() for Arm64 for used in the PERF_RECORD_TIME_CONV metadata event and in 'perf test tsc'. - 'perf c2c' improvements: Add "RMT Load Hit" metric, "Total Stores", fixes and documentation update. - Fix usage of reloc_sym in 'perf probe' when using both kallsyms and debuginfo files. - Do not print 'Metric Groups:' unnecessarily in 'perf list' - Refcounting fixes in the event parsing code. - Add expand cgroup event 'perf test' entry. - Fix out of bounds CPU map access when handling armv8_pmu events in 'perf stat'. - Add build-id injection 'perf bench' benchmark. - Enter namespace when reading build-id in 'perf inject'. - Do not load map/dso when injecting build-id speeding up the 'perf inject' process. - Add --buildid-all option to avoid processing all samples, just the mmap metadata events. - Add feature test to check if libbfd has buildid support - Add 'perf test' entry for PE binary format support. - Fix typos in power8 PMU vendor events JSON files. - Hide libtraceevent non API functions. * tag 'perf-tools-for-v5.10-2020-10-15' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux: (113 commits) perf c2c: Update documentation for metrics reorganization perf c2c: Add metrics "RMT Load Hit" perf c2c: Correct LLC load hit metrics perf c2c: Change header for LLC local hit perf c2c: Use more explicit headers for HITM perf c2c: Change header from "LLC Load Hitm" to "Load Hitm" perf c2c: Organize metrics based on memory hierarchy perf c2c: Display "Total Stores" as a standalone metrics perf c2c: Display the total numbers continuously perf bench: Use condition variables in numa. perf jevents: Fix event code for events referencing std arch events perf diff: Support hot streams comparison perf streams: Report hot streams perf streams: Calculate the sum of total streams hits perf streams: Link stream pair perf streams: Compare two streams perf streams: Get the evsel_streams by evsel_idx perf streams: Introduce branch history "streams" perf intel-pt: Improve PT documentation slightly perf tools: Add support for exclusive groups/events ...
2020-10-14perf bench: Use condition variables in numa.Ian Rogers
The existing approach to synchronization between threads in the numa benchmark is unbalanced mutexes. This synchronization causes thread sanitizer to warn of locks being taken twice on a thread without an unlock, as well as unlocks with no corresponding locks. This change replaces the synchronization with more regular condition variables. While this fixes one class of thread sanitizer warnings, there still remain warnings of data races due to threads reading and writing shared memory without any atomics. Committer testing: Basic run on a non-NUMA machine. # perf bench numa # List of available benchmarks for collection 'numa': mem: Benchmark for NUMA workloads all: Run all NUMA benchmarks # perf bench numa all # Running numa/mem benchmark... # Running main, "perf bench numa numa-mem" # # Running test on: Linux five 5.8.12-200.fc32.x86_64 #1 SMP Mon Sep 28 12:17:31 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux # # Running RAM-bw-local, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp 1 --no-data_rand_walk" 20.076 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.073 secs average thread-runtime 0.190 % difference between max/avg runtime 241.828 GB data processed, per thread 241.828 GB data processed, total 0.083 nsecs/byte/thread runtime 12.045 GB/sec/thread speed 12.045 GB/sec total speed # Running RAM-bw-local-NOTHP, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp 1 --no-data_rand_walk --thp -1" 20.045 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.014 secs average thread-runtime 0.111 % difference between max/avg runtime 234.304 GB data processed, per thread 234.304 GB data processed, total 0.086 nsecs/byte/thread runtime 11.689 GB/sec/thread speed 11.689 GB/sec total speed # Running RAM-bw-remote, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 1 -s 20 -zZq --thp 1 --no-data_rand_walk" Test not applicable, system has only 1 nodes. # Running RAM-bw-local-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 0x2 -s 20 -zZq --thp 1 --no-data_rand_walk" 20.138 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.121 secs average thread-runtime 0.342 % difference between max/avg runtime 135.961 GB data processed, per thread 271.922 GB data processed, total 0.148 nsecs/byte/thread runtime 6.752 GB/sec/thread speed 13.503 GB/sec total speed # Running RAM-bw-remote-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 1x2 -s 20 -zZq --thp 1 --no-data_rand_walk" Test not applicable, system has only 1 nodes. # Running RAM-bw-cross, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,8 -M 1,0 -s 20 -zZq --thp 1 --no-data_rand_walk" Test not applicable, system has only 1 nodes. # Running 1x3-convergence, "perf bench numa mem -p 1 -t 3 -P 512 -s 100 -zZ0qcm --thp 1" 0.747 secs latency to NUMA-converge 0.747 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.714 secs average thread-runtime 50.000 % difference between max/avg runtime 3.228 GB data processed, per thread 9.683 GB data processed, total 0.231 nsecs/byte/thread runtime 4.321 GB/sec/thread speed 12.964 GB/sec total speed # Running 1x4-convergence, "perf bench numa mem -p 1 -t 4 -P 512 -s 100 -zZ0qcm --thp 1" 1.127 secs latency to NUMA-converge 1.127 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.089 secs average thread-runtime 5.624 % difference between max/avg runtime 3.765 GB data processed, per thread 15.062 GB data processed, total 0.299 nsecs/byte/thread runtime 3.342 GB/sec/thread speed 13.368 GB/sec total speed # Running 1x6-convergence, "perf bench numa mem -p 1 -t 6 -P 1020 -s 100 -zZ0qcm --thp 1" 1.003 secs latency to NUMA-converge 1.003 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.889 secs average thread-runtime 50.000 % difference between max/avg runtime 2.141 GB data processed, per thread 12.847 GB data processed, total 0.469 nsecs/byte/thread runtime 2.134 GB/sec/thread speed 12.805 GB/sec total speed # Running 2x3-convergence, "perf bench numa mem -p 2 -t 3 -P 1020 -s 100 -zZ0qcm --thp 1" 1.814 secs latency to NUMA-converge 1.814 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.716 secs average thread-runtime 22.440 % difference between max/avg runtime 3.747 GB data processed, per thread 22.483 GB data processed, total 0.484 nsecs/byte/thread runtime 2.065 GB/sec/thread speed 12.393 GB/sec total speed # Running 3x3-convergence, "perf bench numa mem -p 3 -t 3 -P 1020 -s 100 -zZ0qcm --thp 1" 2.065 secs latency to NUMA-converge 2.065 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.947 secs average thread-runtime 25.788 % difference between max/avg runtime 2.855 GB data processed, per thread 25.694 GB data processed, total 0.723 nsecs/byte/thread runtime 1.382 GB/sec/thread speed 12.442 GB/sec total speed # Running 4x4-convergence, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp 1" 1.912 secs latency to NUMA-converge 1.912 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.775 secs average thread-runtime 23.852 % difference between max/avg runtime 1.479 GB data processed, per thread 23.668 GB data processed, total 1.293 nsecs/byte/thread runtime 0.774 GB/sec/thread speed 12.378 GB/sec total speed # Running 4x4-convergence-NOTHP, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp 1 --thp -1" 1.783 secs latency to NUMA-converge 1.783 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.633 secs average thread-runtime 21.960 % difference between max/avg runtime 1.345 GB data processed, per thread 21.517 GB data processed, total 1.326 nsecs/byte/thread runtime 0.754 GB/sec/thread speed 12.067 GB/sec total speed # Running 4x6-convergence, "perf bench numa mem -p 4 -t 6 -P 1020 -s 100 -zZ0qcm --thp 1" 5.396 secs latency to NUMA-converge 5.396 secs slowest (max) thread-runtime 4.000 secs fastest (min) thread-runtime 4.928 secs average thread-runtime 12.937 % difference between max/avg runtime 2.721 GB data processed, per thread 65.306 GB data processed, total 1.983 nsecs/byte/thread runtime 0.504 GB/sec/thread speed 12.102 GB/sec total speed # Running 4x8-convergence, "perf bench numa mem -p 4 -t 8 -P 512 -s 100 -zZ0qcm --thp 1" 3.121 secs latency to NUMA-converge 3.121 secs slowest (max) thread-runtime 2.000 secs fastest (min) thread-runtime 2.836 secs average thread-runtime 17.962 % difference between max/avg runtime 1.194 GB data processed, per thread 38.192 GB data processed, total 2.615 nsecs/byte/thread runtime 0.382 GB/sec/thread speed 12.236 GB/sec total speed # Running 8x4-convergence, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp 1" 4.302 secs latency to NUMA-converge 4.302 secs slowest (max) thread-runtime 3.000 secs fastest (min) thread-runtime 4.045 secs average thread-runtime 15.133 % difference between max/avg runtime 1.631 GB data processed, per thread 52.178 GB data processed, total 2.638 nsecs/byte/thread runtime 0.379 GB/sec/thread speed 12.128 GB/sec total speed # Running 8x4-convergence-NOTHP, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp 1 --thp -1" 4.418 secs latency to NUMA-converge 4.418 secs slowest (max) thread-runtime 3.000 secs fastest (min) thread-runtime 4.104 secs average thread-runtime 16.045 % difference between max/avg runtime 1.664 GB data processed, per thread 53.254 GB data processed, total 2.655 nsecs/byte/thread runtime 0.377 GB/sec/thread speed 12.055 GB/sec total speed # Running 3x1-convergence, "perf bench numa mem -p 3 -t 1 -P 512 -s 100 -zZ0qcm --thp 1" 0.973 secs latency to NUMA-converge 0.973 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.955 secs average thread-runtime 50.000 % difference between max/avg runtime 4.124 GB data processed, per thread 12.372 GB data processed, total 0.236 nsecs/byte/thread runtime 4.238 GB/sec/thread speed 12.715 GB/sec total speed # Running 4x1-convergence, "perf bench numa mem -p 4 -t 1 -P 512 -s 100 -zZ0qcm --thp 1" 0.820 secs latency to NUMA-converge 0.820 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.808 secs average thread-runtime 50.000 % difference between max/avg runtime 2.555 GB data processed, per thread 10.220 GB data processed, total 0.321 nsecs/byte/thread runtime 3.117 GB/sec/thread speed 12.468 GB/sec total speed # Running 8x1-convergence, "perf bench numa mem -p 8 -t 1 -P 512 -s 100 -zZ0qcm --thp 1" 0.667 secs latency to NUMA-converge 0.667 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.607 secs average thread-runtime 50.000 % difference between max/avg runtime 1.009 GB data processed, per thread 8.069 GB data processed, total 0.661 nsecs/byte/thread runtime 1.512 GB/sec/thread speed 12.095 GB/sec total speed # Running 16x1-convergence, "perf bench numa mem -p 16 -t 1 -P 256 -s 100 -zZ0qcm --thp 1" 1.546 secs latency to NUMA-converge 1.546 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.485 secs average thread-runtime 17.664 % difference between max/avg runtime 1.162 GB data processed, per thread 18.594 GB data processed, total 1.331 nsecs/byte/thread runtime 0.752 GB/sec/thread speed 12.025 GB/sec total speed # Running 32x1-convergence, "perf bench numa mem -p 32 -t 1 -P 128 -s 100 -zZ0qcm --thp 1" 0.812 secs latency to NUMA-converge 0.812 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.739 secs average thread-runtime 50.000 % difference between max/avg runtime 0.309 GB data processed, per thread 9.874 GB data processed, total 2.630 nsecs/byte/thread runtime 0.380 GB/sec/thread speed 12.166 GB/sec total speed # Running 2x1-bw-process, "perf bench numa mem -p 2 -t 1 -P 1024 -s 20 -zZ0q --thp 1" 20.044 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.020 secs average thread-runtime 0.109 % difference between max/avg runtime 125.750 GB data processed, per thread 251.501 GB data processed, total 0.159 nsecs/byte/thread runtime 6.274 GB/sec/thread speed 12.548 GB/sec total speed # Running 3x1-bw-process, "perf bench numa mem -p 3 -t 1 -P 1024 -s 20 -zZ0q --thp 1" 20.148 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.090 secs average thread-runtime 0.367 % difference between max/avg runtime 85.267 GB data processed, per thread 255.800 GB data processed, total 0.236 nsecs/byte/thread runtime 4.232 GB/sec/thread speed 12.696 GB/sec total speed # Running 4x1-bw-process, "perf bench numa mem -p 4 -t 1 -P 1024 -s 20 -zZ0q --thp 1" 20.169 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.100 secs average thread-runtime 0.419 % difference between max/avg runtime 63.144 GB data processed, per thread 252.576 GB data processed, total 0.319 nsecs/byte/thread runtime 3.131 GB/sec/thread speed 12.523 GB/sec total speed # Running 8x1-bw-process, "perf bench numa mem -p 8 -t 1 -P 512 -s 20 -zZ0q --thp 1" 20.175 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.107 secs average thread-runtime 0.433 % difference between max/avg runtime 31.267 GB data processed, per thread 250.133 GB data processed, total 0.645 nsecs/byte/thread runtime 1.550 GB/sec/thread speed 12.398 GB/sec total speed # Running 8x1-bw-process-NOTHP, "perf bench numa mem -p 8 -t 1 -P 512 -s 20 -zZ0q --thp 1 --thp -1" 20.216 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.113 secs average thread-runtime 0.535 % difference between max/avg runtime 30.998 GB data processed, per thread 247.981 GB data processed, total 0.652 nsecs/byte/thread runtime 1.533 GB/sec/thread speed 12.266 GB/sec total speed # Running 16x1-bw-process, "perf bench numa mem -p 16 -t 1 -P 256 -s 20 -zZ0q --thp 1" 20.234 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.174 secs average thread-runtime 0.577 % difference between max/avg runtime 15.377 GB data processed, per thread 246.039 GB data processed, total 1.316 nsecs/byte/thread runtime 0.760 GB/sec/thread speed 12.160 GB/sec total speed # Running 1x4-bw-thread, "perf bench numa mem -p 1 -t 4 -T 256 -s 20 -zZ0q --thp 1" 20.040 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.028 secs average thread-runtime 0.099 % difference between max/avg runtime 66.832 GB data processed, per thread 267.328 GB data processed, total 0.300 nsecs/byte/thread runtime 3.335 GB/sec/thread speed 13.340 GB/sec total speed # Running 1x8-bw-thread, "perf bench numa mem -p 1 -t 8 -T 256 -s 20 -zZ0q --thp 1" 20.064 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.034 secs average thread-runtime 0.160 % difference between max/avg runtime 32.911 GB data processed, per thread 263.286 GB data processed, total 0.610 nsecs/byte/thread runtime 1.640 GB/sec/thread speed 13.122 GB/sec total speed # Running 1x16-bw-thread, "perf bench numa mem -p 1 -t 16 -T 128 -s 20 -zZ0q --thp 1" 20.092 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.052 secs average thread-runtime 0.230 % difference between max/avg runtime 16.131 GB data processed, per thread 258.088 GB data processed, total 1.246 nsecs/byte/thread runtime 0.803 GB/sec/thread speed 12.845 GB/sec total speed # Running 1x32-bw-thread, "perf bench numa mem -p 1 -t 32 -T 64 -s 20 -zZ0q --thp 1" 20.099 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.063 secs average thread-runtime 0.247 % difference between max/avg runtime 7.962 GB data processed, per thread 254.773 GB data processed, total 2.525 nsecs/byte/thread runtime 0.396 GB/sec/thread speed 12.676 GB/sec total speed # Running 2x3-bw-process, "perf bench numa mem -p 2 -t 3 -P 512 -s 20 -zZ0q --thp 1" 20.150 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.120 secs average thread-runtime 0.372 % difference between max/avg runtime 44.827 GB data processed, per thread 268.960 GB data processed, total 0.450 nsecs/byte/thread runtime 2.225 GB/sec/thread speed 13.348 GB/sec total speed # Running 4x4-bw-process, "perf bench numa mem -p 4 -t 4 -P 512 -s 20 -zZ0q --thp 1" 20.258 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.168 secs average thread-runtime 0.636 % difference between max/avg runtime 17.079 GB data processed, per thread 273.263 GB data processed, total 1.186 nsecs/byte/thread runtime 0.843 GB/sec/thread speed 13.489 GB/sec total speed # Running 4x6-bw-process, "perf bench numa mem -p 4 -t 6 -P 512 -s 20 -zZ0q --thp 1" 20.559 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.382 secs average thread-runtime 1.359 % difference between max/avg runtime 10.758 GB data processed, per thread 258.201 GB data processed, total 1.911 nsecs/byte/thread runtime 0.523 GB/sec/thread speed 12.559 GB/sec total speed # Running 4x8-bw-process, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp 1" 20.744 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.516 secs average thread-runtime 1.792 % difference between max/avg runtime 8.069 GB data processed, per thread 258.201 GB data processed, total 2.571 nsecs/byte/thread runtime 0.389 GB/sec/thread speed 12.447 GB/sec total speed # Running 4x8-bw-process-NOTHP, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp 1 --thp -1" 20.855 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.561 secs average thread-runtime 2.050 % difference between max/avg runtime 8.069 GB data processed, per thread 258.201 GB data processed, total 2.585 nsecs/byte/thread runtime 0.387 GB/sec/thread speed 12.381 GB/sec total speed # Running 3x3-bw-process, "perf bench numa mem -p 3 -t 3 -P 512 -s 20 -zZ0q --thp 1" 20.134 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.077 secs average thread-runtime 0.333 % difference between max/avg runtime 28.091 GB data processed, per thread 252.822 GB data processed, total 0.717 nsecs/byte/thread runtime 1.395 GB/sec/thread speed 12.557 GB/sec total speed # Running 5x5-bw-process, "perf bench numa mem -p 5 -t 5 -P 512 -s 20 -zZ0q --thp 1" 20.588 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.375 secs average thread-runtime 1.427 % difference between max/avg runtime 10.177 GB data processed, per thread 254.436 GB data processed, total 2.023 nsecs/byte/thread runtime 0.494 GB/sec/thread speed 12.359 GB/sec total speed # Running 2x16-bw-process, "perf bench numa mem -p 2 -t 16 -P 512 -s 20 -zZ0q --thp 1" 20.657 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.429 secs average thread-runtime 1.589 % difference between max/avg runtime 8.170 GB data processed, per thread 261.429 GB data processed, total 2.528 nsecs/byte/thread runtime 0.395 GB/sec/thread speed 12.656 GB/sec total speed # Running 1x32-bw-process, "perf bench numa mem -p 1 -t 32 -P 2048 -s 20 -zZ0q --thp 1" 22.981 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 21.996 secs average thread-runtime 6.486 % difference between max/avg runtime 8.863 GB data processed, per thread 283.606 GB data processed, total 2.593 nsecs/byte/thread runtime 0.386 GB/sec/thread speed 12.341 GB/sec total speed # Running numa02-bw, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp 1" 20.047 secs slowest (max) thread-runtime 19.000 secs fastest (min) thread-runtime 20.026 secs average thread-runtime 2.611 % difference between max/avg runtime 8.441 GB data processed, per thread 270.111 GB data processed, total 2.375 nsecs/byte/thread runtime 0.421 GB/sec/thread speed 13.474 GB/sec total speed # Running numa02-bw-NOTHP, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp 1 --thp -1" 20.088 secs slowest (max) thread-runtime 19.000 secs fastest (min) thread-runtime 20.025 secs average thread-runtime 2.709 % difference between max/avg runtime 8.411 GB data processed, per thread 269.142 GB data processed, total 2.388 nsecs/byte/thread runtime 0.419 GB/sec/thread speed 13.398 GB/sec total speed # Running numa01-bw-thread, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp 1" 20.293 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.175 secs average thread-runtime 0.721 % difference between max/avg runtime 7.918 GB data processed, per thread 253.374 GB data processed, total 2.563 nsecs/byte/thread runtime 0.390 GB/sec/thread speed 12.486 GB/sec total speed # Running numa01-bw-thread-NOTHP, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp 1 --thp -1" 20.411 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.226 secs average thread-runtime 1.006 % difference between max/avg runtime 7.931 GB data processed, per thread 253.778 GB data processed, total 2.574 nsecs/byte/thread runtime 0.389 GB/sec/thread speed 12.434 GB/sec total speed # Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Link: https://lore.kernel.org/r/20201012161611.366482-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Pass build_id object to filename__read_build_id()Jiri Olsa
Pass a build_id object to filename__read_build_id function, so it can populate the size of the build_id object. Changing filename__read_build_id() code for both ELF/non-ELF code. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-3-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Use build_id object in dsoJiri Olsa
Replace build_id byte array with struct build_id object and all the code that references it. The objective is to carry size together with build id array, so it's better to keep both together. This is preparatory change for following patches, and there's no functional change. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-2-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13perf bench: Run inject-build-id with --buildid-all option tooNamhyung Kim
For comparison, it now runs the benchmark twice - one if regular -b and another for --buildid-all. $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 21.002 msec (+- 0.172 msec) Average time per event: 2.059 usec (+- 0.017 usec) Average memory usage: 8169 KB (+- 0 KB) Average build-id-all injection took: 19.543 msec (+- 0.124 msec) Average time per event: 1.916 usec (+- 0.012 usec) Average memory usage: 7348 KB (+- 0 KB) Signed-off-by: Namhyung Kim <namhyung@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/20201012070214.2074921-7-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13perf bench: Add build-id injection benchmarkNamhyung Kim
Sometimes I can see that 'perf record' piped with 'perf inject' take a long time processing build-ids. So introduce a inject-build-id benchmark to the internals benchmark suite to measure its overhead regularly. It runs the 'perf inject' command internally and feeds the given number of synthesized events (MMAP2 + SAMPLE basically). Usage: perf bench internals inject-build-id <options> -i, --iterations <n> Number of iterations used to compute average (default: 100) -m, --nr-mmaps <n> Number of mmap events for each iteration (default: 100) -n, --nr-samples <n> Number of sample events per mmap event (default: 100) -v, --verbose be more verbose (show iteration count, DSO name, etc) By default, it measures average processing time of 100 MMAP2 events and 10000 SAMPLE events. Below is a result on my laptop. $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 25.789 msec (+- 0.202 msec) Average time per event: 2.528 usec (+- 0.020 usec) Average memory usage: 8411 KB (+- 7 KB) Committer testing: $ perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks syscall: System call benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks internals: Perf-internals benchmarks all: All benchmarks $ perf bench internals # List of available benchmarks for collection 'internals': synthesize: Benchmark perf event synthesis kallsyms-parse: Benchmark kallsyms parsing inject-build-id: Benchmark build-id injection $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.202 msec (+- 0.059 msec) Average time per event: 1.392 usec (+- 0.006 usec) Average memory usage: 12650 KB (+- 10 KB) Average build-id-all injection took: 12.831 msec (+- 0.071 msec) Average time per event: 1.258 usec (+- 0.007 usec) Average memory usage: 11895 KB (+- 10 KB) $ $ perf stat -r5 perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.380 msec (+- 0.056 msec) Average time per event: 1.410 usec (+- 0.006 usec) Average memory usage: 12608 KB (+- 11 KB) Average build-id-all injection took: 11.889 msec (+- 0.064 msec) Average time per event: 1.166 usec (+- 0.006 usec) Average memory usage: 11838 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.246 msec (+- 0.065 msec) Average time per event: 1.397 usec (+- 0.006 usec) Average memory usage: 12744 KB (+- 10 KB) Average build-id-all injection took: 12.019 msec (+- 0.066 msec) Average time per event: 1.178 usec (+- 0.006 usec) Average memory usage: 11963 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.321 msec (+- 0.067 msec) Average time per event: 1.404 usec (+- 0.007 usec) Average memory usage: 12690 KB (+- 10 KB) Average build-id-all injection took: 11.909 msec (+- 0.041 msec) Average time per event: 1.168 usec (+- 0.004 usec) Average memory usage: 11938 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.287 msec (+- 0.059 msec) Average time per event: 1.401 usec (+- 0.006 usec) Average memory usage: 12864 KB (+- 10 KB) Average build-id-all injection took: 11.862 msec (+- 0.058 msec) Average time per event: 1.163 usec (+- 0.006 usec) Average memory usage: 12103 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.402 msec (+- 0.053 msec) Average time per event: 1.412 usec (+- 0.005 usec) Average memory usage: 12876 KB (+- 10 KB) Average build-id-all injection took: 11.826 msec (+- 0.061 msec) Average time per event: 1.159 usec (+- 0.006 usec) Average memory usage: 12111 KB (+- 10 KB) Performance counter stats for 'perf bench internals inject-build-id' (5 runs): 4,267.48 msec task-clock:u # 1.502 CPUs utilized ( +- 0.14% ) 0 context-switches:u # 0.000 K/sec 0 cpu-migrations:u # 0.000 K/sec 102,092 page-faults:u # 0.024 M/sec ( +- 0.08% ) 3,894,589,578 cycles:u # 0.913 GHz ( +- 0.19% ) (83.49%) 140,078,421 stalled-cycles-frontend:u # 3.60% frontend cycles idle ( +- 0.77% ) (83.34%) 948,581,189 stalled-cycles-backend:u # 24.36% backend cycles idle ( +- 0.46% ) (83.25%) 5,835,587,719 instructions:u # 1.50 insn per cycle # 0.16 stalled cycles per insn ( +- 0.21% ) (83.24%) 1,267,423,636 branches:u # 296.996 M/sec ( +- 0.22% ) (83.12%) 17,484,290 branch-misses:u # 1.38% of all branches ( +- 0.12% ) (83.55%) 2.84176 +- 0.00222 seconds time elapsed ( +- 0.08% ) $ Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20201012070214.2074921-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-12Merge tag 'ras_updates_for_v5.10' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RAS updates from Borislav Petkov: - Extend the recovery from MCE in kernel space also to processes which encounter an MCE in kernel space but while copying from user memory by sending them a SIGBUS on return to user space and umapping the faulty memory, by Tony Luck and Youquan Song. - memcpy_mcsafe() rework by splitting the functionality into copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables support for new hardware which can recover from a machine check encountered during a fast string copy and makes that the default and lets the older hardware which does not support that advance recovery, opt in to use the old, fragile, slow variant, by Dan Williams. - New AMD hw enablement, by Yazen Ghannam and Akshay Gupta. - Do not use MSR-tracing accessors in #MC context and flag any fault while accessing MCA architectural MSRs as an architectural violation with the hope that such hw/fw misdesigns are caught early during the hw eval phase and they don't make it into production. - Misc fixes, improvements and cleanups, as always. * tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mce: Allow for copy_mc_fragile symbol checksum to be generated x86/mce: Decode a kernel instruction to determine if it is copying from user x86/mce: Recover from poison found while copying from user space x86/mce: Avoid tail copy when machine check terminated a copy from user x86/mce: Add _ASM_EXTABLE_CPY for copy user access x86/mce: Provide method to find out the type of an exception handler x86/mce: Pass pointer to saved pt_regs to severity calculation routines x86/copy_mc: Introduce copy_mc_enhanced_fast_string() x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}() x86/mce: Drop AMD-specific "DEFERRED" case from Intel severity rule list x86/mce: Add Skylake quirk for patrol scrub reported errors RAS/CEC: Convert to DEFINE_SHOW_ATTRIBUTE() x86/mce: Annotate mce_rd/wrmsrl() with noinstr x86/mce/dev-mcelog: Do not update kflags on AMD systems x86/mce: Stop mce_reign() from re-computing severity for every CPU x86/mce: Make mce_rdmsrl() panic on an inaccessible MSR x86/mce: Increase maximum number of banks to 64 x86/mce: Delay clearing IA32_MCG_STATUS to the end of do_machine_check() x86/MCE/AMD, EDAC/mce_amd: Remove struct smca_hwid.xec_bitmap RAS/CEC: Fix cec_init() prototype
2020-10-06x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()Dan Williams
In reaction to a proposal to introduce a memcpy_mcsafe_fast() implementation Linus points out that memcpy_mcsafe() is poorly named relative to communicating the scope of the interface. Specifically what addresses are valid to pass as source, destination, and what faults / exceptions are handled. Of particular concern is that even though x86 might be able to handle the semantics of copy_mc_to_user() with its common copy_user_generic() implementation other archs likely need / want an explicit path for this case: On Fri, May 1, 2020 at 11:28 AM Linus Torvalds <torvalds@linux-foundation.org> wrote: > > On Thu, Apr 30, 2020 at 6:21 PM Dan Williams <dan.j.williams@intel.com> wrote: > > > > However now I see that copy_user_generic() works for the wrong reason. > > It works because the exception on the source address due to poison > > looks no different than a write fault on the user address to the > > caller, it's still just a short copy. So it makes copy_to_user() work > > for the wrong reason relative to the name. > > Right. > > And it won't work that way on other architectures. On x86, we have a > generic function that can take faults on either side, and we use it > for both cases (and for the "in_user" case too), but that's an > artifact of the architecture oddity. > > In fact, it's probably wrong even on x86 - because it can hide bugs - > but writing those things is painful enough that everybody prefers > having just one function. Replace a single top-level memcpy_mcsafe() with either copy_mc_to_user(), or copy_mc_to_kernel(). Introduce an x86 copy_mc_fragile() name as the rename for the low-level x86 implementation formerly named memcpy_mcsafe(). It is used as the slow / careful backend that is supplanted by a fast copy_mc_generic() in a follow-on patch. One side-effect of this reorganization is that separating copy_mc_64.S to its own file means that perf no longer needs to track dependencies for its memcpy_64.S benchmarks. [ bp: Massage a bit. ] Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: <stable@vger.kernel.org> Link: http://lore.kernel.org/r/CAHk-=wjSqtXAqfUJxFtWNwmguFASTgB0dz1dT3V-78Quiezqbg@mail.gmail.com Link: https://lkml.kernel.org/r/160195561680.2163339.11574962055305783722.stgit@dwillia2-desk3.amr.corp.intel.com
2020-09-14perf bench: Fix 2 memory sanitizer warningsIan Rogers
Memory sanitizer warns if a write is performed where the memory being read for the write is uninitialized. Avoid this warning by initializing the memory. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20200912053725.1405857-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-09-03perf bench: The do_run_multi_threaded() function must use ↵YueHaibing
IS_ERR(perf_session__new()) In case of error, the function perf_session__new() returns ERR_PTR() and never returns NULL. The NULL test in the return value check should be replaced with IS_ERR() Committer notes: This wasn't compiling due to an extraneous '{' not matched by a '}', fix it. Fixes: 13edc237200c ("perf bench: Add a multi-threaded synthesize benchmark") Signed-off-by: YueHaibing <yuehaibing@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20200902140526.26916-1-yuehaibing@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-08-14perf bench numa: Remove dead code in parse_nodes_opt()Peng Fan
In the function parse_nodes_opt(), the statement "return 0;" is dead code, remove it. Signed-off-by: Peng Fan <fanpeng@loongson.cn> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/1597401894-27549-1-git-send-email-fanpeng@loongson.cn Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-08-13perf bench numa: Use numa_node_to_cpus() to bind tasks to nodesAlexander Gordeev
It is currently assumed that each node contains at most nr_cpus/nr_nodes CPUs and nodes' CPU ranges do not overlap. That assumption is generally incorrect as there are archs where a CPU number does not depend on to its node number. This update removes the described assumption by simply calling numa_node_to_cpus() interface and using the returned mask for binding CPUs to nodes. Also, variable types and names made consistent in functions using cpumask. Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Balamuruhan S <bala24@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com> Link: http://lore.kernel.org/lkml/20200813113247.GA2014@oc3871087118.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-08-13perf bench numa: Fix cpumask memory leak in node_has_cpus()Alexander Gordeev
Couple numa_allocate_cpumask() and numa_free_cpumask() functions Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Balamuruhan S <bala24@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com> Link: http://lore.kernel.org/lkml/20200813113041.GA1685@oc3871087118.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-08-13perf bench mem: Always memset source before memcpyVincent Whitchurch
For memcpy, the source pages are memset to zero only when --cycles is used. This leads to wildly different results with or without --cycles, since all sources pages are likely to be mapped to the same zero page without explicit writes. Before this fix: $ export cmd="./perf stat -e LLC-loads -- ./perf bench \ mem memcpy -s 1024MB -l 100 -f default" $ $cmd 2,935,826 LLC-loads 3.821677452 seconds time elapsed $ $cmd --cycles 217,533,436 LLC-loads 8.616725985 seconds time elapsed After this fix: $ $cmd 214,459,686 LLC-loads 8.674301124 seconds time elapsed $ $cmd --cycles 214,758,651 LLC-loads 8.644480006 seconds time elapsed Fixes: 47b5757bac03c338 ("perf bench mem: Move boilerplate memory allocation to the infrastructure") Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: kernel@axis.com Link: http://lore.kernel.org/lkml/20200810133404.30829-1-vincent.whitchurch@axis.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-08-12perf bench: Fix a couple of spelling mistakes in options textColin Ian King
There are a couple of spelling mistakes in the text. Fix these. Signed-off-by: Colin King <colin.king@canonical.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: kernel-janitors@vger.kernel.org Link: http://lore.kernel.org/lkml/20200812064647.200132-1-colin.king@canonical.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-08-12perf bench numa: Fix benchmark namesAlexander Gordeev
Standard benchmark names let users know the tests specifics. For example "2x1-bw-process" name tells that two processes one thread each are run and the RAM bandwidth is measured. Several benchmarks names do not correspond to their actual running configuration. Fix that and also some whitespace and comment inconsistencies. Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/6b6f2084f132ee8e9203dc7c32f9deb209b87a68.1597004831.git.agordeev@linux.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-08-12perf bench numa: Fix number of processes in "2x3-convergence" testAlexander Gordeev
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/d949f5f48e17fc816f3beecf8479f1b2480345e4.1597004831.git.agordeev@linux.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-07-31perf bench: Add benchmark of find_next_bitIan Rogers
for_each_set_bit, or similar functions like for_each_cpu, may be hot within the kernel. If many bits were set then one could imagine on Intel a "bt" instruction with every bit may be faster than the function call and word length find_next_bit logic. Add a benchmark to measure this. This benchmark on AMD rome and Intel skylakex shows "bt" is not a good option except for very small bitmaps. Committer testing: # perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks syscall: System call benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks internals: Perf-internals benchmarks all: All benchmarks # perf bench mem # List of available benchmarks for collection 'mem': memcpy: Benchmark for memcpy() functions memset: Benchmark for memset() functions find_bit: Benchmark for find_bit() functions all: Run all memory access benchmarks # perf bench mem find_bit # Running 'mem/find_bit' benchmark: 100000 operations 1 bits set of 1 bits Average for_each_set_bit took: 730.200 usec (+- 6.468 usec) Average test_bit loop took: 366.200 usec (+- 4.652 usec) 100000 operations 1 bits set of 2 bits Average for_each_set_bit took: 781.000 usec (+- 24.247 usec) Average test_bit loop took: 550.200 usec (+- 4.152 usec) 100000 operations 2 bits set of 2 bits Average for_each_set_bit took: 1113.400 usec (+- 112.340 usec) Average test_bit loop took: 1098.500 usec (+- 182.834 usec) 100000 operations 1 bits set of 4 bits Average for_each_set_bit took: 843.800 usec (+- 8.772 usec) Average test_bit loop took: 948.800 usec (+- 10.278 usec) 100000 operations 2 bits set of 4 bits Average for_each_set_bit took: 1185.800 usec (+- 114.345 usec) Average test_bit loop took: 1473.200 usec (+- 175.498 usec) 100000 operations 4 bits set of 4 bits Average for_each_set_bit took: 1769.667 usec (+- 233.177 usec) Average test_bit loop took: 1864.933 usec (+- 187.470 usec) 100000 operations 1 bits set of 8 bits Average for_each_set_bit took: 898.000 usec (+- 21.755 usec) Average test_bit loop took: 1768.400 usec (+- 23.672 usec) 100000 operations 2 bits set of 8 bits Average for_each_set_bit took: 1244.900 usec (+- 116.396 usec) Average test_bit loop took: 2201.800 usec (+- 145.398 usec) 100000 operations 4 bits set of 8 bits Average for_each_set_bit took: 1822.533 usec (+- 231.554 usec) Average test_bit loop took: 2569.467 usec (+- 168.453 usec) 100000 operations 8 bits set of 8 bits Average for_each_set_bit took: 2845.100 usec (+- 441.365 usec) Average test_bit loop took: 3023.300 usec (+- 219.575 usec) 100000 operations 1 bits set of 16 bits Average for_each_set_bit took: 923.400 usec (+- 17.560 usec) Average test_bit loop took: 3240.000 usec (+- 16.492 usec) 100000 operations 2 bits set of 16 bits Average for_each_set_bit took: 1264.300 usec (+- 114.034 usec) Average test_bit loop took: 3714.400 usec (+- 158.898 usec) 100000 operations 4 bits set of 16 bits Average for_each_set_bit took: 1817.867 usec (+- 222.199 usec) Average test_bit loop took: 4015.333 usec (+- 154.162 usec) 100000 operations 8 bits set of 16 bits Average for_each_set_bit took: 2826.350 usec (+- 433.457 usec) Average test_bit loop took: 4460.350 usec (+- 210.762 usec) 100000 operations 16 bits set of 16 bits Average for_each_set_bit took: 4615.600 usec (+- 809.350 usec) Average test_bit loop took: 5129.960 usec (+- 320.821 usec) 100000 operations 1 bits set of 32 bits Average for_each_set_bit took: 904.400 usec (+- 14.250 usec) Average test_bit loop took: 6194.000 usec (+- 29.254 usec) 100000 operations 2 bits set of 32 bits Average for_each_set_bit took: 1252.700 usec (+- 116.432 usec) Average test_bit loop took: 6652.400 usec (+- 154.352 usec) 100000 operations 4 bits set of 32 bits Average for_each_set_bit took: 1824.200 usec (+- 229.133 usec) Average test_bit loop took: 6961.733 usec (+- 154.682 usec) 100000 operations 8 bits set of 32 bits Average for_each_set_bit took: 2823.950 usec (+- 432.296 usec) Average test_bit loop took: 7351.900 usec (+- 193.626 usec) 100000 operations 16 bits set of 32 bits Average for_each_set_bit took: 4552.560 usec (+- 785.141 usec) Average test_bit loop took: 7998.360 usec (+- 305.629 usec) 100000 operations 32 bits set of 32 bits Average for_each_set_bit took: 7557.067 usec (+- 1407.702 usec) Average test_bit loop took: 9072.400 usec (+- 513.209 usec) 100000 operations 1 bits set of 64 bits Average for_each_set_bit took: 896.800 usec (+- 14.389 usec) Average test_bit loop took: 11927.200 usec (+- 68.862 usec) 100000 operations 2 bits set of 64 bits Average for_each_set_bit took: 1230.400 usec (+- 111.731 usec) Average test_bit loop took: 12478.600 usec (+- 189.382 usec) 100000 operations 4 bits set of 64 bits Average for_each_set_bit took: 1844.733 usec (+- 244.826 usec) Average test_bit loop took: 12911.467 usec (+- 206.246 usec) 100000 operations 8 bits set of 64 bits Average for_each_set_bit took: 2779.300 usec (+- 413.612 usec) Average test_bit loop took: 13372.650 usec (+- 239.623 usec) 100000 operations 16 bits set of 64 bits Average for_each_set_bit took: 4423.920 usec (+- 748.240 usec) Average test_bit loop took: 13995.800 usec (+- 318.427 usec) 100000 operations 32 bits set of 64 bits Average for_each_set_bit took: 7580.600 usec (+- 1462.407 usec) Average test_bit loop took: 15063.067 usec (+- 516.477 usec) 100000 operations 64 bits set of 64 bits Average for_each_set_bit took: 13391.514 usec (+- 2765.371 usec)