summaryrefslogtreecommitdiffstats
path: root/virt/kvm/arm/mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'virt/kvm/arm/mmu.c')
-rw-r--r--virt/kvm/arm/mmu.c2447
1 files changed, 0 insertions, 2447 deletions
diff --git a/virt/kvm/arm/mmu.c b/virt/kvm/arm/mmu.c
deleted file mode 100644
index e3b9ee268823..000000000000
--- a/virt/kvm/arm/mmu.c
+++ /dev/null
@@ -1,2447 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Copyright (C) 2012 - Virtual Open Systems and Columbia University
- * Author: Christoffer Dall <c.dall@virtualopensystems.com>
- */
-
-#include <linux/mman.h>
-#include <linux/kvm_host.h>
-#include <linux/io.h>
-#include <linux/hugetlb.h>
-#include <linux/sched/signal.h>
-#include <trace/events/kvm.h>
-#include <asm/pgalloc.h>
-#include <asm/cacheflush.h>
-#include <asm/kvm_arm.h>
-#include <asm/kvm_mmu.h>
-#include <asm/kvm_ras.h>
-#include <asm/kvm_asm.h>
-#include <asm/kvm_emulate.h>
-#include <asm/virt.h>
-
-#include "trace.h"
-
-static pgd_t *boot_hyp_pgd;
-static pgd_t *hyp_pgd;
-static pgd_t *merged_hyp_pgd;
-static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
-
-static unsigned long hyp_idmap_start;
-static unsigned long hyp_idmap_end;
-static phys_addr_t hyp_idmap_vector;
-
-static unsigned long io_map_base;
-
-#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
-
-#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
-#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
-
-static bool is_iomap(unsigned long flags)
-{
- return flags & KVM_S2PTE_FLAG_IS_IOMAP;
-}
-
-static bool memslot_is_logging(struct kvm_memory_slot *memslot)
-{
- return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
-}
-
-/**
- * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
- * @kvm: pointer to kvm structure.
- *
- * Interface to HYP function to flush all VM TLB entries
- */
-void kvm_flush_remote_tlbs(struct kvm *kvm)
-{
- kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
-}
-
-static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
-{
- kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
-}
-
-/*
- * D-Cache management functions. They take the page table entries by
- * value, as they are flushing the cache using the kernel mapping (or
- * kmap on 32bit).
- */
-static void kvm_flush_dcache_pte(pte_t pte)
-{
- __kvm_flush_dcache_pte(pte);
-}
-
-static void kvm_flush_dcache_pmd(pmd_t pmd)
-{
- __kvm_flush_dcache_pmd(pmd);
-}
-
-static void kvm_flush_dcache_pud(pud_t pud)
-{
- __kvm_flush_dcache_pud(pud);
-}
-
-static bool kvm_is_device_pfn(unsigned long pfn)
-{
- return !pfn_valid(pfn);
-}
-
-/**
- * stage2_dissolve_pmd() - clear and flush huge PMD entry
- * @kvm: pointer to kvm structure.
- * @addr: IPA
- * @pmd: pmd pointer for IPA
- *
- * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
- */
-static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
-{
- if (!pmd_thp_or_huge(*pmd))
- return;
-
- pmd_clear(pmd);
- kvm_tlb_flush_vmid_ipa(kvm, addr);
- put_page(virt_to_page(pmd));
-}
-
-/**
- * stage2_dissolve_pud() - clear and flush huge PUD entry
- * @kvm: pointer to kvm structure.
- * @addr: IPA
- * @pud: pud pointer for IPA
- *
- * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
- */
-static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
-{
- if (!stage2_pud_huge(kvm, *pudp))
- return;
-
- stage2_pud_clear(kvm, pudp);
- kvm_tlb_flush_vmid_ipa(kvm, addr);
- put_page(virt_to_page(pudp));
-}
-
-static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
- int min, int max)
-{
- void *page;
-
- BUG_ON(max > KVM_NR_MEM_OBJS);
- if (cache->nobjs >= min)
- return 0;
- while (cache->nobjs < max) {
- page = (void *)__get_free_page(GFP_PGTABLE_USER);
- if (!page)
- return -ENOMEM;
- cache->objects[cache->nobjs++] = page;
- }
- return 0;
-}
-
-static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
-{
- while (mc->nobjs)
- free_page((unsigned long)mc->objects[--mc->nobjs]);
-}
-
-static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
-{
- void *p;
-
- BUG_ON(!mc || !mc->nobjs);
- p = mc->objects[--mc->nobjs];
- return p;
-}
-
-static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
-{
- pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
- stage2_pgd_clear(kvm, pgd);
- kvm_tlb_flush_vmid_ipa(kvm, addr);
- stage2_pud_free(kvm, pud_table);
- put_page(virt_to_page(pgd));
-}
-
-static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
-{
- pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
- VM_BUG_ON(stage2_pud_huge(kvm, *pud));
- stage2_pud_clear(kvm, pud);
- kvm_tlb_flush_vmid_ipa(kvm, addr);
- stage2_pmd_free(kvm, pmd_table);
- put_page(virt_to_page(pud));
-}
-
-static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
-{
- pte_t *pte_table = pte_offset_kernel(pmd, 0);
- VM_BUG_ON(pmd_thp_or_huge(*pmd));
- pmd_clear(pmd);
- kvm_tlb_flush_vmid_ipa(kvm, addr);
- free_page((unsigned long)pte_table);
- put_page(virt_to_page(pmd));
-}
-
-static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
-{
- WRITE_ONCE(*ptep, new_pte);
- dsb(ishst);
-}
-
-static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
-{
- WRITE_ONCE(*pmdp, new_pmd);
- dsb(ishst);
-}
-
-static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
-{
- kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
-}
-
-static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
-{
- WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
- dsb(ishst);
-}
-
-static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
-{
- WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
- dsb(ishst);
-}
-
-/*
- * Unmapping vs dcache management:
- *
- * If a guest maps certain memory pages as uncached, all writes will
- * bypass the data cache and go directly to RAM. However, the CPUs
- * can still speculate reads (not writes) and fill cache lines with
- * data.
- *
- * Those cache lines will be *clean* cache lines though, so a
- * clean+invalidate operation is equivalent to an invalidate
- * operation, because no cache lines are marked dirty.
- *
- * Those clean cache lines could be filled prior to an uncached write
- * by the guest, and the cache coherent IO subsystem would therefore
- * end up writing old data to disk.
- *
- * This is why right after unmapping a page/section and invalidating
- * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
- * the IO subsystem will never hit in the cache.
- *
- * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
- * we then fully enforce cacheability of RAM, no matter what the guest
- * does.
- */
-static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
- phys_addr_t addr, phys_addr_t end)
-{
- phys_addr_t start_addr = addr;
- pte_t *pte, *start_pte;
-
- start_pte = pte = pte_offset_kernel(pmd, addr);
- do {
- if (!pte_none(*pte)) {
- pte_t old_pte = *pte;
-
- kvm_set_pte(pte, __pte(0));
- kvm_tlb_flush_vmid_ipa(kvm, addr);
-
- /* No need to invalidate the cache for device mappings */
- if (!kvm_is_device_pfn(pte_pfn(old_pte)))
- kvm_flush_dcache_pte(old_pte);
-
- put_page(virt_to_page(pte));
- }
- } while (pte++, addr += PAGE_SIZE, addr != end);
-
- if (stage2_pte_table_empty(kvm, start_pte))
- clear_stage2_pmd_entry(kvm, pmd, start_addr);
-}
-
-static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
- phys_addr_t addr, phys_addr_t end)
-{
- phys_addr_t next, start_addr = addr;
- pmd_t *pmd, *start_pmd;
-
- start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
- do {
- next = stage2_pmd_addr_end(kvm, addr, end);
- if (!pmd_none(*pmd)) {
- if (pmd_thp_or_huge(*pmd)) {
- pmd_t old_pmd = *pmd;
-
- pmd_clear(pmd);
- kvm_tlb_flush_vmid_ipa(kvm, addr);
-
- kvm_flush_dcache_pmd(old_pmd);
-
- put_page(virt_to_page(pmd));
- } else {
- unmap_stage2_ptes(kvm, pmd, addr, next);
- }
- }
- } while (pmd++, addr = next, addr != end);
-
- if (stage2_pmd_table_empty(kvm, start_pmd))
- clear_stage2_pud_entry(kvm, pud, start_addr);
-}
-
-static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
- phys_addr_t addr, phys_addr_t end)
-{
- phys_addr_t next, start_addr = addr;
- pud_t *pud, *start_pud;
-
- start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
- do {
- next = stage2_pud_addr_end(kvm, addr, end);
- if (!stage2_pud_none(kvm, *pud)) {
- if (stage2_pud_huge(kvm, *pud)) {
- pud_t old_pud = *pud;
-
- stage2_pud_clear(kvm, pud);
- kvm_tlb_flush_vmid_ipa(kvm, addr);
- kvm_flush_dcache_pud(old_pud);
- put_page(virt_to_page(pud));
- } else {
- unmap_stage2_pmds(kvm, pud, addr, next);
- }
- }
- } while (pud++, addr = next, addr != end);
-
- if (stage2_pud_table_empty(kvm, start_pud))
- clear_stage2_pgd_entry(kvm, pgd, start_addr);
-}
-
-/**
- * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
- * @kvm: The VM pointer
- * @start: The intermediate physical base address of the range to unmap
- * @size: The size of the area to unmap
- *
- * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
- * be called while holding mmu_lock (unless for freeing the stage2 pgd before
- * destroying the VM), otherwise another faulting VCPU may come in and mess
- * with things behind our backs.
- */
-static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
-{
- pgd_t *pgd;
- phys_addr_t addr = start, end = start + size;
- phys_addr_t next;
-
- assert_spin_locked(&kvm->mmu_lock);
- WARN_ON(size & ~PAGE_MASK);
-
- pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
- do {
- /*
- * Make sure the page table is still active, as another thread
- * could have possibly freed the page table, while we released
- * the lock.
- */
- if (!READ_ONCE(kvm->arch.pgd))
- break;
- next = stage2_pgd_addr_end(kvm, addr, end);
- if (!stage2_pgd_none(kvm, *pgd))
- unmap_stage2_puds(kvm, pgd, addr, next);
- /*
- * If the range is too large, release the kvm->mmu_lock
- * to prevent starvation and lockup detector warnings.
- */
- if (next != end)
- cond_resched_lock(&kvm->mmu_lock);
- } while (pgd++, addr = next, addr != end);
-}
-
-static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
- phys_addr_t addr, phys_addr_t end)
-{
- pte_t *pte;
-
- pte = pte_offset_kernel(pmd, addr);
- do {
- if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
- kvm_flush_dcache_pte(*pte);
- } while (pte++, addr += PAGE_SIZE, addr != end);
-}
-
-static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
- phys_addr_t addr, phys_addr_t end)
-{
- pmd_t *pmd;
- phys_addr_t next;
-
- pmd = stage2_pmd_offset(kvm, pud, addr);
- do {
- next = stage2_pmd_addr_end(kvm, addr, end);
- if (!pmd_none(*pmd)) {
- if (pmd_thp_or_huge(*pmd))
- kvm_flush_dcache_pmd(*pmd);
- else
- stage2_flush_ptes(kvm, pmd, addr, next);
- }
- } while (pmd++, addr = next, addr != end);
-}
-
-static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
- phys_addr_t addr, phys_addr_t end)
-{
- pud_t *pud;
- phys_addr_t next;
-
- pud = stage2_pud_offset(kvm, pgd, addr);
- do {
- next = stage2_pud_addr_end(kvm, addr, end);
- if (!stage2_pud_none(kvm, *pud)) {
- if (stage2_pud_huge(kvm, *pud))
- kvm_flush_dcache_pud(*pud);
- else
- stage2_flush_pmds(kvm, pud, addr, next);
- }
- } while (pud++, addr = next, addr != end);
-}
-
-static void stage2_flush_memslot(struct kvm *kvm,
- struct kvm_memory_slot *memslot)
-{
- phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
- phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
- phys_addr_t next;
- pgd_t *pgd;
-
- pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
- do {
- next = stage2_pgd_addr_end(kvm, addr, end);
- if (!stage2_pgd_none(kvm, *pgd))
- stage2_flush_puds(kvm, pgd, addr, next);
- } while (pgd++, addr = next, addr != end);
-}
-
-/**
- * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
- * @kvm: The struct kvm pointer
- *
- * Go through the stage 2 page tables and invalidate any cache lines
- * backing memory already mapped to the VM.
- */
-static void stage2_flush_vm(struct kvm *kvm)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *memslot;
- int idx;
-
- idx = srcu_read_lock(&kvm->srcu);
- spin_lock(&kvm->mmu_lock);
-
- slots = kvm_memslots(kvm);
- kvm_for_each_memslot(memslot, slots)
- stage2_flush_memslot(kvm, memslot);
-
- spin_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, idx);
-}
-
-static void clear_hyp_pgd_entry(pgd_t *pgd)
-{
- pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
- pgd_clear(pgd);
- pud_free(NULL, pud_table);
- put_page(virt_to_page(pgd));
-}
-
-static void clear_hyp_pud_entry(pud_t *pud)
-{
- pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
- VM_BUG_ON(pud_huge(*pud));
- pud_clear(pud);
- pmd_free(NULL, pmd_table);
- put_page(virt_to_page(pud));
-}
-
-static void clear_hyp_pmd_entry(pmd_t *pmd)
-{
- pte_t *pte_table = pte_offset_kernel(pmd, 0);
- VM_BUG_ON(pmd_thp_or_huge(*pmd));
- pmd_clear(pmd);
- pte_free_kernel(NULL, pte_table);
- put_page(virt_to_page(pmd));
-}
-
-static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
-{
- pte_t *pte, *start_pte;
-
- start_pte = pte = pte_offset_kernel(pmd, addr);
- do {
- if (!pte_none(*pte)) {
- kvm_set_pte(pte, __pte(0));
- put_page(virt_to_page(pte));
- }
- } while (pte++, addr += PAGE_SIZE, addr != end);
-
- if (hyp_pte_table_empty(start_pte))
- clear_hyp_pmd_entry(pmd);
-}
-
-static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
-{
- phys_addr_t next;
- pmd_t *pmd, *start_pmd;
-
- start_pmd = pmd = pmd_offset(pud, addr);
- do {
- next = pmd_addr_end(addr, end);
- /* Hyp doesn't use huge pmds */
- if (!pmd_none(*pmd))
- unmap_hyp_ptes(pmd, addr, next);
- } while (pmd++, addr = next, addr != end);
-
- if (hyp_pmd_table_empty(start_pmd))
- clear_hyp_pud_entry(pud);
-}
-
-static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
-{
- phys_addr_t next;
- pud_t *pud, *start_pud;
-
- start_pud = pud = pud_offset(pgd, addr);
- do {
- next = pud_addr_end(addr, end);
- /* Hyp doesn't use huge puds */
- if (!pud_none(*pud))
- unmap_hyp_pmds(pud, addr, next);
- } while (pud++, addr = next, addr != end);
-
- if (hyp_pud_table_empty(start_pud))
- clear_hyp_pgd_entry(pgd);
-}
-
-static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
-{
- return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
-}
-
-static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
- phys_addr_t start, u64 size)
-{
- pgd_t *pgd;
- phys_addr_t addr = start, end = start + size;
- phys_addr_t next;
-
- /*
- * We don't unmap anything from HYP, except at the hyp tear down.
- * Hence, we don't have to invalidate the TLBs here.
- */
- pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
- do {
- next = pgd_addr_end(addr, end);
- if (!pgd_none(*pgd))
- unmap_hyp_puds(pgd, addr, next);
- } while (pgd++, addr = next, addr != end);
-}
-
-static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
-{
- __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
-}
-
-static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
-{
- __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
-}
-
-/**
- * free_hyp_pgds - free Hyp-mode page tables
- *
- * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
- * therefore contains either mappings in the kernel memory area (above
- * PAGE_OFFSET), or device mappings in the idmap range.
- *
- * boot_hyp_pgd should only map the idmap range, and is only used in
- * the extended idmap case.
- */
-void free_hyp_pgds(void)
-{
- pgd_t *id_pgd;
-
- mutex_lock(&kvm_hyp_pgd_mutex);
-
- id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
-
- if (id_pgd) {
- /* In case we never called hyp_mmu_init() */
- if (!io_map_base)
- io_map_base = hyp_idmap_start;
- unmap_hyp_idmap_range(id_pgd, io_map_base,
- hyp_idmap_start + PAGE_SIZE - io_map_base);
- }
-
- if (boot_hyp_pgd) {
- free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
- boot_hyp_pgd = NULL;
- }
-
- if (hyp_pgd) {
- unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
- (uintptr_t)high_memory - PAGE_OFFSET);
-
- free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
- hyp_pgd = NULL;
- }
- if (merged_hyp_pgd) {
- clear_page(merged_hyp_pgd);
- free_page((unsigned long)merged_hyp_pgd);
- merged_hyp_pgd = NULL;
- }
-
- mutex_unlock(&kvm_hyp_pgd_mutex);
-}
-
-static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
- unsigned long end, unsigned long pfn,
- pgprot_t prot)
-{
- pte_t *pte;
- unsigned long addr;
-
- addr = start;
- do {
- pte = pte_offset_kernel(pmd, addr);
- kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
- get_page(virt_to_page(pte));
- pfn++;
- } while (addr += PAGE_SIZE, addr != end);
-}
-
-static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
- unsigned long end, unsigned long pfn,
- pgprot_t prot)
-{
- pmd_t *pmd;
- pte_t *pte;
- unsigned long addr, next;
-
- addr = start;
- do {
- pmd = pmd_offset(pud, addr);
-
- BUG_ON(pmd_sect(*pmd));
-
- if (pmd_none(*pmd)) {
- pte = pte_alloc_one_kernel(NULL);
- if (!pte) {
- kvm_err("Cannot allocate Hyp pte\n");
- return -ENOMEM;
- }
- kvm_pmd_populate(pmd, pte);
- get_page(virt_to_page(pmd));
- }
-
- next = pmd_addr_end(addr, end);
-
- create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
- pfn += (next - addr) >> PAGE_SHIFT;
- } while (addr = next, addr != end);
-
- return 0;
-}
-
-static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
- unsigned long end, unsigned long pfn,
- pgprot_t prot)
-{
- pud_t *pud;
- pmd_t *pmd;
- unsigned long addr, next;
- int ret;
-
- addr = start;
- do {
- pud = pud_offset(pgd, addr);
-
- if (pud_none_or_clear_bad(pud)) {
- pmd = pmd_alloc_one(NULL, addr);
- if (!pmd) {
- kvm_err("Cannot allocate Hyp pmd\n");
- return -ENOMEM;
- }
- kvm_pud_populate(pud, pmd);
- get_page(virt_to_page(pud));
- }
-
- next = pud_addr_end(addr, end);
- ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
- if (ret)
- return ret;
- pfn += (next - addr) >> PAGE_SHIFT;
- } while (addr = next, addr != end);
-
- return 0;
-}
-
-static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
- unsigned long start, unsigned long end,
- unsigned long pfn, pgprot_t prot)
-{
- pgd_t *pgd;
- pud_t *pud;
- unsigned long addr, next;
- int err = 0;
-
- mutex_lock(&kvm_hyp_pgd_mutex);
- addr = start & PAGE_MASK;
- end = PAGE_ALIGN(end);
- do {
- pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
-
- if (pgd_none(*pgd)) {
- pud = pud_alloc_one(NULL, addr);
- if (!pud) {
- kvm_err("Cannot allocate Hyp pud\n");
- err = -ENOMEM;
- goto out;
- }
- kvm_pgd_populate(pgd, pud);
- get_page(virt_to_page(pgd));
- }
-
- next = pgd_addr_end(addr, end);
- err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
- if (err)
- goto out;
- pfn += (next - addr) >> PAGE_SHIFT;
- } while (addr = next, addr != end);
-out:
- mutex_unlock(&kvm_hyp_pgd_mutex);
- return err;
-}
-
-static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
-{
- if (!is_vmalloc_addr(kaddr)) {
- BUG_ON(!virt_addr_valid(kaddr));
- return __pa(kaddr);
- } else {
- return page_to_phys(vmalloc_to_page(kaddr)) +
- offset_in_page(kaddr);
- }
-}
-
-/**
- * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
- * @from: The virtual kernel start address of the range
- * @to: The virtual kernel end address of the range (exclusive)
- * @prot: The protection to be applied to this range
- *
- * The same virtual address as the kernel virtual address is also used
- * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
- * physical pages.
- */
-int create_hyp_mappings(void *from, void *to, pgprot_t prot)
-{
- phys_addr_t phys_addr;
- unsigned long virt_addr;
- unsigned long start = kern_hyp_va((unsigned long)from);
- unsigned long end = kern_hyp_va((unsigned long)to);
-
- if (is_kernel_in_hyp_mode())
- return 0;
-
- start = start & PAGE_MASK;
- end = PAGE_ALIGN(end);
-
- for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
- int err;
-
- phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
- err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
- virt_addr, virt_addr + PAGE_SIZE,
- __phys_to_pfn(phys_addr),
- prot);
- if (err)
- return err;
- }
-
- return 0;
-}
-
-static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
- unsigned long *haddr, pgprot_t prot)
-{
- pgd_t *pgd = hyp_pgd;
- unsigned long base;
- int ret = 0;
-
- mutex_lock(&kvm_hyp_pgd_mutex);
-
- /*
- * This assumes that we we have enough space below the idmap
- * page to allocate our VAs. If not, the check below will
- * kick. A potential alternative would be to detect that
- * overflow and switch to an allocation above the idmap.
- *
- * The allocated size is always a multiple of PAGE_SIZE.
- */
- size = PAGE_ALIGN(size + offset_in_page(phys_addr));
- base = io_map_base - size;
-
- /*
- * Verify that BIT(VA_BITS - 1) hasn't been flipped by
- * allocating the new area, as it would indicate we've
- * overflowed the idmap/IO address range.
- */
- if ((base ^ io_map_base) & BIT(VA_BITS - 1))
- ret = -ENOMEM;
- else
- io_map_base = base;
-
- mutex_unlock(&kvm_hyp_pgd_mutex);
-
- if (ret)
- goto out;
-
- if (__kvm_cpu_uses_extended_idmap())
- pgd = boot_hyp_pgd;
-
- ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
- base, base + size,
- __phys_to_pfn(phys_addr), prot);
- if (ret)
- goto out;
-
- *haddr = base + offset_in_page(phys_addr);
-
-out:
- return ret;
-}
-
-/**
- * create_hyp_io_mappings - Map IO into both kernel and HYP
- * @phys_addr: The physical start address which gets mapped
- * @size: Size of the region being mapped
- * @kaddr: Kernel VA for this mapping
- * @haddr: HYP VA for this mapping
- */
-int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
- void __iomem **kaddr,
- void __iomem **haddr)
-{
- unsigned long addr;
- int ret;
-
- *kaddr = ioremap(phys_addr, size);
- if (!*kaddr)
- return -ENOMEM;
-
- if (is_kernel_in_hyp_mode()) {
- *haddr = *kaddr;
- return 0;
- }
-
- ret = __create_hyp_private_mapping(phys_addr, size,
- &addr, PAGE_HYP_DEVICE);
- if (ret) {
- iounmap(*kaddr);
- *kaddr = NULL;
- *haddr = NULL;
- return ret;
- }
-
- *haddr = (void __iomem *)addr;
- return 0;
-}
-
-/**
- * create_hyp_exec_mappings - Map an executable range into HYP
- * @phys_addr: The physical start address which gets mapped
- * @size: Size of the region being mapped
- * @haddr: HYP VA for this mapping
- */
-int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
- void **haddr)
-{
- unsigned long addr;
- int ret;
-
- BUG_ON(is_kernel_in_hyp_mode());
-
- ret = __create_hyp_private_mapping(phys_addr, size,
- &addr, PAGE_HYP_EXEC);
- if (ret) {
- *haddr = NULL;
- return ret;
- }
-
- *haddr = (void *)addr;
- return 0;
-}
-
-/**
- * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
- * @kvm: The KVM struct pointer for the VM.
- *
- * Allocates only the stage-2 HW PGD level table(s) of size defined by
- * stage2_pgd_size(kvm).
- *
- * Note we don't need locking here as this is only called when the VM is
- * created, which can only be done once.
- */
-int kvm_alloc_stage2_pgd(struct kvm *kvm)
-{
- phys_addr_t pgd_phys;
- pgd_t *pgd;
-
- if (kvm->arch.pgd != NULL) {
- kvm_err("kvm_arch already initialized?\n");
- return -EINVAL;
- }
-
- /* Allocate the HW PGD, making sure that each page gets its own refcount */
- pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
- if (!pgd)
- return -ENOMEM;
-
- pgd_phys = virt_to_phys(pgd);
- if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
- return -EINVAL;
-
- kvm->arch.pgd = pgd;
- kvm->arch.pgd_phys = pgd_phys;
- return 0;
-}
-
-static void stage2_unmap_memslot(struct kvm *kvm,
- struct kvm_memory_slot *memslot)
-{
- hva_t hva = memslot->userspace_addr;
- phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
- phys_addr_t size = PAGE_SIZE * memslot->npages;
- hva_t reg_end = hva + size;
-
- /*
- * A memory region could potentially cover multiple VMAs, and any holes
- * between them, so iterate over all of them to find out if we should
- * unmap any of them.
- *
- * +--------------------------------------------+
- * +---------------+----------------+ +----------------+
- * | : VMA 1 | VMA 2 | | VMA 3 : |
- * +---------------+----------------+ +----------------+
- * | memory region |
- * +--------------------------------------------+
- */
- do {
- struct vm_area_struct *vma = find_vma(current->mm, hva);
- hva_t vm_start, vm_end;
-
- if (!vma || vma->vm_start >= reg_end)
- break;
-
- /*
- * Take the intersection of this VMA with the memory region
- */
- vm_start = max(hva, vma->vm_start);
- vm_end = min(reg_end, vma->vm_end);
-
- if (!(vma->vm_flags & VM_PFNMAP)) {
- gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
- unmap_stage2_range(kvm, gpa, vm_end - vm_start);
- }
- hva = vm_end;
- } while (hva < reg_end);
-}
-
-/**
- * stage2_unmap_vm - Unmap Stage-2 RAM mappings
- * @kvm: The struct kvm pointer
- *
- * Go through the memregions and unmap any reguler RAM
- * backing memory already mapped to the VM.
- */
-void stage2_unmap_vm(struct kvm *kvm)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *memslot;
- int idx;
-
- idx = srcu_read_lock(&kvm->srcu);
- down_read(&current->mm->mmap_sem);
- spin_lock(&kvm->mmu_lock);
-
- slots = kvm_memslots(kvm);
- kvm_for_each_memslot(memslot, slots)
- stage2_unmap_memslot(kvm, memslot);
-
- spin_unlock(&kvm->mmu_lock);
- up_read(&current->mm->mmap_sem);
- srcu_read_unlock(&kvm->srcu, idx);
-}
-
-/**
- * kvm_free_stage2_pgd - free all stage-2 tables
- * @kvm: The KVM struct pointer for the VM.
- *
- * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
- * underlying level-2 and level-3 tables before freeing the actual level-1 table
- * and setting the struct pointer to NULL.
- */
-void kvm_free_stage2_pgd(struct kvm *kvm)
-{
- void *pgd = NULL;
-
- spin_lock(&kvm->mmu_lock);
- if (kvm->arch.pgd) {
- unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
- pgd = READ_ONCE(kvm->arch.pgd);
- kvm->arch.pgd = NULL;
- kvm->arch.pgd_phys = 0;
- }
- spin_unlock(&kvm->mmu_lock);
-
- /* Free the HW pgd, one page at a time */
- if (pgd)
- free_pages_exact(pgd, stage2_pgd_size(kvm));
-}
-
-static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
- phys_addr_t addr)
-{
- pgd_t *pgd;
- pud_t *pud;
-
- pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
- if (stage2_pgd_none(kvm, *pgd)) {
- if (!cache)
- return NULL;
- pud = mmu_memory_cache_alloc(cache);
- stage2_pgd_populate(kvm, pgd, pud);
- get_page(virt_to_page(pgd));
- }
-
- return stage2_pud_offset(kvm, pgd, addr);
-}
-
-static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
- phys_addr_t addr)
-{
- pud_t *pud;
- pmd_t *pmd;
-
- pud = stage2_get_pud(kvm, cache, addr);
- if (!pud || stage2_pud_huge(kvm, *pud))
- return NULL;
-
- if (stage2_pud_none(kvm, *pud)) {
- if (!cache)
- return NULL;
- pmd = mmu_memory_cache_alloc(cache);
- stage2_pud_populate(kvm, pud, pmd);
- get_page(virt_to_page(pud));
- }
-
- return stage2_pmd_offset(kvm, pud, addr);
-}
-
-static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
- *cache, phys_addr_t addr, const pmd_t *new_pmd)
-{
- pmd_t *pmd, old_pmd;
-
-retry:
- pmd = stage2_get_pmd(kvm, cache, addr);
- VM_BUG_ON(!pmd);
-
- old_pmd = *pmd;
- /*
- * Multiple vcpus faulting on the same PMD entry, can
- * lead to them sequentially updating the PMD with the
- * same value. Following the break-before-make
- * (pmd_clear() followed by tlb_flush()) process can
- * hinder forward progress due to refaults generated
- * on missing translations.
- *
- * Skip updating the page table if the entry is
- * unchanged.
- */
- if (pmd_val(old_pmd) == pmd_val(*new_pmd))
- return 0;
-
- if (pmd_present(old_pmd)) {
- /*
- * If we already have PTE level mapping for this block,
- * we must unmap it to avoid inconsistent TLB state and
- * leaking the table page. We could end up in this situation
- * if the memory slot was marked for dirty logging and was
- * reverted, leaving PTE level mappings for the pages accessed
- * during the period. So, unmap the PTE level mapping for this
- * block and retry, as we could have released the upper level
- * table in the process.
- *
- * Normal THP split/merge follows mmu_notifier callbacks and do
- * get handled accordingly.
- */
- if (!pmd_thp_or_huge(old_pmd)) {
- unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
- goto retry;
- }
- /*
- * Mapping in huge pages should only happen through a
- * fault. If a page is merged into a transparent huge
- * page, the individual subpages of that huge page
- * should be unmapped through MMU notifiers before we
- * get here.
- *
- * Merging of CompoundPages is not supported; they
- * should become splitting first, unmapped, merged,
- * and mapped back in on-demand.
- */
- WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
- pmd_clear(pmd);
- kvm_tlb_flush_vmid_ipa(kvm, addr);
- } else {
- get_page(virt_to_page(pmd));
- }
-
- kvm_set_pmd(pmd, *new_pmd);
- return 0;
-}
-
-static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
- phys_addr_t addr, const pud_t *new_pudp)
-{
- pud_t *pudp, old_pud;
-
-retry:
- pudp = stage2_get_pud(kvm, cache, addr);
- VM_BUG_ON(!pudp);
-
- old_pud = *pudp;
-
- /*
- * A large number of vcpus faulting on the same stage 2 entry,
- * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
- * Skip updating the page tables if there is no change.
- */
- if (pud_val(old_pud) == pud_val(*new_pudp))
- return 0;
-
- if (stage2_pud_present(kvm, old_pud)) {
- /*
- * If we already have table level mapping for this block, unmap
- * the range for this block and retry.
- */
- if (!stage2_pud_huge(kvm, old_pud)) {
- unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
- goto retry;
- }
-
- WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
- stage2_pud_clear(kvm, pudp);
- kvm_tlb_flush_vmid_ipa(kvm, addr);
- } else {
- get_page(virt_to_page(pudp));
- }
-
- kvm_set_pud(pudp, *new_pudp);
- return 0;
-}
-
-/*
- * stage2_get_leaf_entry - walk the stage2 VM page tables and return
- * true if a valid and present leaf-entry is found. A pointer to the
- * leaf-entry is returned in the appropriate level variable - pudpp,
- * pmdpp, ptepp.
- */
-static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
- pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
-{
- pud_t *pudp;
- pmd_t *pmdp;
- pte_t *ptep;
-
- *pudpp = NULL;
- *pmdpp = NULL;
- *ptepp = NULL;
-
- pudp = stage2_get_pud(kvm, NULL, addr);
- if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
- return false;
-
- if (stage2_pud_huge(kvm, *pudp)) {
- *pudpp = pudp;
- return true;
- }
-
- pmdp = stage2_pmd_offset(kvm, pudp, addr);
- if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
- return false;
-
- if (pmd_thp_or_huge(*pmdp)) {
- *pmdpp = pmdp;
- return true;
- }
-
- ptep = pte_offset_kernel(pmdp, addr);
- if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
- return false;
-
- *ptepp = ptep;
- return true;
-}
-
-static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
-{
- pud_t *pudp;
- pmd_t *pmdp;
- pte_t *ptep;
- bool found;
-
- found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
- if (!found)
- return false;
-
- if (pudp)
- return kvm_s2pud_exec(pudp);
- else if (pmdp)
- return kvm_s2pmd_exec(pmdp);
- else
- return kvm_s2pte_exec(ptep);
-}
-
-static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
- phys_addr_t addr, const pte_t *new_pte,
- unsigned long flags)
-{
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte, old_pte;
- bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
- bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
-
- VM_BUG_ON(logging_active && !cache);
-
- /* Create stage-2 page table mapping - Levels 0 and 1 */
- pud = stage2_get_pud(kvm, cache, addr);
- if (!pud) {
- /*
- * Ignore calls from kvm_set_spte_hva for unallocated
- * address ranges.
- */