summaryrefslogtreecommitdiffstats
path: root/mm/kasan/common.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/kasan/common.c')
-rw-r--r--mm/kasan/common.c486
1 files changed, 1 insertions, 485 deletions
diff --git a/mm/kasan/common.c b/mm/kasan/common.c
index 166e36e0033e..88f57346c7bd 100644
--- a/mm/kasan/common.c
+++ b/mm/kasan/common.c
@@ -1,6 +1,6 @@
// SPDX-License-Identifier: GPL-2.0
/*
- * This file contains common generic and tag-based KASAN code.
+ * This file contains common KASAN code.
*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
@@ -13,7 +13,6 @@
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
-#include <linux/kmemleak.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
@@ -26,12 +25,8 @@
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
-#include <linux/vmalloc.h>
#include <linux/bug.h>
-#include <asm/cacheflush.h>
-#include <asm/tlbflush.h>
-
#include "kasan.h"
#include "../slab.h"
@@ -61,93 +56,6 @@ void kasan_disable_current(void)
current->kasan_depth--;
}
-bool __kasan_check_read(const volatile void *p, unsigned int size)
-{
- return check_memory_region((unsigned long)p, size, false, _RET_IP_);
-}
-EXPORT_SYMBOL(__kasan_check_read);
-
-bool __kasan_check_write(const volatile void *p, unsigned int size)
-{
- return check_memory_region((unsigned long)p, size, true, _RET_IP_);
-}
-EXPORT_SYMBOL(__kasan_check_write);
-
-#undef memset
-void *memset(void *addr, int c, size_t len)
-{
- if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
- return NULL;
-
- return __memset(addr, c, len);
-}
-
-#ifdef __HAVE_ARCH_MEMMOVE
-#undef memmove
-void *memmove(void *dest, const void *src, size_t len)
-{
- if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
- !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
- return NULL;
-
- return __memmove(dest, src, len);
-}
-#endif
-
-#undef memcpy
-void *memcpy(void *dest, const void *src, size_t len)
-{
- if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
- !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
- return NULL;
-
- return __memcpy(dest, src, len);
-}
-
-/*
- * Poisons the shadow memory for 'size' bytes starting from 'addr'.
- * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
- */
-void poison_range(const void *address, size_t size, u8 value)
-{
- void *shadow_start, *shadow_end;
-
- /*
- * Perform shadow offset calculation based on untagged address, as
- * some of the callers (e.g. kasan_poison_object_data) pass tagged
- * addresses to this function.
- */
- address = reset_tag(address);
-
- shadow_start = kasan_mem_to_shadow(address);
- shadow_end = kasan_mem_to_shadow(address + size);
-
- __memset(shadow_start, value, shadow_end - shadow_start);
-}
-
-void unpoison_range(const void *address, size_t size)
-{
- u8 tag = get_tag(address);
-
- /*
- * Perform shadow offset calculation based on untagged address, as
- * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
- * addresses to this function.
- */
- address = reset_tag(address);
-
- poison_range(address, size, tag);
-
- if (size & KASAN_GRANULE_MASK) {
- u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
-
- if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
- *shadow = tag;
- else
- *shadow = size & KASAN_GRANULE_MASK;
- }
-}
-
void kasan_unpoison_range(const void *address, size_t size)
{
unpoison_range(address, size);
@@ -540,395 +448,3 @@ void kasan_kfree_large(void *ptr, unsigned long ip)
kasan_report_invalid_free(ptr, ip);
/* The object will be poisoned by page_alloc. */
}
-
-#ifdef CONFIG_MEMORY_HOTPLUG
-static bool shadow_mapped(unsigned long addr)
-{
- pgd_t *pgd = pgd_offset_k(addr);
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- if (pgd_none(*pgd))
- return false;
- p4d = p4d_offset(pgd, addr);
- if (p4d_none(*p4d))
- return false;
- pud = pud_offset(p4d, addr);
- if (pud_none(*pud))
- return false;
-
- /*
- * We can't use pud_large() or pud_huge(), the first one is
- * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
- * pud_bad(), if pud is bad then it's bad because it's huge.
- */
- if (pud_bad(*pud))
- return true;
- pmd = pmd_offset(pud, addr);
- if (pmd_none(*pmd))
- return false;
-
- if (pmd_bad(*pmd))
- return true;
- pte = pte_offset_kernel(pmd, addr);
- return !pte_none(*pte);
-}
-
-static int __meminit kasan_mem_notifier(struct notifier_block *nb,
- unsigned long action, void *data)
-{
- struct memory_notify *mem_data = data;
- unsigned long nr_shadow_pages, start_kaddr, shadow_start;
- unsigned long shadow_end, shadow_size;
-
- nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
- start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
- shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
- shadow_size = nr_shadow_pages << PAGE_SHIFT;
- shadow_end = shadow_start + shadow_size;
-
- if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
- WARN_ON(start_kaddr % (KASAN_GRANULE_SIZE << PAGE_SHIFT)))
- return NOTIFY_BAD;
-
- switch (action) {
- case MEM_GOING_ONLINE: {
- void *ret;
-
- /*
- * If shadow is mapped already than it must have been mapped
- * during the boot. This could happen if we onlining previously
- * offlined memory.
- */
- if (shadow_mapped(shadow_start))
- return NOTIFY_OK;
-
- ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
- shadow_end, GFP_KERNEL,
- PAGE_KERNEL, VM_NO_GUARD,
- pfn_to_nid(mem_data->start_pfn),
- __builtin_return_address(0));
- if (!ret)
- return NOTIFY_BAD;
-
- kmemleak_ignore(ret);
- return NOTIFY_OK;
- }
- case MEM_CANCEL_ONLINE:
- case MEM_OFFLINE: {
- struct vm_struct *vm;
-
- /*
- * shadow_start was either mapped during boot by kasan_init()
- * or during memory online by __vmalloc_node_range().
- * In the latter case we can use vfree() to free shadow.
- * Non-NULL result of the find_vm_area() will tell us if
- * that was the second case.
- *
- * Currently it's not possible to free shadow mapped
- * during boot by kasan_init(). It's because the code
- * to do that hasn't been written yet. So we'll just
- * leak the memory.
- */
- vm = find_vm_area((void *)shadow_start);
- if (vm)
- vfree((void *)shadow_start);
- }
- }
-
- return NOTIFY_OK;
-}
-
-static int __init kasan_memhotplug_init(void)
-{
- hotplug_memory_notifier(kasan_mem_notifier, 0);
-
- return 0;
-}
-
-core_initcall(kasan_memhotplug_init);
-#endif
-
-#ifdef CONFIG_KASAN_VMALLOC
-
-static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
- void *unused)
-{
- unsigned long page;
- pte_t pte;
-
- if (likely(!pte_none(*ptep)))
- return 0;
-
- page = __get_free_page(GFP_KERNEL);
- if (!page)
- return -ENOMEM;
-
- memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
- pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
-
- spin_lock(&init_mm.page_table_lock);
- if (likely(pte_none(*ptep))) {
- set_pte_at(&init_mm, addr, ptep, pte);
- page = 0;
- }
- spin_unlock(&init_mm.page_table_lock);
- if (page)
- free_page(page);
- return 0;
-}
-
-int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
-{
- unsigned long shadow_start, shadow_end;
- int ret;
-
- if (!is_vmalloc_or_module_addr((void *)addr))
- return 0;
-
- shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
- shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
- shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
- shadow_end = ALIGN(shadow_end, PAGE_SIZE);
-
- ret = apply_to_page_range(&init_mm, shadow_start,
- shadow_end - shadow_start,
- kasan_populate_vmalloc_pte, NULL);
- if (ret)
- return ret;
-
- flush_cache_vmap(shadow_start, shadow_end);
-
- /*
- * We need to be careful about inter-cpu effects here. Consider:
- *
- * CPU#0 CPU#1
- * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
- * p[99] = 1;
- *
- * With compiler instrumentation, that ends up looking like this:
- *
- * CPU#0 CPU#1
- * // vmalloc() allocates memory
- * // let a = area->addr
- * // we reach kasan_populate_vmalloc
- * // and call unpoison_range:
- * STORE shadow(a), unpoison_val
- * ...
- * STORE shadow(a+99), unpoison_val x = LOAD p
- * // rest of vmalloc process <data dependency>
- * STORE p, a LOAD shadow(x+99)
- *
- * If there is no barrier between the end of unpoisioning the shadow
- * and the store of the result to p, the stores could be committed
- * in a different order by CPU#0, and CPU#1 could erroneously observe
- * poison in the shadow.
- *
- * We need some sort of barrier between the stores.
- *
- * In the vmalloc() case, this is provided by a smp_wmb() in
- * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
- * get_vm_area() and friends, the caller gets shadow allocated but
- * doesn't have any pages mapped into the virtual address space that
- * has been reserved. Mapping those pages in will involve taking and
- * releasing a page-table lock, which will provide the barrier.
- */
-
- return 0;
-}
-
-/*
- * Poison the shadow for a vmalloc region. Called as part of the
- * freeing process at the time the region is freed.
- */
-void kasan_poison_vmalloc(const void *start, unsigned long size)
-{
- if (!is_vmalloc_or_module_addr(start))
- return;
-
- size = round_up(size, KASAN_GRANULE_SIZE);
- poison_range(start, size, KASAN_VMALLOC_INVALID);
-}
-
-void kasan_unpoison_vmalloc(const void *start, unsigned long size)
-{
- if (!is_vmalloc_or_module_addr(start))
- return;
-
- unpoison_range(start, size);
-}
-
-static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
- void *unused)
-{
- unsigned long page;
-
- page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
-
- spin_lock(&init_mm.page_table_lock);
-
- if (likely(!pte_none(*ptep))) {
- pte_clear(&init_mm, addr, ptep);
- free_page(page);
- }
- spin_unlock(&init_mm.page_table_lock);
-
- return 0;
-}
-
-/*
- * Release the backing for the vmalloc region [start, end), which
- * lies within the free region [free_region_start, free_region_end).
- *
- * This can be run lazily, long after the region was freed. It runs
- * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
- * infrastructure.
- *
- * How does this work?
- * -------------------
- *
- * We have a region that is page aligned, labelled as A.
- * That might not map onto the shadow in a way that is page-aligned:
- *
- * start end
- * v v
- * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
- * -------- -------- -------- -------- --------
- * | | | | |
- * | | | /-------/ |
- * \-------\|/------/ |/---------------/
- * ||| ||
- * |??AAAAAA|AAAAAAAA|AA??????| < shadow
- * (1) (2) (3)
- *
- * First we align the start upwards and the end downwards, so that the
- * shadow of the region aligns with shadow page boundaries. In the
- * example, this gives us the shadow page (2). This is the shadow entirely
- * covered by this allocation.
- *
- * Then we have the tricky bits. We want to know if we can free the
- * partially covered shadow pages - (1) and (3) in the example. For this,
- * we are given the start and end of the free region that contains this
- * allocation. Extending our previous example, we could have:
- *
- * free_region_start free_region_end
- * | start end |
- * v v v v
- * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
- * -------- -------- -------- -------- --------
- * | | | | |
- * | | | /-------/ |
- * \-------\|/------/ |/---------------/
- * ||| ||
- * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
- * (1) (2) (3)
- *
- * Once again, we align the start of the free region up, and the end of
- * the free region down so that the shadow is page aligned. So we can free
- * page (1) - we know no allocation currently uses anything in that page,
- * because all of it is in the vmalloc free region. But we cannot free
- * page (3), because we can't be sure that the rest of it is unused.
- *
- * We only consider pages that contain part of the original region for
- * freeing: we don't try to free other pages from the free region or we'd
- * end up trying to free huge chunks of virtual address space.
- *
- * Concurrency
- * -----------
- *
- * How do we know that we're not freeing a page that is simultaneously
- * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
- *
- * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
- * at the same time. While we run under free_vmap_area_lock, the population
- * code does not.
- *
- * free_vmap_area_lock instead operates to ensure that the larger range
- * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
- * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
- * no space identified as free will become used while we are running. This
- * means that so long as we are careful with alignment and only free shadow
- * pages entirely covered by the free region, we will not run in to any
- * trouble - any simultaneous allocations will be for disjoint regions.
- */
-void kasan_release_vmalloc(unsigned long start, unsigned long end,
- unsigned long free_region_start,
- unsigned long free_region_end)
-{
- void *shadow_start, *shadow_end;
- unsigned long region_start, region_end;
- unsigned long size;
-
- region_start = ALIGN(start, PAGE_SIZE * KASAN_GRANULE_SIZE);
- region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_GRANULE_SIZE);
-
- free_region_start = ALIGN(free_region_start,
- PAGE_SIZE * KASAN_GRANULE_SIZE);
-
- if (start != region_start &&
- free_region_start < region_start)
- region_start -= PAGE_SIZE * KASAN_GRANULE_SIZE;
-
- free_region_end = ALIGN_DOWN(free_region_end,
- PAGE_SIZE * KASAN_GRANULE_SIZE);
-
- if (end != region_end &&
- free_region_end > region_end)
- region_end += PAGE_SIZE * KASAN_GRANULE_SIZE;
-
- shadow_start = kasan_mem_to_shadow((void *)region_start);
- shadow_end = kasan_mem_to_shadow((void *)region_end);
-
- if (shadow_end > shadow_start) {
- size = shadow_end - shadow_start;
- apply_to_existing_page_range(&init_mm,
- (unsigned long)shadow_start,
- size, kasan_depopulate_vmalloc_pte,
- NULL);
- flush_tlb_kernel_range((unsigned long)shadow_start,
- (unsigned long)shadow_end);
- }
-}
-
-#else /* CONFIG_KASAN_VMALLOC */
-
-int kasan_module_alloc(void *addr, size_t size)
-{
- void *ret;
- size_t scaled_size;
- size_t shadow_size;
- unsigned long shadow_start;
-
- shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
- scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
- KASAN_SHADOW_SCALE_SHIFT;
- shadow_size = round_up(scaled_size, PAGE_SIZE);
-
- if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
- return -EINVAL;
-
- ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
- shadow_start + shadow_size,
- GFP_KERNEL,
- PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
- __builtin_return_address(0));
-
- if (ret) {
- __memset(ret, KASAN_SHADOW_INIT, shadow_size);
- find_vm_area(addr)->flags |= VM_KASAN;
- kmemleak_ignore(ret);
- return 0;
- }
-
- return -ENOMEM;
-}
-
-void kasan_free_shadow(const struct vm_struct *vm)
-{
- if (vm->flags & VM_KASAN)
- vfree(kasan_mem_to_shadow(vm->addr));
-}
-
-#endif