summaryrefslogtreecommitdiffstats
path: root/drivers/staging/octeon-usb/octeon-hcd.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/staging/octeon-usb/octeon-hcd.h')
-rw-r--r--drivers/staging/octeon-usb/octeon-hcd.h1847
1 files changed, 0 insertions, 1847 deletions
diff --git a/drivers/staging/octeon-usb/octeon-hcd.h b/drivers/staging/octeon-usb/octeon-hcd.h
deleted file mode 100644
index 9ed619c93a4e..000000000000
--- a/drivers/staging/octeon-usb/octeon-hcd.h
+++ /dev/null
@@ -1,1847 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-/*
- * Octeon HCD hardware register definitions.
- *
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Some parts of the code were originally released under BSD license:
- *
- * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
- * reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials provided
- * with the distribution.
- *
- * * Neither the name of Cavium Networks nor the names of
- * its contributors may be used to endorse or promote products
- * derived from this software without specific prior written
- * permission.
- *
- * This Software, including technical data, may be subject to U.S. export
- * control laws, including the U.S. Export Administration Act and its associated
- * regulations, and may be subject to export or import regulations in other
- * countries.
- *
- * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
- * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
- * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
- * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
- * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
- * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
- * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
- * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
- * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
- * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
- */
-
-#ifndef __OCTEON_HCD_H__
-#define __OCTEON_HCD_H__
-
-#include <asm/bitfield.h>
-
-#define CVMX_USBCXBASE 0x00016F0010000000ull
-#define CVMX_USBCXREG1(reg, bid) \
- (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
- ((bid) & 1) * 0x100000000000ull)
-#define CVMX_USBCXREG2(reg, bid, off) \
- (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
- (((off) & 7) + ((bid) & 1) * 0x8000000000ull) * 32)
-
-#define CVMX_USBCX_GAHBCFG(bid) CVMX_USBCXREG1(0x008, bid)
-#define CVMX_USBCX_GHWCFG3(bid) CVMX_USBCXREG1(0x04c, bid)
-#define CVMX_USBCX_GINTMSK(bid) CVMX_USBCXREG1(0x018, bid)
-#define CVMX_USBCX_GINTSTS(bid) CVMX_USBCXREG1(0x014, bid)
-#define CVMX_USBCX_GNPTXFSIZ(bid) CVMX_USBCXREG1(0x028, bid)
-#define CVMX_USBCX_GNPTXSTS(bid) CVMX_USBCXREG1(0x02c, bid)
-#define CVMX_USBCX_GOTGCTL(bid) CVMX_USBCXREG1(0x000, bid)
-#define CVMX_USBCX_GRSTCTL(bid) CVMX_USBCXREG1(0x010, bid)
-#define CVMX_USBCX_GRXFSIZ(bid) CVMX_USBCXREG1(0x024, bid)
-#define CVMX_USBCX_GRXSTSPH(bid) CVMX_USBCXREG1(0x020, bid)
-#define CVMX_USBCX_GUSBCFG(bid) CVMX_USBCXREG1(0x00c, bid)
-#define CVMX_USBCX_HAINT(bid) CVMX_USBCXREG1(0x414, bid)
-#define CVMX_USBCX_HAINTMSK(bid) CVMX_USBCXREG1(0x418, bid)
-#define CVMX_USBCX_HCCHARX(off, bid) CVMX_USBCXREG2(0x500, bid, off)
-#define CVMX_USBCX_HCFG(bid) CVMX_USBCXREG1(0x400, bid)
-#define CVMX_USBCX_HCINTMSKX(off, bid) CVMX_USBCXREG2(0x50c, bid, off)
-#define CVMX_USBCX_HCINTX(off, bid) CVMX_USBCXREG2(0x508, bid, off)
-#define CVMX_USBCX_HCSPLTX(off, bid) CVMX_USBCXREG2(0x504, bid, off)
-#define CVMX_USBCX_HCTSIZX(off, bid) CVMX_USBCXREG2(0x510, bid, off)
-#define CVMX_USBCX_HFIR(bid) CVMX_USBCXREG1(0x404, bid)
-#define CVMX_USBCX_HFNUM(bid) CVMX_USBCXREG1(0x408, bid)
-#define CVMX_USBCX_HPRT(bid) CVMX_USBCXREG1(0x440, bid)
-#define CVMX_USBCX_HPTXFSIZ(bid) CVMX_USBCXREG1(0x100, bid)
-#define CVMX_USBCX_HPTXSTS(bid) CVMX_USBCXREG1(0x410, bid)
-
-#define CVMX_USBNXBID1(bid) (((bid) & 1) * 0x10000000ull)
-#define CVMX_USBNXBID2(bid) (((bid) & 1) * 0x100000000000ull)
-
-#define CVMX_USBNXREG1(reg, bid) \
- (CVMX_ADD_IO_SEG(0x0001180068000000ull | reg) + CVMX_USBNXBID1(bid))
-#define CVMX_USBNXREG2(reg, bid) \
- (CVMX_ADD_IO_SEG(0x00016F0000000000ull | reg) + CVMX_USBNXBID2(bid))
-
-#define CVMX_USBNX_CLK_CTL(bid) CVMX_USBNXREG1(0x10, bid)
-#define CVMX_USBNX_DMA0_INB_CHN0(bid) CVMX_USBNXREG2(0x818, bid)
-#define CVMX_USBNX_DMA0_OUTB_CHN0(bid) CVMX_USBNXREG2(0x858, bid)
-#define CVMX_USBNX_USBP_CTL_STATUS(bid) CVMX_USBNXREG1(0x18, bid)
-
-/**
- * cvmx_usbc#_gahbcfg
- *
- * Core AHB Configuration Register (GAHBCFG)
- *
- * This register can be used to configure the core after power-on or a change in
- * mode of operation. This register mainly contains AHB system-related
- * configuration parameters. The AHB is the processor interface to the O2P USB
- * core. In general, software need not know about this interface except to
- * program the values as specified.
- *
- * The application must program this register as part of the O2P USB core
- * initialization. Do not change this register after the initial programming.
- */
-union cvmx_usbcx_gahbcfg {
- u32 u32;
- /**
- * struct cvmx_usbcx_gahbcfg_s
- * @ptxfemplvl: Periodic TxFIFO Empty Level (PTxFEmpLvl)
- * Software should set this bit to 0x1.
- * Indicates when the Periodic TxFIFO Empty Interrupt bit in the
- * Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This
- * bit is used only in Slave mode.
- * * 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic
- * TxFIFO is half empty
- * * 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic
- * TxFIFO is completely empty
- * @nptxfemplvl: Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl)
- * Software should set this bit to 0x1.
- * Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in
- * the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered.
- * This bit is used only in Slave mode.
- * * 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non-
- * Periodic TxFIFO is half empty
- * * 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non-
- * Periodic TxFIFO is completely empty
- * @dmaen: DMA Enable (DMAEn)
- * * 1'b0: Core operates in Slave mode
- * * 1'b1: Core operates in a DMA mode
- * @hbstlen: Burst Length/Type (HBstLen)
- * This field has not effect and should be left as 0x0.
- * @glblintrmsk: Global Interrupt Mask (GlblIntrMsk)
- * Software should set this field to 0x1.
- * The application uses this bit to mask or unmask the interrupt
- * line assertion to itself. Irrespective of this bit's setting,
- * the interrupt status registers are updated by the core.
- * * 1'b0: Mask the interrupt assertion to the application.
- * * 1'b1: Unmask the interrupt assertion to the application.
- */
- struct cvmx_usbcx_gahbcfg_s {
- __BITFIELD_FIELD(u32 reserved_9_31 : 23,
- __BITFIELD_FIELD(u32 ptxfemplvl : 1,
- __BITFIELD_FIELD(u32 nptxfemplvl : 1,
- __BITFIELD_FIELD(u32 reserved_6_6 : 1,
- __BITFIELD_FIELD(u32 dmaen : 1,
- __BITFIELD_FIELD(u32 hbstlen : 4,
- __BITFIELD_FIELD(u32 glblintrmsk : 1,
- ;)))))))
- } s;
-};
-
-/**
- * cvmx_usbc#_ghwcfg3
- *
- * User HW Config3 Register (GHWCFG3)
- *
- * This register contains the configuration options of the O2P USB core.
- */
-union cvmx_usbcx_ghwcfg3 {
- u32 u32;
- /**
- * struct cvmx_usbcx_ghwcfg3_s
- * @dfifodepth: DFIFO Depth (DfifoDepth)
- * This value is in terms of 32-bit words.
- * * Minimum value is 32
- * * Maximum value is 32768
- * @ahbphysync: AHB and PHY Synchronous (AhbPhySync)
- * Indicates whether AHB and PHY clocks are synchronous to
- * each other.
- * * 1'b0: No
- * * 1'b1: Yes
- * This bit is tied to 1.
- * @rsttype: Reset Style for Clocked always Blocks in RTL (RstType)
- * * 1'b0: Asynchronous reset is used in the core
- * * 1'b1: Synchronous reset is used in the core
- * @optfeature: Optional Features Removed (OptFeature)
- * Indicates whether the User ID register, GPIO interface ports,
- * and SOF toggle and counter ports were removed for gate count
- * optimization.
- * @vendor_control_interface_support: Vendor Control Interface Support
- * * 1'b0: Vendor Control Interface is not available on the core.
- * * 1'b1: Vendor Control Interface is available.
- * @i2c_selection: I2C Selection
- * * 1'b0: I2C Interface is not available on the core.
- * * 1'b1: I2C Interface is available on the core.
- * @otgen: OTG Function Enabled (OtgEn)
- * The application uses this bit to indicate the O2P USB core's
- * OTG capabilities.
- * * 1'b0: Not OTG capable
- * * 1'b1: OTG Capable
- * @pktsizewidth: Width of Packet Size Counters (PktSizeWidth)
- * * 3'b000: 4 bits
- * * 3'b001: 5 bits
- * * 3'b010: 6 bits
- * * 3'b011: 7 bits
- * * 3'b100: 8 bits
- * * 3'b101: 9 bits
- * * 3'b110: 10 bits
- * * Others: Reserved
- * @xfersizewidth: Width of Transfer Size Counters (XferSizeWidth)
- * * 4'b0000: 11 bits
- * * 4'b0001: 12 bits
- * - ...
- * * 4'b1000: 19 bits
- * * Others: Reserved
- */
- struct cvmx_usbcx_ghwcfg3_s {
- __BITFIELD_FIELD(u32 dfifodepth : 16,
- __BITFIELD_FIELD(u32 reserved_13_15 : 3,
- __BITFIELD_FIELD(u32 ahbphysync : 1,
- __BITFIELD_FIELD(u32 rsttype : 1,
- __BITFIELD_FIELD(u32 optfeature : 1,
- __BITFIELD_FIELD(u32 vendor_control_interface_support : 1,
- __BITFIELD_FIELD(u32 i2c_selection : 1,
- __BITFIELD_FIELD(u32 otgen : 1,
- __BITFIELD_FIELD(u32 pktsizewidth : 3,
- __BITFIELD_FIELD(u32 xfersizewidth : 4,
- ;))))))))))
- } s;
-};
-
-/**
- * cvmx_usbc#_gintmsk
- *
- * Core Interrupt Mask Register (GINTMSK)
- *
- * This register works with the Core Interrupt register to interrupt the
- * application. When an interrupt bit is masked, the interrupt associated with
- * that bit will not be generated. However, the Core Interrupt (GINTSTS)
- * register bit corresponding to that interrupt will still be set.
- * Mask interrupt: 1'b0, Unmask interrupt: 1'b1
- */
-union cvmx_usbcx_gintmsk {
- u32 u32;
- /**
- * struct cvmx_usbcx_gintmsk_s
- * @wkupintmsk: Resume/Remote Wakeup Detected Interrupt Mask
- * (WkUpIntMsk)
- * @sessreqintmsk: Session Request/New Session Detected Interrupt Mask
- * (SessReqIntMsk)
- * @disconnintmsk: Disconnect Detected Interrupt Mask (DisconnIntMsk)
- * @conidstschngmsk: Connector ID Status Change Mask (ConIDStsChngMsk)
- * @ptxfempmsk: Periodic TxFIFO Empty Mask (PTxFEmpMsk)
- * @hchintmsk: Host Channels Interrupt Mask (HChIntMsk)
- * @prtintmsk: Host Port Interrupt Mask (PrtIntMsk)
- * @fetsuspmsk: Data Fetch Suspended Mask (FetSuspMsk)
- * @incomplpmsk: Incomplete Periodic Transfer Mask (incomplPMsk)
- * Incomplete Isochronous OUT Transfer Mask
- * (incompISOOUTMsk)
- * @incompisoinmsk: Incomplete Isochronous IN Transfer Mask
- * (incompISOINMsk)
- * @oepintmsk: OUT Endpoints Interrupt Mask (OEPIntMsk)
- * @inepintmsk: IN Endpoints Interrupt Mask (INEPIntMsk)
- * @epmismsk: Endpoint Mismatch Interrupt Mask (EPMisMsk)
- * @eopfmsk: End of Periodic Frame Interrupt Mask (EOPFMsk)
- * @isooutdropmsk: Isochronous OUT Packet Dropped Interrupt Mask
- * (ISOOutDropMsk)
- * @enumdonemsk: Enumeration Done Mask (EnumDoneMsk)
- * @usbrstmsk: USB Reset Mask (USBRstMsk)
- * @usbsuspmsk: USB Suspend Mask (USBSuspMsk)
- * @erlysuspmsk: Early Suspend Mask (ErlySuspMsk)
- * @i2cint: I2C Interrupt Mask (I2CINT)
- * @ulpickintmsk: ULPI Carkit Interrupt Mask (ULPICKINTMsk)
- * I2C Carkit Interrupt Mask (I2CCKINTMsk)
- * @goutnakeffmsk: Global OUT NAK Effective Mask (GOUTNakEffMsk)
- * @ginnakeffmsk: Global Non-Periodic IN NAK Effective Mask
- * (GINNakEffMsk)
- * @nptxfempmsk: Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk)
- * @rxflvlmsk: Receive FIFO Non-Empty Mask (RxFLvlMsk)
- * @sofmsk: Start of (micro)Frame Mask (SofMsk)
- * @otgintmsk: OTG Interrupt Mask (OTGIntMsk)
- * @modemismsk: Mode Mismatch Interrupt Mask (ModeMisMsk)
- */
- struct cvmx_usbcx_gintmsk_s {
- __BITFIELD_FIELD(u32 wkupintmsk : 1,
- __BITFIELD_FIELD(u32 sessreqintmsk : 1,
- __BITFIELD_FIELD(u32 disconnintmsk : 1,
- __BITFIELD_FIELD(u32 conidstschngmsk : 1,
- __BITFIELD_FIELD(u32 reserved_27_27 : 1,
- __BITFIELD_FIELD(u32 ptxfempmsk : 1,
- __BITFIELD_FIELD(u32 hchintmsk : 1,
- __BITFIELD_FIELD(u32 prtintmsk : 1,
- __BITFIELD_FIELD(u32 reserved_23_23 : 1,
- __BITFIELD_FIELD(u32 fetsuspmsk : 1,
- __BITFIELD_FIELD(u32 incomplpmsk : 1,
- __BITFIELD_FIELD(u32 incompisoinmsk : 1,
- __BITFIELD_FIELD(u32 oepintmsk : 1,
- __BITFIELD_FIELD(u32 inepintmsk : 1,
- __BITFIELD_FIELD(u32 epmismsk : 1,
- __BITFIELD_FIELD(u32 reserved_16_16 : 1,
- __BITFIELD_FIELD(u32 eopfmsk : 1,
- __BITFIELD_FIELD(u32 isooutdropmsk : 1,
- __BITFIELD_FIELD(u32 enumdonemsk : 1,
- __BITFIELD_FIELD(u32 usbrstmsk : 1,
- __BITFIELD_FIELD(u32 usbsuspmsk : 1,
- __BITFIELD_FIELD(u32 erlysuspmsk : 1,
- __BITFIELD_FIELD(u32 i2cint : 1,
- __BITFIELD_FIELD(u32 ulpickintmsk : 1,
- __BITFIELD_FIELD(u32 goutnakeffmsk : 1,
- __BITFIELD_FIELD(u32 ginnakeffmsk : 1,
- __BITFIELD_FIELD(u32 nptxfempmsk : 1,
- __BITFIELD_FIELD(u32 rxflvlmsk : 1,
- __BITFIELD_FIELD(u32 sofmsk : 1,
- __BITFIELD_FIELD(u32 otgintmsk : 1,
- __BITFIELD_FIELD(u32 modemismsk : 1,
- __BITFIELD_FIELD(u32 reserved_0_0 : 1,
- ;))))))))))))))))))))))))))))))))
- } s;
-};
-
-/**
- * cvmx_usbc#_gintsts
- *
- * Core Interrupt Register (GINTSTS)
- *
- * This register interrupts the application for system-level events in the
- * current mode of operation (Device mode or Host mode). It is shown in
- * Interrupt. Some of the bits in this register are valid only in Host mode,
- * while others are valid in Device mode only. This register also indicates the
- * current mode of operation. In order to clear the interrupt status bits of
- * type R_SS_WC, the application must write 1'b1 into the bit. The FIFO status
- * interrupts are read only; once software reads from or writes to the FIFO
- * while servicing these interrupts, FIFO interrupt conditions are cleared
- * automatically.
- */
-union cvmx_usbcx_gintsts {
- u32 u32;
- /**
- * struct cvmx_usbcx_gintsts_s
- * @wkupint: Resume/Remote Wakeup Detected Interrupt (WkUpInt)
- * In Device mode, this interrupt is asserted when a resume is
- * detected on the USB. In Host mode, this interrupt is asserted
- * when a remote wakeup is detected on the USB.
- * For more information on how to use this interrupt, see "Partial
- * Power-Down and Clock Gating Programming Model" on
- * page 353.
- * @sessreqint: Session Request/New Session Detected Interrupt
- * (SessReqInt)
- * In Host mode, this interrupt is asserted when a session request
- * is detected from the device. In Device mode, this interrupt is
- * asserted when the utmiotg_bvalid signal goes high.
- * For more information on how to use this interrupt, see "Partial
- * Power-Down and Clock Gating Programming Model" on
- * page 353.
- * @disconnint: Disconnect Detected Interrupt (DisconnInt)
- * Asserted when a device disconnect is detected.
- * @conidstschng: Connector ID Status Change (ConIDStsChng)
- * The core sets this bit when there is a change in connector ID
- * status.
- * @ptxfemp: Periodic TxFIFO Empty (PTxFEmp)
- * Asserted when the Periodic Transmit FIFO is either half or
- * completely empty and there is space for at least one entry to be
- * written in the Periodic Request Queue. The half or completely
- * empty status is determined by the Periodic TxFIFO Empty Level
- * bit in the Core AHB Configuration register
- * (GAHBCFG.PTxFEmpLvl).
- * @hchint: Host Channels Interrupt (HChInt)
- * The core sets this bit to indicate that an interrupt is pending
- * on one of the channels of the core (in Host mode). The
- * application must read the Host All Channels Interrupt (HAINT)
- * register to determine the exact number of the channel on which
- * the interrupt occurred, and then read the corresponding Host
- * Channel-n Interrupt (HCINTn) register to determine the exact
- * cause of the interrupt. The application must clear the
- * appropriate status bit in the HCINTn register to clear this bit.
- * @prtint: Host Port Interrupt (PrtInt)
- * The core sets this bit to indicate a change in port status of
- * one of the O2P USB core ports in Host mode. The application must
- * read the Host Port Control and Status (HPRT) register to
- * determine the exact event that caused this interrupt. The
- * application must clear the appropriate status bit in the Host
- * Port Control and Status register to clear this bit.
- * @fetsusp: Data Fetch Suspended (FetSusp)
- * This interrupt is valid only in DMA mode. This interrupt
- * indicates that the core has stopped fetching data for IN
- * endpoints due to the unavailability of TxFIFO space or Request
- * Queue space. This interrupt is used by the application for an
- * endpoint mismatch algorithm.
- * @incomplp: Incomplete Periodic Transfer (incomplP)
- * In Host mode, the core sets this interrupt bit when there are
- * incomplete periodic transactions still pending which are
- * scheduled for the current microframe.
- * Incomplete Isochronous OUT Transfer (incompISOOUT)
- * The Device mode, the core sets this interrupt to indicate that
- * there is at least one isochronous OUT endpoint on which the
- * transfer is not completed in the current microframe. This
- * interrupt is asserted along with the End of Periodic Frame
- * Interrupt (EOPF) bit in this register.
- * @incompisoin: Incomplete Isochronous IN Transfer (incompISOIN)
- * The core sets this interrupt to indicate that there is at least
- * one isochronous IN endpoint on which the transfer is not
- * completed in the current microframe. This interrupt is asserted
- * along with the End of Periodic Frame Interrupt (EOPF) bit in
- * this register.
- * @oepint: OUT Endpoints Interrupt (OEPInt)
- * The core sets this bit to indicate that an interrupt is pending
- * on one of the OUT endpoints of the core (in Device mode). The
- * application must read the Device All Endpoints Interrupt
- * (DAINT) register to determine the exact number of the OUT
- * endpoint on which the interrupt occurred, and then read the
- * corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
- * register to determine the exact cause of the interrupt. The
- * application must clear the appropriate status bit in the
- * corresponding DOEPINTn register to clear this bit.
- * @iepint: IN Endpoints Interrupt (IEPInt)
- * The core sets this bit to indicate that an interrupt is pending
- * on one of the IN endpoints of the core (in Device mode). The
- * application must read the Device All Endpoints Interrupt
- * (DAINT) register to determine the exact number of the IN
- * endpoint on which the interrupt occurred, and then read the
- * corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
- * register to determine the exact cause of the interrupt. The
- * application must clear the appropriate status bit in the
- * corresponding DIEPINTn register to clear this bit.
- * @epmis: Endpoint Mismatch Interrupt (EPMis)
- * Indicates that an IN token has been received for a non-periodic
- * endpoint, but the data for another endpoint is present in the
- * top of the Non-Periodic Transmit FIFO and the IN endpoint
- * mismatch count programmed by the application has expired.
- * @eopf: End of Periodic Frame Interrupt (EOPF)
- * Indicates that the period specified in the Periodic Frame
- * Interval field of the Device Configuration register
- * (DCFG.PerFrInt) has been reached in the current microframe.
- * @isooutdrop: Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
- * The core sets this bit when it fails to write an isochronous OUT
- * packet into the RxFIFO because the RxFIFO doesn't have
- * enough space to accommodate a maximum packet size packet
- * for the isochronous OUT endpoint.
- * @enumdone: Enumeration Done (EnumDone)
- * The core sets this bit to indicate that speed enumeration is
- * complete. The application must read the Device Status (DSTS)
- * register to obtain the enumerated speed.
- * @usbrst: USB Reset (USBRst)
- * The core sets this bit to indicate that a reset is detected on
- * the USB.
- * @usbsusp: USB Suspend (USBSusp)
- * The core sets this bit to indicate that a suspend was detected
- * on the USB. The core enters the Suspended state when there
- * is no activity on the phy_line_state_i signal for an extended
- * period of time.
- * @erlysusp: Early Suspend (ErlySusp)
- * The core sets this bit to indicate that an Idle state has been
- * detected on the USB for 3 ms.
- * @i2cint: I2C Interrupt (I2CINT)
- * This bit is always 0x0.
- * @ulpickint: ULPI Carkit Interrupt (ULPICKINT)
- * This bit is always 0x0.
- * @goutnakeff: Global OUT NAK Effective (GOUTNakEff)
- * Indicates that the Set Global OUT NAK bit in the Device Control
- * register (DCTL.SGOUTNak), set by the application, has taken
- * effect in the core. This bit can be cleared by writing the Clear
- * Global OUT NAK bit in the Device Control register
- * (DCTL.CGOUTNak).
- * @ginnakeff: Global IN Non-Periodic NAK Effective (GINNakEff)
- * Indicates that the Set Global Non-Periodic IN NAK bit in the
- * Device Control register (DCTL.SGNPInNak), set by the
- * application, has taken effect in the core. That is, the core has
- * sampled the Global IN NAK bit set by the application. This bit
- * can be cleared by clearing the Clear Global Non-Periodic IN
- * NAK bit in the Device Control register (DCTL.CGNPInNak).
- * This interrupt does not necessarily mean that a NAK handshake
- * is sent out on the USB. The STALL bit takes precedence over
- * the NAK bit.
- * @nptxfemp: Non-Periodic TxFIFO Empty (NPTxFEmp)
- * This interrupt is asserted when the Non-Periodic TxFIFO is
- * either half or completely empty, and there is space for at least
- * one entry to be written to the Non-Periodic Transmit Request
- * Queue. The half or completely empty status is determined by
- * the Non-Periodic TxFIFO Empty Level bit in the Core AHB
- * Configuration register (GAHBCFG.NPTxFEmpLvl).
- * @rxflvl: RxFIFO Non-Empty (RxFLvl)
- * Indicates that there is at least one packet pending to be read
- * from the RxFIFO.
- * @sof: Start of (micro)Frame (Sof)
- * In Host mode, the core sets this bit to indicate that an SOF
- * (FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
- * USB. The application must write a 1 to this bit to clear the
- * interrupt.
- * In Device mode, in the core sets this bit to indicate that an
- * SOF token has been received on the USB. The application can read
- * the Device Status register to get the current (micro)frame
- * number. This interrupt is seen only when the core is operating
- * at either HS or FS.
- * @otgint: OTG Interrupt (OTGInt)
- * The core sets this bit to indicate an OTG protocol event. The
- * application must read the OTG Interrupt Status (GOTGINT)
- * register to determine the exact event that caused this
- * interrupt. The application must clear the appropriate status bit
- * in the GOTGINT register to clear this bit.
- * @modemis: Mode Mismatch Interrupt (ModeMis)
- * The core sets this bit when the application is trying to access:
- * * A Host mode register, when the core is operating in Device
- * mode
- * * A Device mode register, when the core is operating in Host
- * mode
- * The register access is completed on the AHB with an OKAY
- * response, but is ignored by the core internally and doesn't
- * affect the operation of the core.
- * @curmod: Current Mode of Operation (CurMod)
- * Indicates the current mode of operation.
- * * 1'b0: Device mode
- * * 1'b1: Host mode
- */
- struct cvmx_usbcx_gintsts_s {
- __BITFIELD_FIELD(u32 wkupint : 1,
- __BITFIELD_FIELD(u32 sessreqint : 1,
- __BITFIELD_FIELD(u32 disconnint : 1,
- __BITFIELD_FIELD(u32 conidstschng : 1,
- __BITFIELD_FIELD(u32 reserved_27_27 : 1,
- __BITFIELD_FIELD(u32 ptxfemp : 1,
- __BITFIELD_FIELD(u32 hchint : 1,
- __BITFIELD_FIELD(u32 prtint : 1,
- __BITFIELD_FIELD(u32 reserved_23_23 : 1,
- __BITFIELD_FIELD(u32 fetsusp : 1,
- __BITFIELD_FIELD(u32 incomplp : 1,
- __BITFIELD_FIELD(u32 incompisoin : 1,
- __BITFIELD_FIELD(u32 oepint : 1,
- __BITFIELD_FIELD(u32 iepint : 1,
- __BITFIELD_FIELD(u32 epmis : 1,
- __BITFIELD_FIELD(u32 reserved_16_16 : 1,
- __BITFIELD_FIELD(u32 eopf : 1,
- __BITFIELD_FIELD(u32 isooutdrop : 1,
- __BITFIELD_FIELD(u32 enumdone : 1,
- __BITFIELD_FIELD(u32 usbrst : 1,
- __BITFIELD_FIELD(u32 usbsusp : 1,
- __BITFIELD_FIELD(u32 erlysusp : 1,
- __BITFIELD_FIELD(u32 i2cint : 1,
- __BITFIELD_FIELD(u32 ulpickint : 1,
- __BITFIELD_FIELD(u32 goutnakeff : 1,
- __BITFIELD_FIELD(u32 ginnakeff : 1,
- __BITFIELD_FIELD(u32 nptxfemp : 1,
- __BITFIELD_FIELD(u32 rxflvl : 1,
- __BITFIELD_FIELD(u32 sof : 1,
- __BITFIELD_FIELD(u32 otgint : 1,
- __BITFIELD_FIELD(u32 modemis : 1,
- __BITFIELD_FIELD(u32 curmod : 1,
- ;))))))))))))))))))))))))))))))))
- } s;
-};
-
-/**
- * cvmx_usbc#_gnptxfsiz
- *
- * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ)
- *
- * The application can program the RAM size and the memory start address for the
- * Non-Periodic TxFIFO.
- */
-union cvmx_usbcx_gnptxfsiz {
- u32 u32;
- /**
- * struct cvmx_usbcx_gnptxfsiz_s
- * @nptxfdep: Non-Periodic TxFIFO Depth (NPTxFDep)
- * This value is in terms of 32-bit words.
- * Minimum value is 16
- * Maximum value is 32768
- * @nptxfstaddr: Non-Periodic Transmit RAM Start Address (NPTxFStAddr)
- * This field contains the memory start address for Non-Periodic
- * Transmit FIFO RAM.
- */
- struct cvmx_usbcx_gnptxfsiz_s {
- __BITFIELD_FIELD(u32 nptxfdep : 16,
- __BITFIELD_FIELD(u32 nptxfstaddr : 16,
- ;))
- } s;
-};
-
-/**
- * cvmx_usbc#_gnptxsts
- *
- * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS)
- *
- * This read-only register contains the free space information for the
- * Non-Periodic TxFIFO and the Non-Periodic Transmit Request Queue.
- */
-union cvmx_usbcx_gnptxsts {
- u32 u32;
- /**
- * struct cvmx_usbcx_gnptxsts_s
- * @nptxqtop: Top of the Non-Periodic Transmit Request Queue (NPTxQTop)
- * Entry in the Non-Periodic Tx Request Queue that is currently
- * being processed by the MAC.
- * * Bits [30:27]: Channel/endpoint number
- * * Bits [26:25]:
- * - 2'b00: IN/OUT token
- * - 2'b01: Zero-length transmit packet (device IN/host OUT)
- * - 2'b10: PING/CSPLIT token
- * - 2'b11: Channel halt command
- * * Bit [24]: Terminate (last entry for selected channel/endpoint)
- * @nptxqspcavail: Non-Periodic Transmit Request Queue Space Available
- * (NPTxQSpcAvail)
- * Indicates the amount of free space available in the Non-
- * Periodic Transmit Request Queue. This queue holds both IN
- * and OUT requests in Host mode. Device mode has only IN
- * requests.
- * * 8'h0: Non-Periodic Transmit Request Queue is full
- * * 8'h1: 1 location available
- * * 8'h2: 2 locations available
- * * n: n locations available (0..8)
- * * Others: Reserved
- * @nptxfspcavail: Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail)
- * Indicates the amount of free space available in the Non-
- * Periodic TxFIFO.
- * Values are in terms of 32-bit words.
- * * 16'h0: Non-Periodic TxFIFO is full
- * * 16'h1: 1 word available
- * * 16'h2: 2 words available
- * * 16'hn: n words available (where 0..32768)
- * * 16'h8000: 32768 words available
- * * Others: Reserved
- */
- struct cvmx_usbcx_gnptxsts_s {
- __BITFIELD_FIELD(u32 reserved_31_31 : 1,
- __BITFIELD_FIELD(u32 nptxqtop : 7,
- __BITFIELD_FIELD(u32 nptxqspcavail : 8,
- __BITFIELD_FIELD(u32 nptxfspcavail : 16,
- ;))))
- } s;
-};
-
-/**
- * cvmx_usbc#_grstctl
- *
- * Core Reset Register (GRSTCTL)
- *
- * The application uses this register to reset various hardware features inside
- * the core.
- */
-union cvmx_usbcx_grstctl {
- u32 u32;
- /**
- * struct cvmx_usbcx_grstctl_s
- * @ahbidle: AHB Master Idle (AHBIdle)
- * Indicates that the AHB Master State Machine is in the IDLE
- * condition.
- * @dmareq: DMA Request Signal (DMAReq)
- * Indicates that the DMA request is in progress. Used for debug.
- * @txfnum: TxFIFO Number (TxFNum)
- * This is the FIFO number that must be flushed using the TxFIFO
- * Flush bit. This field must not be changed until the core clears
- * the TxFIFO Flush bit.
- * * 5'h0: Non-Periodic TxFIFO flush
- * * 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic
- * TxFIFO flush in Host mode
- * * 5'h2: Periodic TxFIFO 2 flush in Device mode
- * - ...
- * * 5'hF: Periodic TxFIFO 15 flush in Device mode
- * * 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the
- * core
- * @txfflsh: TxFIFO Flush (TxFFlsh)
- * This bit selectively flushes a single or all transmit FIFOs, but
- * cannot do so if the core is in the midst of a transaction.
- * The application must only write this bit after checking that the
- * core is neither writing to the TxFIFO nor reading from the
- * TxFIFO.
- * The application must wait until the core clears this bit before
- * performing any operations. This bit takes 8 clocks (of phy_clk
- * or hclk, whichever is slower) to clear.
- * @rxfflsh: RxFIFO Flush (RxFFlsh)
- * The application can flush the entire RxFIFO using this bit, but
- * must first ensure that the core is not in the middle of a
- * transaction.
- * The application must only write to this bit after checking that
- * the core is neither reading from the RxFIFO nor writing to the
- * RxFIFO.
- * The application must wait until the bit is cleared before
- * performing any other operations. This bit will take 8 clocks
- * (slowest of PHY or AHB clock) to clear.
- * @intknqflsh: IN Token Sequence Learning Queue Flush (INTknQFlsh)
- * The application writes this bit to flush the IN Token Sequence
- * Learning Queue.
- * @frmcntrrst: Host Frame Counter Reset (FrmCntrRst)
- * The application writes this bit to reset the (micro)frame number
- * counter inside the core. When the (micro)frame counter is reset,
- * the subsequent SOF sent out by the core will have a
- * (micro)frame number of 0.
- * @hsftrst: HClk Soft Reset (HSftRst)
- * The application uses this bit to flush the control logic in the
- * AHB Clock domain. Only AHB Clock Domain pipelines are reset.
- * * FIFOs are not flushed with this bit.
- * * All state machines in the AHB clock domain are reset to the
- * Idle state after terminating the transactions on the AHB,
- * following the protocol.
- * * CSR control bits used by the AHB clock domain state
- * machines are cleared.
- * * To clear this interrupt, status mask bits that control the
- * interrupt status and are generated by the AHB clock domain
- * state machine are cleared.
- * * Because interrupt status bits are not cleared, the application
- * can get the status of any core events that occurred after it set
- * this bit.
- * This is a self-clearing bit that the core clears after all
- * necessary logic is reset in the core. This may take several
- * clocks, depending on the core's current state.
- * @csftrst: Core Soft Reset (CSftRst)
- * Resets the hclk and phy_clock domains as follows:
- * * Clears the interrupts and all the CSR registers except the
- * following register bits:
- * - PCGCCTL.RstPdwnModule
- * - PCGCCTL.GateHclk
- * - PCGCCTL.PwrClmp
- * - PCGCCTL.StopPPhyLPwrClkSelclk
- * - GUSBCFG.PhyLPwrClkSel
- * - GUSBCFG.DDRSel
- * - GUSBCFG.PHYSel
- * - GUSBCFG.FSIntf
- * - GUSBCFG.ULPI_UTMI_Sel
- * - GUSBCFG.PHYIf
- * - HCFG.FSLSPclkSel
- * - DCFG.DevSpd
- * * All module state machines (except the AHB Slave Unit) are
- * reset to the IDLE state, and all the transmit FIFOs and the
- * receive FIFO are flushed.
- * * Any transactions on the AHB Master are terminated as soon
- * as possible, after gracefully completing the last data phase of
- * an AHB transfer. Any transactions on the USB are terminated
- * immediately.
- * The application can write to this bit any time it wants to reset
- * the core. This is a self-clearing bit and the core clears this
- * bit after all the necessary logic is reset in the core, which
- * may take several clocks, depending on the current state of the
- * core. Once this bit is cleared software should wait at least 3
- * PHY clocks before doing any access to the PHY domain
- * (synchronization delay). Software should also should check that
- * bit 31 of this register is 1 (AHB Master is IDLE) before
- * starting any operation.
- * Typically software reset is used during software development
- * and also when you dynamically change the PHY selection bits
- * in the USB configuration registers listed above. When you
- * change the PHY, the corresponding clock for the PHY is
- * selected and used in the PHY domain. Once a new clock is
- * selected, the PHY domain has to be reset for proper operation.
- */
- struct cvmx_usbcx_grstctl_s {
- __BITFIELD_FIELD(u32 ahbidle : 1,
- __BITFIELD_FIELD(u32 dmareq : 1,
- __BITFIELD_FIELD(u32 reserved_11_29 : 19,
- __BITFIELD_FIELD(u32 txfnum : 5,
- __BITFIELD_FIELD(u32 txfflsh : 1,
- __BITFIELD_FIELD(u32 rxfflsh : 1,
- __BITFIELD_FIELD(u32 intknqflsh : 1,
- __BITFIELD_FIELD(u32 frmcntrrst : 1,
- __BITFIELD_FIELD(u32 hsftrst : 1,
- __BITFIELD_FIELD(u32 csftrst : 1,
- ;))))))))))
- } s;
-};
-
-/**
- * cvmx_usbc#_grxfsiz
- *
- * Receive FIFO Size Register (GRXFSIZ)
- *
- * The application can program the RAM size that must be allocated to the
- * RxFIFO.
- */
-union cvmx_usbcx_grxfsiz {
- u32 u32;
- /**
- * struct cvmx_usbcx_grxfsiz_s
- * @rxfdep: RxFIFO Depth (RxFDep)
- * This value is in terms of 32-bit words.
- * * Minimum value is 16
- * * Maximum value is 32768
- */
- struct cvmx_usbcx_grxfsiz_s {
- __BITFIELD_FIELD(u32 reserved_16_31 : 16,
- __BITFIELD_FIELD(u32 rxfdep : 16,
- ;))
- } s;
-};
-
-/**
- * cvmx_usbc#_grxstsph
- *
- * Receive Status Read and Pop Register, Host Mode (GRXSTSPH)
- *
- * A read to the Receive Status Read and Pop register returns and additionally
- * pops the top data entry out of the RxFIFO.
- * This Description is only valid when the core is in Host Mode. For Device Mode
- * use USBC_GRXSTSPD instead.
- * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the
- * same offset in the O2P USB core. The offset difference shown in this
- * document is for software clarity and is actually ignored by the
- * hardware.
- */
-union cvmx_usbcx_grxstsph {
- u32 u32;
- /**
- * struct cvmx_usbcx_grxstsph_s
- * @pktsts: Packet Status (PktSts)
- * Indicates the status of the received packet
- * * 4'b0010: IN data packet received
- * * 4'b0011: IN transfer completed (triggers an interrupt)
- * * 4'b0101: Data toggle error (triggers an interrupt)
- * * 4'b0111: Channel halted (triggers an interrupt)
- * * Others: Reserved
- * @dpid: Data PID (DPID)
- * * 2'b00: DATA0
- * * 2'b10: DATA1
- * * 2'b01: DATA2
- * * 2'b11: MDATA
- * @bcnt: Byte Count (BCnt)
- * Indicates the byte count of the received IN data packet
- * @chnum: Channel Number (ChNum)
- * Indicates the channel number to which the current received
- * packet belongs.
- */
- struct cvmx_usbcx_grxstsph_s {
- __BITFIELD_FIELD(u32 reserved_21_31 : 11,
- __BITFIELD_FIELD(u32 pktsts : 4,
- __BITFIELD_FIELD(u32 dpid : 2,
- __BITFIELD_FIELD(u32 bcnt : 11,
- __BITFIELD_FIELD(u32 chnum : 4,
- ;)))))
- } s;
-};
-
-/**
- * cvmx_usbc#_gusbcfg
- *
- * Core USB Configuration Register (GUSBCFG)
- *
- * This register can be used to configure the core after power-on or a changing
- * to Host mode or Device mode. It contains USB and USB-PHY related
- * configuration parameters. The application must program this register before
- * starting any transactions on either the AHB or the USB. Do not make changes
- * to this register after the initial programming.
- */
-union cvmx_usbcx_gusbcfg {
- u32 u32;
- /**
- * struct cvmx_usbcx_gusbcfg_s
- * @otgi2csel: UTMIFS or I2C Interface Select (OtgI2CSel)
- * This bit is always 0x0.
- * @phylpwrclksel: PHY Low-Power Clock Select (PhyLPwrClkSel)
- * Software should set this bit to 0x0.
- * Selects either 480-MHz or 48-MHz (low-power) PHY mode. In
- * FS and LS modes, the PHY can usually operate on a 48-MHz
- * clock to save power.
- * * 1'b0: 480-MHz Internal PLL clock
- * * 1'b1: 48-MHz External Clock
- * In 480 MHz mode, the UTMI interface operates at either 60 or
- * 30-MHz, depending upon whether 8- or 16-bit data width is
- * selected. In 48-MHz mode, the UTMI interface operates at 48
- * MHz in FS mode and at either 48 or 6 MHz in LS mode
- * (depending on the PHY vendor).
- * This bit drives the utmi_fsls_low_power core output signal, and
- * is valid only for UTMI+ PHYs.
- * @usbtrdtim: USB Turnaround Time (USBTrdTim)
- * Sets the turnaround time in PHY clocks.
- * Specifies the response time for a MAC request to the Packet
- * FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM).
- * This must be programmed to 0x5.
- * @hnpcap: HNP-Capable (HNPCap)
- * This bit is always 0x0.
- * @srpcap: SRP-Capable (SRPCap)
- * This bit is always 0x0.
- * @ddrsel: ULPI DDR Select (DDRSel)
- * Software should set this bit to 0x0.
- * @physel: USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial
- * Software should set this bit to 0x0.
- * @fsintf: Full-Speed Serial Interface Select (FSIntf)
- * Software should set this bit to 0x0.
- * @ulpi_utmi_sel: ULPI or UTMI+ Select (ULPI_UTMI_Sel)
- * This bit is always 0x0.
- * @phyif: PHY Interface (PHYIf)
- * This bit is always 0x1.
- * @toutcal: HS/FS Timeout Calibration (TOutCal)
- * The number of PHY clocks that the application programs in this
- * field is added to the high-speed/full-speed interpacket timeout
- * duration in the core to account for any additional delays
- * introduced by the PHY. This may be required, since the delay
- * introduced by the PHY in generating the linestate condition may
- * vary from one PHY to another.
- * The USB standard timeout value for high-speed operation is
- * 736 to 816 (inclusive) bit times. The USB standard timeout
- * value for full-speed operation is 16 to 18 (inclusive) bit
- * times. The application must program this field based on the
- * speed of enumeration. The number of bit times added per PHY
- * clock are:
- * High-speed operation:
- * * One 30-MHz PHY clock = 16 bit times
- * * One 60-MHz PHY clock = 8 bit times
- * Full-speed operation:
- * * One 30-MHz PHY clock = 0.4 bit times
- * * One 60-MHz PHY clock = 0.2 bit times
- * * One 48-MHz PHY clock = 0.25 bit times
- */
- struct cvmx_usbcx_gusbcfg_s {
- __BITFIELD_FIELD(u32 reserved_17_31 : 15,
- __BITFIELD_FIELD(u32 otgi2csel : 1,
- __BITFIELD_FIELD(u32 phylpwrclksel : 1,
- __BITFIELD_FIELD(u32 reserved_14_14 : 1,
- __BITFIELD_FIELD(u32 usbtrdtim : 4,
- __BITFIELD_FIELD(u32 hnpcap : 1,
- __BITFIELD_FIELD(u32 srpcap : 1,
- __BITFIELD_FIELD(u32 ddrsel : 1,
- __BITFIELD_FIELD(u32 physel : 1,
- __BITFIELD_FIELD(u32 fsintf : 1,
- __BITFIELD_FIELD(u32 ulpi_utmi_sel : 1,
- __BITFIELD_FIELD(u32 phyif : 1,
- __BITFIELD_FIELD(u32 toutcal : 3,
- ;)))))))))))))