summaryrefslogtreecommitdiffstats
path: root/drivers/scsi/NCR5380.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/NCR5380.c')
-rw-r--r--drivers/scsi/NCR5380.c2868
1 files changed, 1305 insertions, 1563 deletions
diff --git a/drivers/scsi/NCR5380.c b/drivers/scsi/NCR5380.c
index a777e5c412df..d72867257346 100644
--- a/drivers/scsi/NCR5380.c
+++ b/drivers/scsi/NCR5380.c
@@ -1,17 +1,17 @@
-/*
+/*
* NCR 5380 generic driver routines. These should make it *trivial*
- * to implement 5380 SCSI drivers under Linux with a non-trantor
- * architecture.
+ * to implement 5380 SCSI drivers under Linux with a non-trantor
+ * architecture.
*
- * Note that these routines also work with NR53c400 family chips.
+ * Note that these routines also work with NR53c400 family chips.
*
* Copyright 1993, Drew Eckhardt
- * Visionary Computing
- * (Unix and Linux consulting and custom programming)
- * drew@colorado.edu
- * +1 (303) 666-5836
+ * Visionary Computing
+ * (Unix and Linux consulting and custom programming)
+ * drew@colorado.edu
+ * +1 (303) 666-5836
*
- * For more information, please consult
+ * For more information, please consult
*
* NCR 5380 Family
* SCSI Protocol Controller
@@ -25,84 +25,28 @@
*/
/*
- * Revision 1.10 1998/9/2 Alan Cox
- * (alan@lxorguk.ukuu.org.uk)
- * Fixed up the timer lockups reported so far. Things still suck. Looking
- * forward to 2.3 and per device request queues. Then it'll be possible to
- * SMP thread this beast and improve life no end.
-
- * Revision 1.9 1997/7/27 Ronald van Cuijlenborg
- * (ronald.van.cuijlenborg@tip.nl or nutty@dds.nl)
- * (hopefully) fixed and enhanced USLEEP
- * added support for DTC3181E card (for Mustek scanner)
- *
-
- * Revision 1.8 Ingmar Baumgart
- * (ingmar@gonzo.schwaben.de)
- * added support for NCR53C400a card
- *
-
- * Revision 1.7 1996/3/2 Ray Van Tassle (rayvt@comm.mot.com)
- * added proc_info
- * added support needed for DTC 3180/3280
- * fixed a couple of bugs
- *
-
- * Revision 1.5 1994/01/19 09:14:57 drew
- * Fixed udelay() hack that was being used on DATAOUT phases
- * instead of a proper wait for the final handshake.
- *
- * Revision 1.4 1994/01/19 06:44:25 drew
- * *** empty log message ***
- *
- * Revision 1.3 1994/01/19 05:24:40 drew
- * Added support for TCR LAST_BYTE_SENT bit.
- *
- * Revision 1.2 1994/01/15 06:14:11 drew
- * REAL DMA support, bug fixes.
- *
- * Revision 1.1 1994/01/15 06:00:54 drew
- * Initial revision
- *
+ * With contributions from Ray Van Tassle, Ingmar Baumgart,
+ * Ronald van Cuijlenborg, Alan Cox and others.
*/
/*
- * Further development / testing that should be done :
+ * Further development / testing that should be done :
* 1. Cleanup the NCR5380_transfer_dma function and DMA operation complete
- * code so that everything does the same thing that's done at the
- * end of a pseudo-DMA read operation.
+ * code so that everything does the same thing that's done at the
+ * end of a pseudo-DMA read operation.
*
* 2. Fix REAL_DMA (interrupt driven, polled works fine) -
- * basically, transfer size needs to be reduced by one
- * and the last byte read as is done with PSEUDO_DMA.
- *
- * 4. Test SCSI-II tagged queueing (I have no devices which support
- * tagged queueing)
- *
- * 5. Test linked command handling code after Eric is ready with
- * the high level code.
+ * basically, transfer size needs to be reduced by one
+ * and the last byte read as is done with PSEUDO_DMA.
+ *
+ * 4. Test SCSI-II tagged queueing (I have no devices which support
+ * tagged queueing)
*/
-#include <scsi/scsi_dbg.h>
-#include <scsi/scsi_transport_spi.h>
-
-#if (NDEBUG & NDEBUG_LISTS)
-#define LIST(x,y) {printk("LINE:%d Adding %p to %p\n", __LINE__, (void*)(x), (void*)(y)); if ((x)==(y)) udelay(5); }
-#define REMOVE(w,x,y,z) {printk("LINE:%d Removing: %p->%p %p->%p \n", __LINE__, (void*)(w), (void*)(x), (void*)(y), (void*)(z)); if ((x)==(y)) udelay(5); }
-#else
-#define LIST(x,y)
-#define REMOVE(w,x,y,z)
-#endif
#ifndef notyet
-#undef LINKED
#undef REAL_DMA
#endif
-#ifdef REAL_DMA_POLL
-#undef READ_OVERRUNS
-#define READ_OVERRUNS
-#endif
-
#ifdef BOARD_REQUIRES_NO_DELAY
#define io_recovery_delay(x)
#else
@@ -112,44 +56,28 @@
/*
* Design
*
- * This is a generic 5380 driver. To use it on a different platform,
+ * This is a generic 5380 driver. To use it on a different platform,
* one simply writes appropriate system specific macros (ie, data
- * transfer - some PC's will use the I/O bus, 68K's must use
+ * transfer - some PC's will use the I/O bus, 68K's must use
* memory mapped) and drops this file in their 'C' wrapper.
*
- * (Note from hch: unfortunately it was not enough for the different
- * m68k folks and instead of improving this driver they copied it
- * and hacked it up for their needs. As a consequence they lost
- * most updates to this driver. Maybe someone will fix all these
- * drivers to use a common core one day..)
- *
- * As far as command queueing, two queues are maintained for
+ * As far as command queueing, two queues are maintained for
* each 5380 in the system - commands that haven't been issued yet,
- * and commands that are currently executing. This means that an
- * unlimited number of commands may be queued, letting
- * more commands propagate from the higher driver levels giving higher
- * throughput. Note that both I_T_L and I_T_L_Q nexuses are supported,
- * allowing multiple commands to propagate all the way to a SCSI-II device
+ * and commands that are currently executing. This means that an
+ * unlimited number of commands may be queued, letting
+ * more commands propagate from the higher driver levels giving higher
+ * throughput. Note that both I_T_L and I_T_L_Q nexuses are supported,
+ * allowing multiple commands to propagate all the way to a SCSI-II device
* while a command is already executing.
*
*
- * Issues specific to the NCR5380 :
+ * Issues specific to the NCR5380 :
*
- * When used in a PIO or pseudo-dma mode, the NCR5380 is a braindead
- * piece of hardware that requires you to sit in a loop polling for
- * the REQ signal as long as you are connected. Some devices are
- * brain dead (ie, many TEXEL CD ROM drives) and won't disconnect
- * while doing long seek operations.
- *
- * The workaround for this is to keep track of devices that have
- * disconnected. If the device hasn't disconnected, for commands that
- * should disconnect, we do something like
- *
- * while (!REQ is asserted) { sleep for N usecs; poll for M usecs }
- *
- * Some tweaking of N and M needs to be done. An algorithm based
- * on "time to data" would give the best results as long as short time
- * to datas (ie, on the same track) were considered, however these
+ * When used in a PIO or pseudo-dma mode, the NCR5380 is a braindead
+ * piece of hardware that requires you to sit in a loop polling for
+ * the REQ signal as long as you are connected. Some devices are
+ * brain dead (ie, many TEXEL CD ROM drives) and won't disconnect
+ * while doing long seek operations. [...] These
* broken devices are the exception rather than the rule and I'd rather
* spend my time optimizing for the normal case.
*
@@ -159,23 +87,23 @@
* which is started from a workqueue for each NCR5380 host in the
* system. It attempts to establish I_T_L or I_T_L_Q nexuses by
* removing the commands from the issue queue and calling
- * NCR5380_select() if a nexus is not established.
+ * NCR5380_select() if a nexus is not established.
*
* Once a nexus is established, the NCR5380_information_transfer()
* phase goes through the various phases as instructed by the target.
* if the target goes into MSG IN and sends a DISCONNECT message,
* the command structure is placed into the per instance disconnected
- * queue, and NCR5380_main tries to find more work. If the target is
+ * queue, and NCR5380_main tries to find more work. If the target is
* idle for too long, the system will try to sleep.
*
* If a command has disconnected, eventually an interrupt will trigger,
* calling NCR5380_intr() which will in turn call NCR5380_reselect
* to reestablish a nexus. This will run main if necessary.
*
- * On command termination, the done function will be called as
+ * On command termination, the done function will be called as
* appropriate.
*
- * SCSI pointers are maintained in the SCp field of SCSI command
+ * SCSI pointers are maintained in the SCp field of SCSI command
* structures, being initialized after the command is connected
* in NCR5380_select, and set as appropriate in NCR5380_information_transfer.
* Note that in violation of the standard, an implicit SAVE POINTERS operation
@@ -185,73 +113,48 @@
/*
* Using this file :
* This file a skeleton Linux SCSI driver for the NCR 5380 series
- * of chips. To use it, you write an architecture specific functions
+ * of chips. To use it, you write an architecture specific functions
* and macros and include this file in your driver.
*
- * These macros control options :
- * AUTOPROBE_IRQ - if defined, the NCR5380_probe_irq() function will be
- * defined.
- *
+ * These macros control options :
+ * AUTOPROBE_IRQ - if defined, the NCR5380_probe_irq() function will be
+ * defined.
+ *
* AUTOSENSE - if defined, REQUEST SENSE will be performed automatically
- * for commands that return with a CHECK CONDITION status.
+ * for commands that return with a CHECK CONDITION status.
*
* DIFFERENTIAL - if defined, NCR53c81 chips will use external differential
- * transceivers.
+ * transceivers.
*
* DONT_USE_INTR - if defined, never use interrupts, even if we probe or
- * override-configure an IRQ.
- *
- * LIMIT_TRANSFERSIZE - if defined, limit the pseudo-dma transfers to 512
- * bytes at a time. Since interrupts are disabled by default during
- * these transfers, we might need this to give reasonable interrupt
- * service time if the transfer size gets too large.
- *
- * LINKED - if defined, linked commands are supported.
+ * override-configure an IRQ.
*
* PSEUDO_DMA - if defined, PSEUDO DMA is used during the data transfer phases.
*
* REAL_DMA - if defined, REAL DMA is used during the data transfer phases.
*
* REAL_DMA_POLL - if defined, REAL DMA is used but the driver doesn't
- * rely on phase mismatch and EOP interrupts to determine end
- * of phase.
- *
- * UNSAFE - leave interrupts enabled during pseudo-DMA transfers. You
- * only really want to use this if you're having a problem with
- * dropped characters during high speed communications, and even
- * then, you're going to be better off twiddling with transfersize
- * in the high level code.
- *
- * Defaults for these will be provided although the user may want to adjust
- * these to allocate CPU resources to the SCSI driver or "real" code.
- *
- * USLEEP_SLEEP - amount of time, in jiffies, to sleep
- *
- * USLEEP_POLL - amount of time, in jiffies, to poll
+ * rely on phase mismatch and EOP interrupts to determine end
+ * of phase.
*
* These macros MUST be defined :
- * NCR5380_local_declare() - declare any local variables needed for your
- * transfer routines.
*
- * NCR5380_setup(instance) - initialize any local variables needed from a given
- * instance of the host adapter for NCR5380_{read,write,pread,pwrite}
- *
* NCR5380_read(register) - read from the specified register
*
- * NCR5380_write(register, value) - write to the specific register
+ * NCR5380_write(register, value) - write to the specific register
*
- * NCR5380_implementation_fields - additional fields needed for this
- * specific implementation of the NCR5380
+ * NCR5380_implementation_fields - additional fields needed for this
+ * specific implementation of the NCR5380
*
* Either real DMA *or* pseudo DMA may be implemented
- * REAL functions :
+ * REAL functions :
* NCR5380_REAL_DMA should be defined if real DMA is to be used.
- * Note that the DMA setup functions should return the number of bytes
- * that they were able to program the controller for.
+ * Note that the DMA setup functions should return the number of bytes
+ * that they were able to program the controller for.
*
- * Also note that generic i386/PC versions of these macros are
- * available as NCR5380_i386_dma_write_setup,
- * NCR5380_i386_dma_read_setup, and NCR5380_i386_dma_residual.
+ * Also note that generic i386/PC versions of these macros are
+ * available as NCR5380_i386_dma_write_setup,
+ * NCR5380_i386_dma_read_setup, and NCR5380_i386_dma_residual.
*
* NCR5380_dma_write_setup(instance, src, count) - initialize
* NCR5380_dma_read_setup(instance, dst, count) - initialize
@@ -262,25 +165,25 @@
* NCR5380_pread(instance, dst, count);
*
* The generic driver is initialized by calling NCR5380_init(instance),
- * after setting the appropriate host specific fields and ID. If the
+ * after setting the appropriate host specific fields and ID. If the
* driver wishes to autoprobe for an IRQ line, the NCR5380_probe_irq(instance,
* possible) function may be used.
*/
-static int do_abort(struct Scsi_Host *host);
-static void do_reset(struct Scsi_Host *host);
+static int do_abort(struct Scsi_Host *);
+static void do_reset(struct Scsi_Host *);
-/*
- * initialize_SCp - init the scsi pointer field
- * @cmd: command block to set up
+/**
+ * initialize_SCp - init the scsi pointer field
+ * @cmd: command block to set up
*
- * Set up the internal fields in the SCSI command.
+ * Set up the internal fields in the SCSI command.
*/
static inline void initialize_SCp(struct scsi_cmnd *cmd)
{
- /*
- * Initialize the Scsi Pointer field so that all of the commands in the
+ /*
+ * Initialize the Scsi Pointer field so that all of the commands in the
* various queues are valid.
*/
@@ -295,120 +198,123 @@ static inline void initialize_SCp(struct scsi_cmnd *cmd)
cmd->SCp.ptr = NULL;
cmd->SCp.this_residual = 0;
}
+
+ cmd->SCp.Status = 0;
+ cmd->SCp.Message = 0;
}
/**
- * NCR5380_poll_politely - wait for NCR5380 status bits
- * @instance: controller to poll
- * @reg: 5380 register to poll
- * @bit: Bitmask to check
- * @val: Value required to exit
- *
- * Polls the NCR5380 in a reasonably efficient manner waiting for
- * an event to occur, after a short quick poll we begin giving the
- * CPU back in non IRQ contexts
- *
- * Returns the value of the register or a negative error code.
+ * NCR5380_poll_politely2 - wait for two chip register values
+ * @instance: controller to poll
+ * @reg1: 5380 register to poll
+ * @bit1: Bitmask to check
+ * @val1: Expected value
+ * @reg2: Second 5380 register to poll
+ * @bit2: Second bitmask to check
+ * @val2: Second expected value
+ * @wait: Time-out in jiffies
+ *
+ * Polls the chip in a reasonably efficient manner waiting for an
+ * event to occur. After a short quick poll we begin to yield the CPU
+ * (if possible). In irq contexts the time-out is arbitrarily limited.
+ * Callers may hold locks as long as they are held in irq mode.
+ *
+ * Returns 0 if either or both event(s) occurred otherwise -ETIMEDOUT.
*/
-
-static int NCR5380_poll_politely(struct Scsi_Host *instance, int reg, int bit, int val, int t)
+
+static int NCR5380_poll_politely2(struct Scsi_Host *instance,
+ int reg1, int bit1, int val1,
+ int reg2, int bit2, int val2, int wait)
{
- NCR5380_local_declare();
- int n = 500; /* At about 8uS a cycle for the cpu access */
- unsigned long end = jiffies + t;
- int r;
-
- NCR5380_setup(instance);
-
- while( n-- > 0)
- {
- r = NCR5380_read(reg);
- if((r & bit) == val)
+ struct NCR5380_hostdata *hostdata = shost_priv(instance);
+ unsigned long deadline = jiffies + wait;
+ unsigned long n;
+
+ /* Busy-wait for up to 10 ms */
+ n = min(10000U, jiffies_to_usecs(wait));
+ n *= hostdata->accesses_per_ms;
+ n /= 2000;
+ do {
+ if ((NCR5380_read(reg1) & bit1) == val1)
+ return 0;
+ if ((NCR5380_read(reg2) & bit2) == val2)
return 0;
cpu_relax();
- }
-
- /* t time yet ? */
- while(time_before(jiffies, end))
- {
- r = NCR5380_read(reg);
- if((r & bit) == val)
+ } while (n--);
+
+ if (irqs_disabled() || in_interrupt())
+ return -ETIMEDOUT;
+
+ /* Repeatedly sleep for 1 ms until deadline */
+ while (time_is_after_jiffies(deadline)) {
+ schedule_timeout_uninterruptible(1);
+ if ((NCR5380_read(reg1) & bit1) == val1)
+ return 0;
+ if ((NCR5380_read(reg2) & bit2) == val2)
return 0;
- if(!in_interrupt())
- cond_resched();
- else
- cpu_relax();
}
+
return -ETIMEDOUT;
}
-static struct {
- unsigned char value;
- const char *name;
-} phases[] __maybe_unused = {
- {PHASE_DATAOUT, "DATAOUT"},
- {PHASE_DATAIN, "DATAIN"},
- {PHASE_CMDOUT, "CMDOUT"},
- {PHASE_STATIN, "STATIN"},
- {PHASE_MSGOUT, "MSGOUT"},
- {PHASE_MSGIN, "MSGIN"},
- {PHASE_UNKNOWN, "UNKNOWN"}
-};
+static inline int NCR5380_poll_politely(struct Scsi_Host *instance,
+ int reg, int bit, int val, int wait)
+{
+ return NCR5380_poll_politely2(instance, reg, bit, val,
+ reg, bit, val, wait);
+}
#if NDEBUG
static struct {
unsigned char mask;
const char *name;
-} signals[] = {
- {SR_DBP, "PARITY"},
- {SR_RST, "RST"},
- {SR_BSY, "BSY"},
- {SR_REQ, "REQ"},
- {SR_MSG, "MSG"},
- {SR_CD, "CD"},
- {SR_IO, "IO"},
- {SR_SEL, "SEL"},
+} signals[] = {
+ {SR_DBP, "PARITY"},
+ {SR_RST, "RST"},
+ {SR_BSY, "BSY"},
+ {SR_REQ, "REQ"},
+ {SR_MSG, "MSG"},
+ {SR_CD, "CD"},
+ {SR_IO, "IO"},
+ {SR_SEL, "SEL"},
{0, NULL}
-},
+},
basrs[] = {
- {BASR_ATN, "ATN"},
- {BASR_ACK, "ACK"},
+ {BASR_ATN, "ATN"},
+ {BASR_ACK, "ACK"},
{0, NULL}
-},
-icrs[] = {
- {ICR_ASSERT_RST, "ASSERT RST"},
- {ICR_ASSERT_ACK, "ASSERT ACK"},
- {ICR_ASSERT_BSY, "ASSERT BSY"},
- {ICR_ASSERT_SEL, "ASSERT SEL"},
- {ICR_ASSERT_ATN, "ASSERT ATN"},
- {ICR_ASSERT_DATA, "ASSERT DATA"},
+},
+icrs[] = {
+ {ICR_ASSERT_RST, "ASSERT RST"},
+ {ICR_ASSERT_ACK, "ASSERT ACK"},
+ {ICR_ASSERT_BSY, "ASSERT BSY"},
+ {ICR_ASSERT_SEL, "ASSERT SEL"},
+ {ICR_ASSERT_ATN, "ASSERT ATN"},
+ {ICR_ASSERT_DATA, "ASSERT DATA"},
{0, NULL}
-},
-mrs[] = {
- {MR_BLOCK_DMA_MODE, "MODE BLOCK DMA"},
- {MR_TARGET, "MODE TARGET"},
- {MR_ENABLE_PAR_CHECK, "MODE PARITY CHECK"},
- {MR_ENABLE_PAR_INTR, "MODE PARITY INTR"},
- {MR_MONITOR_BSY, "MODE MONITOR BSY"},
- {MR_DMA_MODE, "MODE DMA"},
- {MR_ARBITRATE, "MODE ARBITRATION"},
+},
+mrs[] = {
+ {MR_BLOCK_DMA_MODE, "MODE BLOCK DMA"},
+ {MR_TARGET, "MODE TARGET"},
+ {MR_ENABLE_PAR_CHECK, "MODE PARITY CHECK"},
+ {MR_ENABLE_PAR_INTR, "MODE PARITY INTR"},
+ {MR_ENABLE_EOP_INTR, "MODE EOP INTR"},
+ {MR_MONITOR_BSY, "MODE MONITOR BSY"},
+ {MR_DMA_MODE, "MODE DMA"},
+ {MR_ARBITRATE, "MODE ARBITRATION"},
{0, NULL}
};
/**
- * NCR5380_print - print scsi bus signals
- * @instance: adapter state to dump
- *
- * Print the SCSI bus signals for debugging purposes
+ * NCR5380_print - print scsi bus signals
+ * @instance: adapter state to dump
*
- * Locks: caller holds hostdata lock (not essential)
+ * Print the SCSI bus signals for debugging purposes
*/
static void NCR5380_print(struct Scsi_Host *instance)
{
- NCR5380_local_declare();
unsigned char status, data, basr, mr, icr, i;
- NCR5380_setup(instance);
data = NCR5380_read(CURRENT_SCSI_DATA_REG);
status = NCR5380_read(STATUS_REG);
@@ -435,117 +341,56 @@ static void NCR5380_print(struct Scsi_Host *instance)
printk("\n");
}
+static struct {
+ unsigned char value;
+ const char *name;
+} phases[] = {
+ {PHASE_DATAOUT, "DATAOUT"},
+ {PHASE_DATAIN, "DATAIN"},
+ {PHASE_CMDOUT, "CMDOUT"},
+ {PHASE_STATIN, "STATIN"},
+ {PHASE_MSGOUT, "MSGOUT"},
+ {PHASE_MSGIN, "MSGIN"},
+ {PHASE_UNKNOWN, "UNKNOWN"}
+};
-/*
- * NCR5380_print_phase - show SCSI phase
- * @instance: adapter to dump
- *
- * Print the current SCSI phase for debugging purposes
+/**
+ * NCR5380_print_phase - show SCSI phase
+ * @instance: adapter to dump
*
- * Locks: none
+ * Print the current SCSI phase for debugging purposes
*/
static void NCR5380_print_phase(struct Scsi_Host *instance)
{
- NCR5380_local_declare();
unsigned char status;
int i;
- NCR5380_setup(instance);
status = NCR5380_read(STATUS_REG);
if (!(status & SR_REQ))
- printk("scsi%d : REQ not asserted, phase unknown.\n", instance->host_no);
+ shost_printk(KERN_DEBUG, instance, "REQ not asserted, phase unknown.\n");
else {
- for (i = 0; (phases[i].value != PHASE_UNKNOWN) && (phases[i].value != (status & PHASE_MASK)); ++i);
- printk("scsi%d : phase %s\n", instance->host_no, phases[i].name);
+ for (i = 0; (phases[i].value != PHASE_UNKNOWN) &&
+ (phases[i].value != (status & PHASE_MASK)); ++i)
+ ;
+ shost_printk(KERN_DEBUG, instance, "phase %s\n", phases[i].name);
}
}
#endif
-/*
- * These need tweaking, and would probably work best as per-device
- * flags initialized differently for disk, tape, cd, etc devices.
- * People with broken devices are free to experiment as to what gives
- * the best results for them.
- *
- * USLEEP_SLEEP should be a minimum seek time.
- *
- * USLEEP_POLL should be a maximum rotational latency.
- */
-#ifndef USLEEP_SLEEP
-/* 20 ms (reasonable hard disk speed) */
-#define USLEEP_SLEEP msecs_to_jiffies(20)
-#endif
-/* 300 RPM (floppy speed) */
-#ifndef USLEEP_POLL
-#define USLEEP_POLL msecs_to_jiffies(200)
-#endif
-#ifndef USLEEP_WAITLONG
-/* RvC: (reasonable time to wait on select error) */
-#define USLEEP_WAITLONG USLEEP_SLEEP
-#endif
-/*
- * Function : int should_disconnect (unsigned char cmd)
- *
- * Purpose : decide whether a command would normally disconnect or
- * not, since if it won't disconnect we should go to sleep.
- *
- * Input : cmd - opcode of SCSI command
- *
- * Returns : DISCONNECT_LONG if we should disconnect for a really long
- * time (ie always, sleep, look for REQ active, sleep),
- * DISCONNECT_TIME_TO_DATA if we would only disconnect for a normal
- * time-to-data delay, DISCONNECT_NONE if this command would return
- * immediately.
- *
- * Future sleep algorithms based on time to data can exploit
- * something like this so they can differentiate between "normal"
- * (ie, read, write, seek) and unusual commands (ie, * format).
- *
- * Note : We don't deal with commands that handle an immediate disconnect,
- *
- */
-
-static int should_disconnect(unsigned char cmd)
-{
- switch (cmd) {
- case READ_6:
- case WRITE_6:
- case SEEK_6:
- case READ_10:
- case WRITE_10:
- case SEEK_10:
- return DISCONNECT_TIME_TO_DATA;
- case FORMAT_UNIT:
- case SEARCH_HIGH:
- case SEARCH_LOW:
- case SEARCH_EQUAL:
- return DISCONNECT_LONG;
- default:
- return DISCONNECT_NONE;
- }
-}
-
-static void NCR5380_set_timer(struct NCR5380_hostdata *hostdata, unsigned long timeout)
-{
- hostdata->time_expires = jiffies + timeout;
- schedule_delayed_work(&hostdata->coroutine, timeout);
-}
-
-
-static int probe_irq __initdata = 0;
+static int probe_irq __initdata;
/**
- * probe_intr - helper for IRQ autoprobe
- * @irq: interrupt number
- * @dev_id: unused
- * @regs: unused
+ * probe_intr - helper for IRQ autoprobe
+ * @irq: interrupt number
+ * @dev_id: unused
+ * @regs: unused
*
- * Set a flag to indicate the IRQ in question was received. This is
- * used by the IRQ probe code.
+ * Set a flag to indicate the IRQ in question was received. This is
+ * used by the IRQ probe code.
*/
-
+
static irqreturn_t __init probe_intr(int irq, void *dev_id)
{
probe_irq = irq;
@@ -553,24 +398,20 @@ static irqreturn_t __init probe_intr(int irq, void *dev_id)
}
/**
- * NCR5380_probe_irq - find the IRQ of an NCR5380
- * @instance: NCR5380 controller
- * @possible: bitmask of ISA IRQ lines
+ * NCR5380_probe_irq - find the IRQ of an NCR5380
+ * @instance: NCR5380 controller
+ * @possible: bitmask of ISA IRQ lines
*
- * Autoprobe for the IRQ line used by the NCR5380 by triggering an IRQ
- * and then looking to see what interrupt actually turned up.
- *
- * Locks: none, irqs must be enabled on entry
+ * Autoprobe for the IRQ line used by the NCR5380 by triggering an IRQ
+ * and then looking to see what interrupt actually turned up.
*/
static int __init __maybe_unused NCR5380_probe_irq(struct Scsi_Host *instance,
int possible)
{
- NCR5380_local_declare();
- struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata;
+ struct NCR5380_hostdata *hostdata = shost_priv(instance);
unsigned long timeout;
int trying_irqs, i, mask;
- NCR5380_setup(instance);
for (trying_irqs = 0, i = 1, mask = 2; i < 16; ++i, mask <<= 1)
if ((mask & possible) && (request_irq(i, &probe_intr, 0, "NCR-probe", NULL) == 0))
@@ -581,7 +422,7 @@ static int __init __maybe_unused NCR5380_probe_irq(struct Scsi_Host *instance,
/*
* A interrupt is triggered whenever BSY = false, SEL = true
- * and a bit set in the SELECT_ENABLE_REG is asserted on the
+ * and a bit set in the SELECT_ENABLE_REG is asserted on the
* SCSI bus.
*
* Note that the bus is only driven when the phase control signals
@@ -596,7 +437,7 @@ static int __init __maybe_unused NCR5380_probe_irq(struct Scsi_Host *instance,
while (probe_irq == NO_IRQ && time_before(jiffies, timeout))
schedule_timeout_uninterruptible(1);
-
+
NCR5380_write(SELECT_ENABLE_REG, 0);
NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
@@ -608,12 +449,10 @@ static int __init __maybe_unused NCR5380_probe_irq(struct Scsi_Host *instance,
}
/**
- * NCR58380_info - report driver and host information
- * @instance: relevant scsi host instance
- *
- * For use as the host template info() handler.
+ * NCR58380_info - report driver and host information
+ * @instance: relevant scsi host instance
*
- * Locks: none
+ * For use as the host template info() handler.
*/
static const char *NCR5380_info(struct Scsi_Host *instance)
@@ -633,20 +472,14 @@ static void prepare_info(struct Scsi_Host *instance)
"can_queue %d, cmd_per_lun %d, "
"sg_tablesize %d, this_id %d, "
"flags { %s%s%s}, "
-#if defined(USLEEP_POLL) && defined(USLEEP_WAITLONG)
- "USLEEP_POLL %lu, USLEEP_WAITLONG %lu, "
-#endif
"options { %s} ",
instance->hostt->name, instance->io_port, instance->n_io_port,
instance->base, instance->irq,
instance->can_queue, instance->cmd_per_lun,
instance->sg_tablesize, instance->this_id,
- hostdata->flags & FLAG_NCR53C400 ? "NCR53C400 " : "",
- hostdata->flags & FLAG_DTC3181E ? "DTC3181E " : "",
+ hostdata->flags & FLAG_NO_DMA_FIXUP ? "NO_DMA_FIXUP " : "",
hostdata->flags & FLAG_NO_PSEUDO_DMA ? "NO_PSEUDO_DMA " : "",
-#if defined(USLEEP_POLL) && defined(USLEEP_WAITLONG)
- USLEEP_POLL, USLEEP_WAITLONG,
-#endif
+ hostdata->flags & FLAG_TOSHIBA_DELAY ? "TOSHIBA_DELAY " : "",
#ifdef AUTOPROBE_IRQ
"AUTOPROBE_IRQ "
#endif
@@ -665,46 +498,10 @@ static void prepare_info(struct Scsi_Host *instance)
#ifdef PSEUDO_DMA
"PSEUDO_DMA "
#endif
-#ifdef UNSAFE
- "UNSAFE "
-#endif
-#ifdef NCR53C400
- "NCR53C400 "
-#endif
"");
}
-/**
- * NCR5380_print_status - dump controller info
- * @instance: controller to dump
- *
- * Print commands in the various queues, called from NCR5380_abort
- * and NCR5380_debug to aid debugging.
- *
- * Locks: called functions disable irqs
- */
-
-static void NCR5380_print_status(struct Scsi_Host *instance)
-{
- NCR5380_dprint(NDEBUG_ANY, instance);
- NCR5380_dprint_phase(NDEBUG_ANY, instance);
-}
-
#ifdef PSEUDO_DMA
-/******************************************/
-/*
- * /proc/scsi/[dtc pas16 t128 generic]/[0-ASC_NUM_BOARD_SUPPORTED]
- *
- * *buffer: I/O buffer
- * **start: if inout == FALSE pointer into buffer where user read should start
- * offset: current offset
- * length: length of buffer
- * hostno: Scsi_Host host_no
- * inout: TRUE - user is writing; FALSE - user is reading
- *
- * Return the number of bytes read from or written
- */
-
static int __maybe_unused NCR5380_write_info(struct Scsi_Host *instance,
char *buffer, int length)
{
@@ -714,104 +511,41 @@ static int __maybe_unused NCR5380_write_info(struct Scsi_Host *instance,
hostdata->spin_max_w = 0;
return 0;
}
-#endif
-
-static
-void lprint_Scsi_Cmnd(struct scsi_cmnd *cmd, struct seq_file *m);
-static
-void lprint_command(unsigned char *cmd, struct seq_file *m);
-static
-void lprint_opcode(int opcode, struct seq_file *m);
static int __maybe_unused NCR5380_show_info(struct seq_file *m,
- struct Scsi_Host *instance)
+ struct Scsi_Host *instance)
{
- struct NCR5380_hostdata *hostdata;
- struct scsi_cmnd *ptr;
-
- hostdata = (struct NCR5380_hostdata *) instance->hostdata;
+ struct NCR5380_hostdata *hostdata = shost_priv(instance);
-#ifdef PSEUDO_DMA
seq_printf(m, "Highwater I/O busy spin counts: write %d, read %d\n",
hostdata->spin_max_w, hostdata->spin_max_r);
-#endif
- spin_lock_irq(instance->host_lock);
- if (!hostdata->connected)
- seq_printf(m, "scsi%d: no currently connected command\n", instance->host_no);
- else
- lprint_Scsi_Cmnd((struct scsi_cmnd *) hostdata->connected, m);
- seq_printf(m, "scsi%d: issue_queue\n", instance->host_no);
- for (ptr = (struct scsi_cmnd *) hostdata->issue_queue; ptr; ptr = (struct scsi_cmnd *) ptr->host_scribble)
- lprint_Scsi_Cmnd(ptr, m);
-
- seq_printf(m, "scsi%d: disconnected_queue\n", instance->host_no);
- for (ptr = (struct scsi_cmnd *) hostdata->disconnected_queue; ptr; ptr = (struct scsi_cmnd *) ptr->host_scribble)
- lprint_Scsi_Cmnd(ptr, m);
- spin_unlock_irq(instance->host_lock);
return 0;
}
-
-static void lprint_Scsi_Cmnd(struct scsi_cmnd *cmd, struct seq_file *m)
-{
- seq_printf(m, "scsi%d : destination target %d, lun %llu\n", cmd->device->host->host_no, cmd->device->id, cmd->device->lun);
- seq_puts(m, " command = ");
- lprint_command(cmd->cmnd, m);
-}
-
-static void lprint_command(unsigned char *command, struct seq_file *m)
-{
- int i, s;
- lprint_opcode(command[0], m);
- for (i = 1, s = COMMAND_SIZE(command[0]); i < s; ++i)
- seq_printf(m, "%02x ", command[i]);
- seq_putc(m, '\n');
-}
-
-static void lprint_opcode(int opcode, struct seq_file *m)
-{
- seq_printf(m, "%2d (0x%02x)", opcode, opcode);
-}
-
+#endif
/**
- * NCR5380_init - initialise an NCR5380
- * @instance: adapter to configure
- * @flags: control flags
+ * NCR5380_init - initialise an NCR5380
+ * @instance: adapter to configure
+ * @flags: control flags
*
- * Initializes *instance and corresponding 5380 chip,
- * with flags OR'd into the initial flags value.
+ * Initializes *instance and corresponding 5380 chip,
+ * with flags OR'd into the initial flags value.
*
- * Notes : I assume that the host, hostno, and id bits have been
- * set correctly. I don't care about the irq and other fields.
+ * Notes : I assume that the host, hostno, and id bits have been
+ * set correctly. I don't care about the irq and other fields.
*
- * Returns 0 for success
- *
- * Locks: interrupts must be enabled when we are called
+ * Returns 0 for success
*/
static int NCR5380_init(struct Scsi_Host *instance, int flags)
{
- NCR5380_local_declare();
- int i, pass;
- unsigned long timeout;
- struct NCR5380_hostdata *hostdata = (struct NCR5380_hostdata *) instance->hostdata;
-
- if(in_interrupt())
- printk(KERN_ERR "NCR5380_init called with interrupts off!\n");
- /*
- * On NCR53C400 boards, NCR5380 registers are mapped 8 past
- * the base address.
- */
-
-#ifdef NCR53C400
- if (flags & FLAG_NCR53C400)
- instance->NCR5380_instance_name += NCR53C400_address_adjust;
-#endif
-
- NCR5380_setup(instance);
+ struct NCR5380_hostdata *hostdata = shost_priv(instance);
+ int i;
+ unsigned long deadline;
- hostdata->aborted = 0;
+ hostdata->host = instance;
hostdata->id_mask = 1 << instance->this_id;
+ hostdata->id_higher_mask = 0;
for (i = hostdata->id_mask; i <= 0x80; i <<= 1)
if (i > hostdata->id_mask)
hostdata->id_higher_mask |= i;
@@ -820,21 +554,21 @@ static int NCR5380_init(struct Scsi_Host *instance, int flags)
#ifdef REAL_DMA
hostdata->dmalen = 0;
#endif
- hostdata->targets_present = 0;
+ spin_lock_init(&hostdata->lock);
hostdata->connected = NULL;
- hostdata->issue_queue = NULL;
- hostdata->disconnected_queue = NULL;
-
- INIT_DELAYED_WORK(&hostdata->coroutine, NCR5380_main);
-
- /* The CHECK code seems to break the 53C400. Will check it later maybe */
- if (flags & FLAG_NCR53C400)
- hostdata->flags = FLAG_HAS_LAST_BYTE_SENT | flags;
- else
- hostdata->flags = FLAG_CHECK_LAST_BYTE_SENT | flags;
+ hostdata->sensing = NULL;
+ INIT_LIST_HEAD(&hostdata->autosense);
+ INIT_LIST_HEAD(&hostdata->unissued);
+ INIT_LIST_HEAD(&hostdata->disconnected);
- hostdata->host = instance;
- hostdata->time_expires = 0;
+ hostdata->flags = flags;
+
+ INIT_WORK(&hostdata->main_task, NCR5380_main);
+ hostdata->work_q = alloc_workqueue("ncr5380_%d",
+ WQ_UNBOUND | WQ_MEM_RECLAIM,
+ 1, instance->host_no);
+ if (!hostdata->work_q)
+ return -ENOMEM;
prepare_info(instance);
@@ -843,43 +577,69 @@ static int NCR5380_init(struct Scsi_Host *instance, int flags)
NCR5380_write(TARGET_COMMAND_REG, 0);
NCR5380_write(SELECT_ENABLE_REG, 0);
-#ifdef NCR53C400
- if (hostdata->flags & FLAG_NCR53C400) {
- NCR5380_write(C400_CONTROL_STATUS_REG, CSR_BASE);
- }
-#endif
+ /* Calibrate register polling loop */
+ i = 0;
+ deadline = jiffies + 1;
+ do {
+ cpu_relax();
+ } while (time_is_after_jiffies(deadline));
+ deadline += msecs_to_jiffies(256);
+ do {
+ NCR5380_read(STATUS_REG);
+ ++i;
+ cpu_relax();
+ } while (time_is_after_jiffies(deadline));
+ hostdata->accesses_per_ms = i / 256;
- /*
- * Detect and correct bus wedge problems.
- *
- * If the system crashed, it may have crashed in a state
- * where a SCSI command was still executing, and the
- * SCSI bus is not in a BUS FREE STATE.
- *
- * If this is the case, we'll try to abort the currently
- * established nexus which we know nothing about, and that
- * failing, do a hard reset of the SCSI bus
- */
+ return 0;
+}
+
+/**
+ * NCR5380_maybe_reset_bus - Detect and correct bus wedge problems.
+ * @instance: adapter to check
+ *
+ * If the system crashed, it may have crashed with a connected target and
+ * the SCSI bus busy. Check for BUS FREE phase. If not, try to abort the
+ * currently established nexus, which we know nothing about. Failing that
+ * do a bus reset.
+ *
+ * Note that a bus reset will cause the chip to assert IRQ.
+ *
+ * Returns 0 if successful, otherwise -ENXIO.
+ */
+
+static int NCR5380_maybe_reset_bus(struct Scsi_Host *instance)
+{
+ struct NCR5380_hostdata *hostdata = shost_priv(instance);
+ int pass;
for (pass = 1; (NCR5380_read(STATUS_REG) & SR_BSY) && pass <= 6; ++pass) {
switch (pass) {
case 1:
case 3:
case 5:
- printk(KERN_INFO "scsi%d: SCSI bus busy, waiting up to five seconds\n", instance->host_no);
- timeout = jiffies + 5 * HZ;
- NCR5380_poll_politely(instance, STATUS_REG, SR_BSY, 0, 5*HZ);
+ shost_printk(KERN_ERR, instance, "SCSI bus busy, waiting up to five seconds\n");
+ NCR5380_poll_politely(instance,
+ STATUS_REG, SR_BSY, 0, 5 * HZ);
break;
case 2:
- printk(KERN_WARNING "scsi%d: bus busy, attempting abort\n", instance->host_no);
+ shost_printk(KERN_ERR, instance, "bus busy, attempting abort\n");
do_abort(instance);
break;
case 4:
- printk(KERN_WARNING "scsi%d: bus busy, attempting reset\n", instance->host_no);
+ shost_printk(KERN_ERR, instance, "bus busy, attempting reset\n");
do_reset(instance);
+ /* Wait after a reset; the SCSI standard calls for
+ * 250ms, we wait 500ms to be on the safe side.
+ * But some Toshiba CD-ROMs need ten times that.
+ */
+ if (hostdata->flags & FLAG_TOSHIBA_DELAY)
+ msleep(2500);
+ else
+ msleep(500);
break;
case 6: