summaryrefslogtreecommitdiffstats
path: root/drivers/edac/amd64_edac.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/edac/amd64_edac.c')
-rw-r--r--drivers/edac/amd64_edac.c3354
1 files changed, 3354 insertions, 0 deletions
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c
new file mode 100644
index 000000000000..c36bf40568cf
--- /dev/null
+++ b/drivers/edac/amd64_edac.c
@@ -0,0 +1,3354 @@
+#include "amd64_edac.h"
+#include <asm/k8.h>
+
+static struct edac_pci_ctl_info *amd64_ctl_pci;
+
+static int report_gart_errors;
+module_param(report_gart_errors, int, 0644);
+
+/*
+ * Set by command line parameter. If BIOS has enabled the ECC, this override is
+ * cleared to prevent re-enabling the hardware by this driver.
+ */
+static int ecc_enable_override;
+module_param(ecc_enable_override, int, 0644);
+
+/* Lookup table for all possible MC control instances */
+struct amd64_pvt;
+static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
+static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
+
+/*
+ * Memory scrubber control interface. For K8, memory scrubbing is handled by
+ * hardware and can involve L2 cache, dcache as well as the main memory. With
+ * F10, this is extended to L3 cache scrubbing on CPU models sporting that
+ * functionality.
+ *
+ * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
+ * (dram) over to cache lines. This is nasty, so we will use bandwidth in
+ * bytes/sec for the setting.
+ *
+ * Currently, we only do dram scrubbing. If the scrubbing is done in software on
+ * other archs, we might not have access to the caches directly.
+ */
+
+/*
+ * scan the scrub rate mapping table for a close or matching bandwidth value to
+ * issue. If requested is too big, then use last maximum value found.
+ */
+static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
+ u32 min_scrubrate)
+{
+ u32 scrubval;
+ int i;
+
+ /*
+ * map the configured rate (new_bw) to a value specific to the AMD64
+ * memory controller and apply to register. Search for the first
+ * bandwidth entry that is greater or equal than the setting requested
+ * and program that. If at last entry, turn off DRAM scrubbing.
+ */
+ for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
+ /*
+ * skip scrub rates which aren't recommended
+ * (see F10 BKDG, F3x58)
+ */
+ if (scrubrates[i].scrubval < min_scrubrate)
+ continue;
+
+ if (scrubrates[i].bandwidth <= new_bw)
+ break;
+
+ /*
+ * if no suitable bandwidth found, turn off DRAM scrubbing
+ * entirely by falling back to the last element in the
+ * scrubrates array.
+ */
+ }
+
+ scrubval = scrubrates[i].scrubval;
+ if (scrubval)
+ edac_printk(KERN_DEBUG, EDAC_MC,
+ "Setting scrub rate bandwidth: %u\n",
+ scrubrates[i].bandwidth);
+ else
+ edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
+
+ pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
+
+ return 0;
+}
+
+static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 min_scrubrate = 0x0;
+
+ switch (boot_cpu_data.x86) {
+ case 0xf:
+ min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
+ break;
+ case 0x10:
+ min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
+ break;
+ case 0x11:
+ min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
+ break;
+
+ default:
+ amd64_printk(KERN_ERR, "Unsupported family!\n");
+ break;
+ }
+ return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
+ min_scrubrate);
+}
+
+static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 scrubval = 0;
+ int status = -1, i, ret = 0;
+
+ ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
+ if (ret)
+ debugf0("Reading K8_SCRCTRL failed\n");
+
+ scrubval = scrubval & 0x001F;
+
+ edac_printk(KERN_DEBUG, EDAC_MC,
+ "pci-read, sdram scrub control value: %d \n", scrubval);
+
+ for (i = 0; ARRAY_SIZE(scrubrates); i++) {
+ if (scrubrates[i].scrubval == scrubval) {
+ *bw = scrubrates[i].bandwidth;
+ status = 0;
+ break;
+ }
+ }
+
+ return status;
+}
+
+/* Map from a CSROW entry to the mask entry that operates on it */
+static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
+{
+ return csrow >> (pvt->num_dcsm >> 3);
+}
+
+/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
+static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
+{
+ if (dct == 0)
+ return pvt->dcsb0[csrow];
+ else
+ return pvt->dcsb1[csrow];
+}
+
+/*
+ * Return the 'mask' address the i'th CS entry. This function is needed because
+ * there number of DCSM registers on Rev E and prior vs Rev F and later is
+ * different.
+ */
+static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
+{
+ if (dct == 0)
+ return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
+ else
+ return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
+}
+
+
+/*
+ * In *base and *limit, pass back the full 40-bit base and limit physical
+ * addresses for the node given by node_id. This information is obtained from
+ * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
+ * base and limit addresses are of type SysAddr, as defined at the start of
+ * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
+ * in the address range they represent.
+ */
+static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
+ u64 *base, u64 *limit)
+{
+ *base = pvt->dram_base[node_id];
+ *limit = pvt->dram_limit[node_id];
+}
+
+/*
+ * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
+ * with node_id
+ */
+static int amd64_base_limit_match(struct amd64_pvt *pvt,
+ u64 sys_addr, int node_id)
+{
+ u64 base, limit, addr;
+
+ amd64_get_base_and_limit(pvt, node_id, &base, &limit);
+
+ /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
+ * all ones if the most significant implemented address bit is 1.
+ * Here we discard bits 63-40. See section 3.4.2 of AMD publication
+ * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
+ * Application Programming.
+ */
+ addr = sys_addr & 0x000000ffffffffffull;
+
+ return (addr >= base) && (addr <= limit);
+}
+
+/*
+ * Attempt to map a SysAddr to a node. On success, return a pointer to the
+ * mem_ctl_info structure for the node that the SysAddr maps to.
+ *
+ * On failure, return NULL.
+ */
+static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
+ u64 sys_addr)
+{
+ struct amd64_pvt *pvt;
+ int node_id;
+ u32 intlv_en, bits;
+
+ /*
+ * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
+ * 3.4.4.2) registers to map the SysAddr to a node ID.
+ */
+ pvt = mci->pvt_info;
+
+ /*
+ * The value of this field should be the same for all DRAM Base
+ * registers. Therefore we arbitrarily choose to read it from the
+ * register for node 0.
+ */
+ intlv_en = pvt->dram_IntlvEn[0];
+
+ if (intlv_en == 0) {
+ for (node_id = 0; ; ) {
+ if (amd64_base_limit_match(pvt, sys_addr, node_id))
+ break;
+
+ if (++node_id >= DRAM_REG_COUNT)
+ goto err_no_match;
+ }
+ goto found;
+ }
+
+ if (unlikely((intlv_en != (0x01 << 8)) &&
+ (intlv_en != (0x03 << 8)) &&
+ (intlv_en != (0x07 << 8)))) {
+ amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
+ "IntlvEn field of DRAM Base Register for node 0: "
+ "This probably indicates a BIOS bug.\n", intlv_en);
+ return NULL;
+ }
+
+ bits = (((u32) sys_addr) >> 12) & intlv_en;
+
+ for (node_id = 0; ; ) {
+ if ((pvt->dram_limit[node_id] & intlv_en) == bits)
+ break; /* intlv_sel field matches */
+
+ if (++node_id >= DRAM_REG_COUNT)
+ goto err_no_match;
+ }
+
+ /* sanity test for sys_addr */
+ if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
+ amd64_printk(KERN_WARNING,
+ "%s(): sys_addr 0x%lx falls outside base/limit "
+ "address range for node %d with node interleaving "
+ "enabled.\n", __func__, (unsigned long)sys_addr,
+ node_id);
+ return NULL;
+ }
+
+found:
+ return edac_mc_find(node_id);
+
+err_no_match:
+ debugf2("sys_addr 0x%lx doesn't match any node\n",
+ (unsigned long)sys_addr);
+
+ return NULL;
+}
+
+/*
+ * Extract the DRAM CS base address from selected csrow register.
+ */
+static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
+{
+ return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
+ pvt->dcs_shift;
+}
+
+/*
+ * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
+ */
+static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
+{
+ u64 dcsm_bits, other_bits;
+ u64 mask;
+
+ /* Extract bits from DRAM CS Mask. */
+ dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
+
+ other_bits = pvt->dcsm_mask;
+ other_bits = ~(other_bits << pvt->dcs_shift);
+
+ /*
+ * The extracted bits from DCSM belong in the spaces represented by
+ * the cleared bits in other_bits.
+ */
+ mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
+
+ return mask;
+}
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Return the
+ * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
+ */
+static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
+{
+ struct amd64_pvt *pvt;
+ int csrow;
+ u64 base, mask;
+
+ pvt = mci->pvt_info;
+
+ /*
+ * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
+ * base/mask register pair, test the condition shown near the start of
+ * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
+ */
+ for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
+
+ /* This DRAM chip select is disabled on this node */
+ if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
+ continue;
+
+ base = base_from_dct_base(pvt, csrow);
+ mask = ~mask_from_dct_mask(pvt, csrow);
+
+ if ((input_addr & mask) == (base & mask)) {
+ debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
+ (unsigned long)input_addr, csrow,
+ pvt->mc_node_id);
+
+ return csrow;
+ }
+ }
+
+ debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
+ (unsigned long)input_addr, pvt->mc_node_id);
+
+ return -1;
+}
+
+/*
+ * Return the base value defined by the DRAM Base register for the node
+ * represented by mci. This function returns the full 40-bit value despite the
+ * fact that the register only stores bits 39-24 of the value. See section
+ * 3.4.4.1 (BKDG #26094, K8, revA-E)
+ */
+static inline u64 get_dram_base(struct mem_ctl_info *mci)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return pvt->dram_base[pvt->mc_node_id];
+}
+
+/*
+ * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
+ * for the node represented by mci. Info is passed back in *hole_base,
+ * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
+ * info is invalid. Info may be invalid for either of the following reasons:
+ *
+ * - The revision of the node is not E or greater. In this case, the DRAM Hole
+ * Address Register does not exist.
+ *
+ * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
+ * indicating that its contents are not valid.
+ *
+ * The values passed back in *hole_base, *hole_offset, and *hole_size are
+ * complete 32-bit values despite the fact that the bitfields in the DHAR
+ * only represent bits 31-24 of the base and offset values.
+ */
+int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
+ u64 *hole_offset, u64 *hole_size)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u64 base;
+
+ /* only revE and later have the DRAM Hole Address Register */
+ if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
+ debugf1(" revision %d for node %d does not support DHAR\n",
+ pvt->ext_model, pvt->mc_node_id);
+ return 1;
+ }
+
+ /* only valid for Fam10h */
+ if (boot_cpu_data.x86 == 0x10 &&
+ (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
+ debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
+ return 1;
+ }
+
+ if ((pvt->dhar & DHAR_VALID) == 0) {
+ debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
+ pvt->mc_node_id);
+ return 1;
+ }
+
+ /* This node has Memory Hoisting */
+
+ /* +------------------+--------------------+--------------------+-----
+ * | memory | DRAM hole | relocated |
+ * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
+ * | | | DRAM hole |
+ * | | | [0x100000000, |
+ * | | | (0x100000000+ |
+ * | | | (0xffffffff-x))] |
+ * +------------------+--------------------+--------------------+-----
+ *
+ * Above is a diagram of physical memory showing the DRAM hole and the
+ * relocated addresses from the DRAM hole. As shown, the DRAM hole
+ * starts at address x (the base address) and extends through address
+ * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
+ * addresses in the hole so that they start at 0x100000000.
+ */
+
+ base = dhar_base(pvt->dhar);
+
+ *hole_base = base;
+ *hole_size = (0x1ull << 32) - base;
+
+ if (boot_cpu_data.x86 > 0xf)
+ *hole_offset = f10_dhar_offset(pvt->dhar);
+ else
+ *hole_offset = k8_dhar_offset(pvt->dhar);
+
+ debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
+ pvt->mc_node_id, (unsigned long)*hole_base,
+ (unsigned long)*hole_offset, (unsigned long)*hole_size);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
+
+/*
+ * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
+ * assumed that sys_addr maps to the node given by mci.
+ *
+ * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
+ * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
+ * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
+ * then it is also involved in translating a SysAddr to a DramAddr. Sections
+ * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
+ * These parts of the documentation are unclear. I interpret them as follows:
+ *
+ * When node n receives a SysAddr, it processes the SysAddr as follows:
+ *
+ * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
+ * Limit registers for node n. If the SysAddr is not within the range
+ * specified by the base and limit values, then node n ignores the Sysaddr
+ * (since it does not map to node n). Otherwise continue to step 2 below.
+ *
+ * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
+ * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
+ * the range of relocated addresses (starting at 0x100000000) from the DRAM
+ * hole. If not, skip to step 3 below. Else get the value of the
+ * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
+ * offset defined by this value from the SysAddr.
+ *
+ * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
+ * Base register for node n. To obtain the DramAddr, subtract the base
+ * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
+ */
+static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
+ int ret = 0;
+
+ dram_base = get_dram_base(mci);
+
+ ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+ &hole_size);
+ if (!ret) {
+ if ((sys_addr >= (1ull << 32)) &&
+ (sys_addr < ((1ull << 32) + hole_size))) {
+ /* use DHAR to translate SysAddr to DramAddr */
+ dram_addr = sys_addr - hole_offset;
+
+ debugf2("using DHAR to translate SysAddr 0x%lx to "
+ "DramAddr 0x%lx\n",
+ (unsigned long)sys_addr,
+ (unsigned long)dram_addr);
+
+ return dram_addr;
+ }
+ }
+
+ /*
+ * Translate the SysAddr to a DramAddr as shown near the start of
+ * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
+ * only deals with 40-bit values. Therefore we discard bits 63-40 of
+ * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
+ * discard are all 1s. Otherwise the bits we discard are all 0s. See
+ * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
+ * Programmer's Manual Volume 1 Application Programming.
+ */
+ dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
+
+ debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
+ "DramAddr 0x%lx\n", (unsigned long)sys_addr,
+ (unsigned long)dram_addr);
+ return dram_addr;
+}
+
+/*
+ * @intlv_en is the value of the IntlvEn field from a DRAM Base register
+ * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
+ * for node interleaving.
+ */
+static int num_node_interleave_bits(unsigned intlv_en)
+{
+ static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
+ int n;
+
+ BUG_ON(intlv_en > 7);
+ n = intlv_shift_table[intlv_en];
+ return n;
+}
+
+/* Translate the DramAddr given by @dram_addr to an InputAddr. */
+static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+ struct amd64_pvt *pvt;
+ int intlv_shift;
+ u64 input_addr;
+
+ pvt = mci->pvt_info;
+
+ /*
+ * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+ * concerning translating a DramAddr to an InputAddr.
+ */
+ intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
+ input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
+ (dram_addr & 0xfff);
+
+ debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
+ intlv_shift, (unsigned long)dram_addr,
+ (unsigned long)input_addr);
+
+ return input_addr;
+}
+
+/*
+ * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
+ * assumed that @sys_addr maps to the node given by mci.
+ */
+static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ u64 input_addr;
+
+ input_addr =
+ dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
+
+ debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
+ (unsigned long)sys_addr, (unsigned long)input_addr);
+
+ return input_addr;
+}
+
+
+/*
+ * @input_addr is an InputAddr associated with the node represented by mci.
+ * Translate @input_addr to a DramAddr and return the result.
+ */
+static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
+{
+ struct amd64_pvt *pvt;
+ int node_id, intlv_shift;
+ u64 bits, dram_addr;
+ u32 intlv_sel;
+
+ /*
+ * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+ * shows how to translate a DramAddr to an InputAddr. Here we reverse
+ * this procedure. When translating from a DramAddr to an InputAddr, the
+ * bits used for node interleaving are discarded. Here we recover these
+ * bits from the IntlvSel field of the DRAM Limit register (section
+ * 3.4.4.2) for the node that input_addr is associated with.
+ */
+ pvt = mci->pvt_info;
+ node_id = pvt->mc_node_id;
+ BUG_ON((node_id < 0) || (node_id > 7));
+
+ intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
+
+ if (intlv_shift == 0) {
+ debugf1(" InputAddr 0x%lx translates to DramAddr of "
+ "same value\n", (unsigned long)input_addr);
+
+ return input_addr;
+ }
+
+ bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
+ (input_addr & 0xfff);
+
+ intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
+ dram_addr = bits + (intlv_sel << 12);
+
+ debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
+ "(%d node interleave bits)\n", (unsigned long)input_addr,
+ (unsigned long)dram_addr, intlv_shift);
+
+ return dram_addr;
+}
+
+/*
+ * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
+ * @dram_addr to a SysAddr.
+ */
+static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
+ int ret = 0;
+
+ ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+ &hole_size);
+ if (!ret) {
+ if ((dram_addr >= hole_base) &&
+ (dram_addr < (hole_base + hole_size))) {
+ sys_addr = dram_addr + hole_offset;
+
+ debugf1("using DHAR to translate DramAddr 0x%lx to "
+ "SysAddr 0x%lx\n", (unsigned long)dram_addr,
+ (unsigned long)sys_addr);
+
+ return sys_addr;
+ }
+ }
+
+ amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
+ sys_addr = dram_addr + base;
+
+ /*
+ * The sys_addr we have computed up to this point is a 40-bit value
+ * because the k8 deals with 40-bit values. However, the value we are
+ * supposed to return is a full 64-bit physical address. The AMD
+ * x86-64 architecture specifies that the most significant implemented
+ * address bit through bit 63 of a physical address must be either all
+ * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
+ * 64-bit value below. See section 3.4.2 of AMD publication 24592:
+ * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
+ * Programming.
+ */
+ sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
+
+ debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
+ pvt->mc_node_id, (unsigned long)dram_addr,
+ (unsigned long)sys_addr);
+
+ return sys_addr;
+}
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Translate
+ * @input_addr to a SysAddr.
+ */
+static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
+ u64 input_addr)
+{
+ return dram_addr_to_sys_addr(mci,
+ input_addr_to_dram_addr(mci, input_addr));
+}
+
+/*
+ * Find the minimum and maximum InputAddr values that map to the given @csrow.
+ * Pass back these values in *input_addr_min and *input_addr_max.
+ */
+static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
+ u64 *input_addr_min, u64 *input_addr_max)
+{
+ struct amd64_pvt *pvt;
+ u64 base, mask;
+
+ pvt = mci->pvt_info;
+ BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
+
+ base = base_from_dct_base(pvt, csrow);
+ mask = mask_from_dct_mask(pvt, csrow);
+
+ *input_addr_min = base & ~mask;
+ *input_addr_max = base | mask | pvt->dcs_mask_notused;
+}
+
+/*
+ * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
+ * Address High (section 3.6.4.6) register values and return the result. Address
+ * is located in the info structure (nbeah and nbeal), the encoding is device
+ * specific.
+ */
+static u64 extract_error_address(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return pvt->ops->get_error_address(mci, info);
+}
+
+
+/* Map the Error address to a PAGE and PAGE OFFSET. */
+static inline void error_address_to_page_and_offset(u64 error_address,
+ u32 *page, u32 *offset)
+{
+ *page = (u32) (error_address >> PAGE_SHIFT);
+ *offset = ((u32) error_address) & ~PAGE_MASK;
+}
+
+/*
+ * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
+ * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
+ * of a node that detected an ECC memory error. mci represents the node that
+ * the error address maps to (possibly different from the node that detected
+ * the error). Return the number of the csrow that sys_addr maps to, or -1 on
+ * error.
+ */
+static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ int csrow;
+
+ csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
+
+ if (csrow == -1)
+ amd64_mc_printk(mci, KERN_ERR,
+ "Failed to translate InputAddr to csrow for "
+ "address 0x%lx\n", (unsigned long)sys_addr);
+ return csrow;
+}
+
+static int get_channel_from_ecc_syndrome(unsigned short syndrome);
+
+static void amd64_cpu_display_info(struct amd64_pvt *pvt)
+{
+ if (boot_cpu_data.x86 == 0x11)
+ edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
+ else if (boot_cpu_data.x86 == 0x10)
+ edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
+ else if (boot_cpu_data.x86 == 0xf)
+ edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
+ (pvt->ext_model >= OPTERON_CPU_REV_F) ?
+ "Rev F or later" : "Rev E or earlier");
+ else
+ /* we'll hardly ever ever get here */
+ edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
+}
+
+/*
+ * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
+ * are ECC capable.
+ */
+static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
+{
+ int bit;
+ enum dev_type edac_cap = EDAC_NONE;
+
+ bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
+ ? 19
+ : 17;
+
+ if (pvt->dclr0 >> BIT(bit))
+ edac_cap = EDAC_FLAG_SECDED;
+
+ return edac_cap;
+}
+
+
+static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
+ int ganged);
+
+/* Display and decode various NB registers for debug purposes. */
+static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
+{
+ int ganged;
+
+ debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
+ pvt->nbcap,
+ (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
+ (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
+ (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
+ debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
+ (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
+ (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
+ debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
+ pvt->dclr0,
+ (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
+ (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
+ (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
+ debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
+ (pvt->dclr0 & BIT(12)) ? "Y" : "N",
+ (pvt->dclr0 & BIT(13)) ? "Y" : "N",
+ (pvt->dclr0 & BIT(14)) ? "Y" : "N",
+ (pvt->dclr0 & BIT(15)) ? "Y" : "N",
+ (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
+
+
+ debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
+
+ if (boot_cpu_data.x86 == 0xf) {
+ debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
+ pvt->dhar, dhar_base(pvt->dhar),
+ k8_dhar_offset(pvt->dhar));
+ debugf1(" DramHoleValid=%s\n",
+ (pvt->dhar & DHAR_VALID) ? "True" : "False");
+
+ debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
+
+ /* everything below this point is Fam10h and above */
+ return;
+
+ } else {
+ debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
+ pvt->dhar, dhar_base(pvt->dhar),
+ f10_dhar_offset(pvt->dhar));
+ debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
+ (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
+ "True" : "False",
+ (pvt->dhar & DHAR_VALID) ?
+ "True" : "False");
+ }
+
+ /* Only if NOT ganged does dcl1 have valid info */
+ if (!dct_ganging_enabled(pvt)) {
+ debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
+ "Width=%s\n", pvt->dclr1,
+ (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
+ (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
+ (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
+ debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
+ "DIMM Type=%s\n",
+ (pvt->dclr1 & BIT(12)) ? "Y" : "N",
+ (pvt->dclr1 & BIT(13)) ? "Y" : "N",
+ (pvt->dclr1 & BIT(14)) ? "Y" : "N",
+ (pvt->dclr1 & BIT(15)) ? "Y" : "N",
+ (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
+ }
+
+ /*
+ * Determine if ganged and then dump memory sizes for first controller,
+ * and if NOT ganged dump info for 2nd controller.
+ */
+ ganged = dct_ganging_enabled(pvt);
+
+ f10_debug_display_dimm_sizes(0, pvt, ganged);
+
+ if (!ganged)
+ f10_debug_display_dimm_sizes(1, pvt, ganged);
+}
+
+/* Read in both of DBAM registers */
+static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
+{
+ int err = 0;
+ unsigned int reg;
+
+ reg = DBAM0;
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
+ if (err)
+ goto err_reg;
+
+ if (boot_cpu_data.x86 >= 0x10) {
+ reg = DBAM1;
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
+
+ if (err)
+ goto err_reg;
+ }
+
+err_reg:
+ debugf0("Error reading F2x%03x.\n", reg);
+}
+
+/*
+ * NOTE: CPU Revision Dependent code: Rev E and Rev F
+ *
+ * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
+ * set the shift factor for the DCSB and DCSM values.
+ *
+ * ->dcs_mask_notused, RevE:
+ *
+ * To find the max InputAddr for the csrow, start with the base address and set
+ * all bits that are "don't care" bits in the test at the start of section
+ * 3.5.4 (p. 84).
+ *
+ * The "don't care" bits are all set bits in the mask and all bits in the gaps
+ * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
+ * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
+ * gaps.
+ *
+ * ->dcs_mask_notused, RevF and later:
+ *
+ * To find the max InputAddr for the csrow, start with the base address and set
+ * all bits that are "don't care" bits in the test at the start of NPT section
+ * 4.5.4 (p. 87).
+ *
+ * The "don't care" bits are all set bits in the mask and all bits in the gaps
+ * between bit ranges [36:27] and [21:13].
+ *
+ * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
+ * which are all bits in the above-mentioned gaps.
+ */
+static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
+{
+ if (pvt->ext_model >= OPTERON_CPU_REV_F) {
+ pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
+ pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
+ pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
+ pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
+
+ switch (boot_cpu_data.x86) {
+ case 0xf:
+ pvt->num_dcsm = REV_F_DCSM_COUNT;
+ break;
+
+ case 0x10:
+ pvt->num_dcsm = F10_DCSM_COUNT;
+ break;
+
+ case 0x11:
+ pvt->num_dcsm = F11_DCSM_COUNT;
+ break;
+
+ default:
+ amd64_printk(KERN_ERR, "Unsupported family!\n");
+ break;
+ }
+ } else {
+ pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
+ pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
+ pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
+ pvt->dcs_shift = REV_E_DCS_SHIFT;
+ pvt->num_dcsm = REV_E_DCSM_COUNT;
+ }
+}
+
+/*
+ * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
+ */
+static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
+{
+ int cs, reg, err = 0;
+
+ amd64_set_dct_base_and_mask(pvt);
+
+ for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
+ reg = K8_DCSB0 + (cs * 4);
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+ &pvt->dcsb0[cs]);
+ if (unlikely(err))
+ debugf0("Reading K8_DCSB0[%d] failed\n", cs);
+ else
+ debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
+ cs, pvt->dcsb0[cs], reg);
+
+ /* If DCT are NOT ganged, then read in DCT1's base */
+ if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
+ reg = F10_DCSB1 + (cs * 4);
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+ &pvt->dcsb1[cs]);
+ if (unlikely(err))
+ debugf0("Reading F10_DCSB1[%d] failed\n", cs);
+ else
+ debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
+ cs, pvt->dcsb1[cs], reg);
+ } else {
+ pvt->dcsb1[cs] = 0;
+ }
+ }
+
+ for (cs = 0; cs < pvt->num_dcsm; cs++) {
+ reg = K8_DCSB0 + (cs * 4);
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+ &pvt->dcsm0[cs]);
+ if (unlikely(err))
+ debugf0("Reading K8_DCSM0 failed\n");
+ else
+ debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
+ cs, pvt->dcsm0[cs], reg);
+
+ /* If DCT are NOT ganged, then read in DCT1's mask */
+ if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
+ reg = F10_DCSM1 + (cs * 4);
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+ &pvt->dcsm1[cs]);
+ if (unlikely(err))
+ debugf0("Reading F10_DCSM1[%d] failed\n", cs);
+ else
+ debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
+ cs, pvt->dcsm1[cs], reg);
+ } else
+ pvt->dcsm1[cs] = 0;
+ }
+}
+
+static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
+{
+ enum mem_type type;
+
+ if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
+ /* Rev F and later */
+ type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+ } else {
+ /* Rev E and earlier */
+ type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
+ }
+
+ debugf1(" Memory type is: %s\n",
+ (type == MEM_DDR2) ? "MEM_DDR2" :
+ (type == MEM_RDDR2) ? "MEM_RDDR2" :
+ (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
+
+ return type;
+}
+
+/*
+ * Read the DRAM Configuration Low register. It differs between CG, D & E revs
+ * and the later RevF memory controllers (DDR vs DDR2)
+ *
+ * Return:
+ * number of memory channels in operation
+ * Pass back:
+ * contents of the DCL0_LOW register
+ */
+static int k8_early_channel_count(struct amd64_pvt *pvt)
+{
+ int flag, err = 0;
+
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+ if (err)
+ return err;
+
+ if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
+ /* RevF (NPT) and later */
+ flag = pvt->dclr0 & F10_WIDTH_128;
+ } else {
+ /* RevE and earlier */
+ flag = pvt->dclr0 & REVE_WIDTH_128;
+ }
+
+ /* not used */
+ pvt->dclr1 = 0;
+
+ return (flag) ? 2 : 1;
+}
+
+/* extract the ERROR ADDRESS for the K8 CPUs */
+static u64 k8_get_error_address(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ return (((u64) (info->nbeah & 0xff)) << 32) +
+ (info->nbeal & ~0x03);
+}
+
+/*
+ * Read the Base and Limit registers for K8 based Memory controllers; extract
+ * fields from the 'raw' reg into separate data fields
+ *
+ * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
+ */
+static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
+{
+ u32 low;
+ u32 off = dram << 3; /* 8 bytes between DRAM entries */
+ int err;
+
+ err = pci_read_config_dword(pvt->addr_f1_ctl,
+ K8_DRAM_BASE_LOW + off, &low);
+ if (err)
+ debugf0("Reading K8_DRAM_BASE_LOW failed\n");
+
+ /* Extract parts into separate data entries */
+ pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
+ pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
+ pvt->dram_rw_en[dram] = (low & 0x3);
+
+ err = pci_read_config_dword(pvt->addr_f1_ctl,
+ K8_DRAM_LIMIT_LOW + off, &low);
+ if (err)
+ debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
+
+ /*
+ * Extract parts into separate data entries. Limit is the HIGHEST memory
+ * location of the region, so lower 24 bits need to be all ones
+ */
+ pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
+ pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
+ pvt->dram_DstNode[dram] = (low & 0x7);
+}
+
+static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info,
+ u64 SystemAddress)
+{
+ struct mem_ctl_info *src_mci;
+ unsigned short syndrome;
+ int channel, csrow;
+ u32 page, offset;
+
+ /* Extract the syndrome parts and form a 16-bit syndrome */
+ syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
+ syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
+
+ /* CHIPKILL enabled */