summaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems/vfs.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/vfs.rst')
-rw-r--r--Documentation/filesystems/vfs.rst1291
1 files changed, 1291 insertions, 0 deletions
diff --git a/Documentation/filesystems/vfs.rst b/Documentation/filesystems/vfs.rst
new file mode 100644
index 000000000000..2ffbdf5f392c
--- /dev/null
+++ b/Documentation/filesystems/vfs.rst
@@ -0,0 +1,1291 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=========================================
+Overview of the Linux Virtual File System
+=========================================
+
+Original author: Richard Gooch <rgooch@atnf.csiro.au>
+
+- Copyright (C) 1999 Richard Gooch
+- Copyright (C) 2005 Pekka Enberg
+
+
+Introduction
+============
+
+The Virtual File System (also known as the Virtual Filesystem Switch) is
+the software layer in the kernel that provides the filesystem interface
+to userspace programs. It also provides an abstraction within the
+kernel which allows different filesystem implementations to coexist.
+
+VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so on
+are called from a process context. Filesystem locking is described in
+the document Documentation/filesystems/Locking.
+
+
+Directory Entry Cache (dcache)
+------------------------------
+
+The VFS implements the open(2), stat(2), chmod(2), and similar system
+calls. The pathname argument that is passed to them is used by the VFS
+to search through the directory entry cache (also known as the dentry
+cache or dcache). This provides a very fast look-up mechanism to
+translate a pathname (filename) into a specific dentry. Dentries live
+in RAM and are never saved to disc: they exist only for performance.
+
+The dentry cache is meant to be a view into your entire filespace. As
+most computers cannot fit all dentries in the RAM at the same time, some
+bits of the cache are missing. In order to resolve your pathname into a
+dentry, the VFS may have to resort to creating dentries along the way,
+and then loading the inode. This is done by looking up the inode.
+
+
+The Inode Object
+----------------
+
+An individual dentry usually has a pointer to an inode. Inodes are
+filesystem objects such as regular files, directories, FIFOs and other
+beasts. They live either on the disc (for block device filesystems) or
+in the memory (for pseudo filesystems). Inodes that live on the disc
+are copied into the memory when required and changes to the inode are
+written back to disc. A single inode can be pointed to by multiple
+dentries (hard links, for example, do this).
+
+To look up an inode requires that the VFS calls the lookup() method of
+the parent directory inode. This method is installed by the specific
+filesystem implementation that the inode lives in. Once the VFS has the
+required dentry (and hence the inode), we can do all those boring things
+like open(2) the file, or stat(2) it to peek at the inode data. The
+stat(2) operation is fairly simple: once the VFS has the dentry, it
+peeks at the inode data and passes some of it back to userspace.
+
+
+The File Object
+---------------
+
+Opening a file requires another operation: allocation of a file
+structure (this is the kernel-side implementation of file descriptors).
+The freshly allocated file structure is initialized with a pointer to
+the dentry and a set of file operation member functions. These are
+taken from the inode data. The open() file method is then called so the
+specific filesystem implementation can do its work. You can see that
+this is another switch performed by the VFS. The file structure is
+placed into the file descriptor table for the process.
+
+Reading, writing and closing files (and other assorted VFS operations)
+is done by using the userspace file descriptor to grab the appropriate
+file structure, and then calling the required file structure method to
+do whatever is required. For as long as the file is open, it keeps the
+dentry in use, which in turn means that the VFS inode is still in use.
+
+
+Registering and Mounting a Filesystem
+=====================================
+
+To register and unregister a filesystem, use the following API
+functions:
+
+.. code-block:: c
+
+ #include <linux/fs.h>
+
+ extern int register_filesystem(struct file_system_type *);
+ extern int unregister_filesystem(struct file_system_type *);
+
+The passed struct file_system_type describes your filesystem. When a
+request is made to mount a filesystem onto a directory in your
+namespace, the VFS will call the appropriate mount() method for the
+specific filesystem. New vfsmount referring to the tree returned by
+->mount() will be attached to the mountpoint, so that when pathname
+resolution reaches the mountpoint it will jump into the root of that
+vfsmount.
+
+You can see all filesystems that are registered to the kernel in the
+file /proc/filesystems.
+
+
+struct file_system_type
+-----------------------
+
+This describes the filesystem. As of kernel 2.6.39, the following
+members are defined:
+
+.. code-block:: c
+
+ struct file_system_operations {
+ const char *name;
+ int fs_flags;
+ struct dentry *(*mount) (struct file_system_type *, int,
+ const char *, void *);
+ void (*kill_sb) (struct super_block *);
+ struct module *owner;
+ struct file_system_type * next;
+ struct list_head fs_supers;
+ struct lock_class_key s_lock_key;
+ struct lock_class_key s_umount_key;
+ };
+
+``name``: the name of the filesystem type, such as "ext2", "iso9660",
+ "msdos" and so on
+
+``fs_flags``: various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.)
+
+``mount``: the method to call when a new instance of this filesystem should
+be mounted
+
+``kill_sb``: the method to call when an instance of this filesystem
+ should be shut down
+
+``owner``: for internal VFS use: you should initialize this to THIS_MODULE in
+ most cases.
+
+``next``: for internal VFS use: you should initialize this to NULL
+
+ s_lock_key, s_umount_key: lockdep-specific
+
+The mount() method has the following arguments:
+
+``struct file_system_type *fs_type``: describes the filesystem, partly initialized
+ by the specific filesystem code
+
+``int flags``: mount flags
+
+``const char *dev_name``: the device name we are mounting.
+
+``void *data``: arbitrary mount options, usually comes as an ASCII
+ string (see "Mount Options" section)
+
+The mount() method must return the root dentry of the tree requested by
+caller. An active reference to its superblock must be grabbed and the
+superblock must be locked. On failure it should return ERR_PTR(error).
+
+The arguments match those of mount(2) and their interpretation depends
+on filesystem type. E.g. for block filesystems, dev_name is interpreted
+as block device name, that device is opened and if it contains a
+suitable filesystem image the method creates and initializes struct
+super_block accordingly, returning its root dentry to caller.
+
+->mount() may choose to return a subtree of existing filesystem - it
+doesn't have to create a new one. The main result from the caller's
+point of view is a reference to dentry at the root of (sub)tree to be
+attached; creation of new superblock is a common side effect.
+
+The most interesting member of the superblock structure that the mount()
+method fills in is the "s_op" field. This is a pointer to a "struct
+super_operations" which describes the next level of the filesystem
+implementation.
+
+Usually, a filesystem uses one of the generic mount() implementations
+and provides a fill_super() callback instead. The generic variants are:
+
+``mount_bdev``: mount a filesystem residing on a block device
+
+``mount_nodev``: mount a filesystem that is not backed by a device
+
+``mount_single``: mount a filesystem which shares the instance between
+ all mounts
+
+A fill_super() callback implementation has the following arguments:
+
+``struct super_block *sb``: the superblock structure. The callback
+ must initialize this properly.
+
+``void *data``: arbitrary mount options, usually comes as an ASCII
+ string (see "Mount Options" section)
+
+``int silent``: whether or not to be silent on error
+
+
+The Superblock Object
+=====================
+
+A superblock object represents a mounted filesystem.
+
+
+struct super_operations
+-----------------------
+
+This describes how the VFS can manipulate the superblock of your
+filesystem. As of kernel 2.6.22, the following members are defined:
+
+.. code-block:: c
+
+ struct super_operations {
+ struct inode *(*alloc_inode)(struct super_block *sb);
+ void (*destroy_inode)(struct inode *);
+
+ void (*dirty_inode) (struct inode *, int flags);
+ int (*write_inode) (struct inode *, int);
+ void (*drop_inode) (struct inode *);
+ void (*delete_inode) (struct inode *);
+ void (*put_super) (struct super_block *);
+ int (*sync_fs)(struct super_block *sb, int wait);
+ int (*freeze_fs) (struct super_block *);
+ int (*unfreeze_fs) (struct super_block *);
+ int (*statfs) (struct dentry *, struct kstatfs *);
+ int (*remount_fs) (struct super_block *, int *, char *);
+ void (*clear_inode) (struct inode *);
+ void (*umount_begin) (struct super_block *);
+
+ int (*show_options)(struct seq_file *, struct dentry *);
+
+ ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
+ ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
+ int (*nr_cached_objects)(struct super_block *);
+ void (*free_cached_objects)(struct super_block *, int);
+ };
+
+All methods are called without any locks being held, unless otherwise
+noted. This means that most methods can block safely. All methods are
+only called from a process context (i.e. not from an interrupt handler
+or bottom half).
+
+``alloc_inode``: this method is called by alloc_inode() to allocate memory
+ for struct inode and initialize it. If this function is not
+ defined, a simple 'struct inode' is allocated. Normally
+ alloc_inode will be used to allocate a larger structure which
+ contains a 'struct inode' embedded within it.
+
+``destroy_inode``: this method is called by destroy_inode() to release
+ resources allocated for struct inode. It is only required if
+ ->alloc_inode was defined and simply undoes anything done by
+ ->alloc_inode.
+
+``dirty_inode``: this method is called by the VFS to mark an inode dirty.
+
+``write_inode``: this method is called when the VFS needs to write an
+ inode to disc. The second parameter indicates whether the write
+ should be synchronous or not, not all filesystems check this flag.
+
+``drop_inode``: called when the last access to the inode is dropped,
+ with the inode->i_lock spinlock held.
+
+ This method should be either NULL (normal UNIX filesystem
+ semantics) or "generic_delete_inode" (for filesystems that do not
+ want to cache inodes - causing "delete_inode" to always be
+ called regardless of the value of i_nlink)
+
+ The "generic_delete_inode()" behavior is equivalent to the
+ old practice of using "force_delete" in the put_inode() case,
+ but does not have the races that the "force_delete()" approach
+ had.
+
+``delete_inode``: called when the VFS wants to delete an inode
+
+``put_super``: called when the VFS wishes to free the superblock
+ (i.e. unmount). This is called with the superblock lock held
+
+``sync_fs``: called when VFS is writing out all dirty data associated with
+ a superblock. The second parameter indicates whether the method
+ should wait until the write out has been completed. Optional.
+
+``freeze_fs``: called when VFS is locking a filesystem and
+ forcing it into a consistent state. This method is currently
+ used by the Logical Volume Manager (LVM).
+
+``unfreeze_fs``: called when VFS is unlocking a filesystem and making it writable
+ again.
+
+``statfs``: called when the VFS needs to get filesystem statistics.
+
+``remount_fs``: called when the filesystem is remounted. This is called
+ with the kernel lock held
+
+``clear_inode``: called then the VFS clears the inode. Optional
+
+``umount_begin``: called when the VFS is unmounting a filesystem.
+
+``show_options``: called by the VFS to show mount options for
+ /proc/<pid>/mounts. (see "Mount Options" section)
+
+``quota_read``: called by the VFS to read from filesystem quota file.
+
+``quota_write``: called by the VFS to write to filesystem quota file.
+
+``nr_cached_objects``: called by the sb cache shrinking function for the
+ filesystem to return the number of freeable cached objects it contains.
+ Optional.
+
+``free_cache_objects``: called by the sb cache shrinking function for the
+ filesystem to scan the number of objects indicated to try to free them.
+ Optional, but any filesystem implementing this method needs to also
+ implement ->nr_cached_objects for it to be called correctly.
+
+ We can't do anything with any errors that the filesystem might
+ encountered, hence the void return type. This will never be called if
+ the VM is trying to reclaim under GFP_NOFS conditions, hence this
+ method does not need to handle that situation itself.
+
+ Implementations must include conditional reschedule calls inside any
+ scanning loop that is done. This allows the VFS to determine
+ appropriate scan batch sizes without having to worry about whether
+ implementations will cause holdoff problems due to large scan batch
+ sizes.
+
+Whoever sets up the inode is responsible for filling in the "i_op"
+field. This is a pointer to a "struct inode_operations" which describes
+the methods that can be performed on individual inodes.
+
+
+struct xattr_handlers
+---------------------
+
+On filesystems that support extended attributes (xattrs), the s_xattr
+superblock field points to a NULL-terminated array of xattr handlers.
+Extended attributes are name:value pairs.
+
+``name``: Indicates that the handler matches attributes with the specified name
+ (such as "system.posix_acl_access"); the prefix field must be NULL.
+
+``prefix``: Indicates that the handler matches all attributes with the specified
+ name prefix (such as "user."); the name field must be NULL.
+
+``list``: Determine if attributes matching this xattr handler should be listed
+ for a particular dentry. Used by some listxattr implementations like
+ generic_listxattr.
+
+``get``: Called by the VFS to get the value of a particular extended attribute.
+ This method is called by the getxattr(2) system call.
+
+``set``: Called by the VFS to set the value of a particular extended attribute.
+ When the new value is NULL, called to remove a particular extended
+ attribute. This method is called by the the setxattr(2) and
+ removexattr(2) system calls.
+
+When none of the xattr handlers of a filesystem match the specified
+attribute name or when a filesystem doesn't support extended attributes,
+the various ``*xattr(2)`` system calls return -EOPNOTSUPP.
+
+
+The Inode Object
+================
+
+An inode object represents an object within the filesystem.
+
+
+struct inode_operations
+-----------------------
+
+This describes how the VFS can manipulate an inode in your filesystem.
+As of kernel 2.6.22, the following members are defined:
+
+.. code-block:: c
+
+ struct inode_operations {
+ int (*create) (struct inode *,struct dentry *, umode_t, bool);
+ struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
+ int (*link) (struct dentry *,struct inode *,struct dentry *);
+ int (*unlink) (struct inode *,struct dentry *);
+ int (*symlink) (struct inode *,struct dentry *,const char *);
+ int (*mkdir) (struct inode *,struct dentry *,umode_t);
+ int (*rmdir) (struct inode *,struct dentry *);
+ int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
+ int (*rename) (struct inode *, struct dentry *,
+ struct inode *, struct dentry *, unsigned int);
+ int (*readlink) (struct dentry *, char __user *,int);
+ const char *(*get_link) (struct dentry *, struct inode *,
+ struct delayed_call *);
+ int (*permission) (struct inode *, int);
+ int (*get_acl)(struct inode *, int);
+ int (*setattr) (struct dentry *, struct iattr *);
+ int (*getattr) (const struct path *, struct kstat *, u32, unsigned int);
+ ssize_t (*listxattr) (struct dentry *, char *, size_t);
+ void (*update_time)(struct inode *, struct timespec *, int);
+ int (*atomic_open)(struct inode *, struct dentry *, struct file *,
+ unsigned open_flag, umode_t create_mode);
+ int (*tmpfile) (struct inode *, struct dentry *, umode_t);
+ };
+
+Again, all methods are called without any locks being held, unless
+otherwise noted.
+
+``create``: called by the open(2) and creat(2) system calls. Only
+ required if you want to support regular files. The dentry you
+ get should not have an inode (i.e. it should be a negative
+ dentry). Here you will probably call d_instantiate() with the
+ dentry and the newly created inode
+
+``lookup``: called when the VFS needs to look up an inode in a parent
+ directory. The name to look for is found in the dentry. This
+ method must call d_add() to insert the found inode into the
+ dentry. The "i_count" field in the inode structure should be
+ incremented. If the named inode does not exist a NULL inode
+ should be inserted into the dentry (this is called a negative
+ dentry). Returning an error code from this routine must only
+ be done on a real error, otherwise creating inodes with system
+ calls like create(2), mknod(2), mkdir(2) and so on will fail.
+ If you wish to overload the dentry methods then you should
+ initialise the "d_dop" field in the dentry; this is a pointer
+ to a struct "dentry_operations".
+ This method is called with the directory inode semaphore held
+
+``link``: called by the link(2) system call. Only required if you want
+ to support hard links. You will probably need to call
+ d_instantiate() just as you would in the create() method
+
+``unlink``: called by the unlink(2) system call. Only required if you
+ want to support deleting inodes
+
+``symlink``: called by the symlink(2) system call. Only required if you
+ want to support symlinks. You will probably need to call
+ d_instantiate() just as you would in the create() method
+
+``mkdir``: called by the mkdir(2) system call. Only required if you want
+ to support creating subdirectories. You will probably need to
+ call d_instantiate() just as you would in the create() method
+
+``rmdir``: called by the rmdir(2) system call. Only required if you want
+ to support deleting subdirectories
+
+``mknod``: called by the mknod(2) system call to create a device (char,
+ block) inode or a named pipe (FIFO) or socket. Only required
+ if you want to support creating these types of inodes. You
+ will probably need to call d_instantiate() just as you would
+ in the create() method
+
+``rename``: called by the rename(2) system call to rename the object to
+ have the parent and name given by the second inode and dentry.
+
+ The filesystem must return -EINVAL for any unsupported or
+ unknown flags. Currently the following flags are implemented:
+ (1) RENAME_NOREPLACE: this flag indicates that if the target
+ of the rename exists the rename should fail with -EEXIST
+ instead of replacing the target. The VFS already checks for
+ existence, so for local filesystems the RENAME_NOREPLACE
+ implementation is equivalent to plain rename.
+ (2) RENAME_EXCHANGE: exchange source and target. Both must
+ exist; this is checked by the VFS. Unlike plain rename,
+ source and target may be of different type.
+
+``get_link``: called by the VFS to follow a symbolic link to the
+ inode it points to. Only required if you want to support
+ symbolic links. This method returns the symlink body
+ to traverse (and possibly resets the current position with
+ nd_jump_link()). If the body won't go away until the inode
+ is gone, nothing else is needed; if it needs to be otherwise
+ pinned, arrange for its release by having get_link(..., ..., done)
+ do set_delayed_call(done, destructor, argument).
+ In that case destructor(argument) will be called once VFS is
+ done with the body you've returned.
+ May be called in RCU mode; that is indicated by NULL dentry
+ argument. If request can't be handled without leaving RCU mode,
+ have it return ERR_PTR(-ECHILD).
+
+
+ If the filesystem stores the symlink target in ->i_link, the
+ VFS may use it directly without calling ->get_link(); however,
+ ->get_link() must still be provided. ->i_link must not be
+ freed until after an RCU grace period. Writing to ->i_link
+ post-iget() time requires a 'release' memory barrier.
+
+``readlink``: this is now just an override for use by readlink(2) for the
+ cases when ->get_link uses nd_jump_link() or object is not in
+ fact a symlink. Normally filesystems should only implement
+ ->get_link for symlinks and readlink(2) will automatically use
+ that.
+
+``permission``: called by the VFS to check for access rights on a POSIX-like
+ filesystem.
+
+ May be called in rcu-walk mode (mask & MAY_NOT_BLOCK). If in rcu-walk
+ mode, the filesystem must check the permission without blocking or
+ storing to the inode.
+
+ If a situation is encountered that rcu-walk cannot handle, return
+ -ECHILD and it will be called again in ref-walk mode.
+
+``setattr``: called by the VFS to set attributes for a file. This method
+ is called by chmod(2) and related system calls.
+
+``getattr``: called by the VFS to get attributes of a file. This method
+ is called by stat(2) and related system calls.
+
+``listxattr``: called by the VFS to list all extended attributes for a
+ given file. This method is called by the listxattr(2) system call.
+
+``update_time``: called by the VFS to update a specific time or the i_version of
+ an inode. If this is not defined the VFS will update the inode itself
+ and call mark_inode_dirty_sync.
+
+``atomic_open``: called on the last component of an open. Using this optional
+ method the filesystem can look up, possibly create and open the file in
+ one atomic operation. If it wants to leave actual opening to the
+ caller (e.g. if the file turned out to be a symlink, device, or just
+ something filesystem won't do atomic open for), it may signal this by
+ returning finish_no_open(file, dentry). This method is only called if
+ the last component is negative or needs lookup. Cached positive dentries
+ are still handled by f_op->open(). If the file was created,
+ FMODE_CREATED flag should be set in file->f_mode. In case of O_EXCL
+ the method must only succeed if the file didn't exist and hence FMODE_CREATED
+ shall always be set on success.
+
+``tmpfile``: called in the end of O_TMPFILE open(). Optional, equivalent to
+ atomically creating, opening and unlinking a file in given directory.
+
+
+The Address Space Object
+========================
+
+The address space object is used to group and manage pages in the page
+cache. It can be used to keep track of the pages in a file (or anything
+else) and also track the mapping of sections of the file into process
+address spaces.
+
+There are a number of distinct yet related services that an
+address-space can provide. These include communicating memory pressure,
+page lookup by address, and keeping track of pages tagged as Dirty or
+Writeback.
+
+The first can be used independently to the others. The VM can try to
+either write dirty pages in order to clean them, or release clean pages
+in order to reuse them. To do this it can call the ->writepage method
+on dirty pages, and ->releasepage on clean pages with PagePrivate set.
+Clean pages without PagePrivate and with no external references will be
+released without notice being given to the address_space.
+
+To achieve this functionality, pages need to be placed on an LRU with
+lru_cache_add and mark_page_active needs to be called whenever the page
+is used.
+
+Pages are normally kept in a radix tree index by ->index. This tree
+maintains information about the PG_Dirty and PG_Writeback status of each
+page, so that pages with either of these flags can be found quickly.
+
+The Dirty tag is primarily used by mpage_writepages - the default
+->writepages method. It uses the tag to find dirty pages to call
+->writepage on. If mpage_writepages is not used (i.e. the address
+provides its own ->writepages) , the PAGECACHE_TAG_DIRTY tag is almost
+unused. write_inode_now and sync_inode do use it (through
+__sync_single_inode) to check if ->writepages has been successful in
+writing out the whole address_space.
+
+The Writeback tag is used by filemap*wait* and sync_page* functions, via
+filemap_fdatawait_range, to wait for all writeback to complete.
+
+An address_space handler may attach extra information to a page,
+typically using the 'private' field in the 'struct page'. If such
+information is attached, the PG_Private flag should be set. This will
+cause various VM routines to make extra calls into the address_space
+handler to deal with that data.
+
+An address space acts as an intermediate between storage and
+application. Data is read into the address space a whole page at a
+time, and provided to the application either by copying of the page, or
+by memory-mapping the page. Data is written into the address space by
+the application, and then written-back to storage typically in whole
+pages, however the address_space has finer control of write sizes.
+
+The read process essentially only requires 'readpage'. The write
+process is more complicated and uses write_begin/write_end or
+set_page_dirty to write data into the address_space, and writepage and
+writepages to writeback data to storage.
+
+Adding and removing pages to/from an address_space is protected by the
+inode's i_mutex.
+
+When data is written to a page, the PG_Dirty flag should be set. It
+typically remains set until writepage asks for it to be written. This
+should clear PG_Dirty and set PG_Writeback. It can be actually written
+at any point after PG_Dirty is clear. Once it is known to be safe,
+PG_Writeback is cleared.
+
+Writeback makes use of a writeback_control structure to direct the
+operations. This gives the the writepage and writepages operations some
+information about the nature of and reason for the writeback request,
+and the constraints under which it is being done. It is also used to
+return information back to the caller about the result of a writepage or
+writepages request.
+
+
+Handling errors during writeback
+--------------------------------
+
+Most applications that do buffered I/O will periodically call a file
+synchronization call (fsync, fdatasync, msync or sync_file_range) to
+ensure that data written has made it to the backing store. When there
+is an error during writeback, they expect that error to be reported when
+a file sync request is made. After an error has been reported on one
+request, subsequent requests on the same file descriptor should return
+0, unless further writeback errors have occurred since the previous file
+syncronization.
+
+Ideally, the kernel would report errors only on file descriptions on
+which writes were done that subsequently failed to be written back. The
+generic pagecache infrastructure does not track the file descriptions
+that have dirtied each individual page however, so determining which
+file descriptors should get back an error is not possible.
+
+Instead, the generic writeback error tracking infrastructure in the
+kernel settles for reporting errors to fsync on all file descriptions
+that were open at the time that the error occurred. In a situation with
+multiple writers, all of them will get back an error on a subsequent
+fsync, even if all of the writes done through that particular file
+descriptor succeeded (or even if there were no writes on that file
+descriptor at all).
+
+Filesystems that wish to use this infrastructure should call
+mapping_set_error to record the error in the address_space when it
+occurs. Then, after writing back data from the pagecache in their
+file->fsync operation, they should call file_check_and_advance_wb_err to
+ensure that the struct file's error cursor has advanced to the correct
+point in the stream of errors emitted by the backing device(s).
+
+
+struct address_space_operations
+-------------------------------
+
+This describes how the VFS can manipulate mapping of a file to page
+cache in your filesystem. The following members are defined:
+
+.. code-block:: c
+
+ struct address_space_operations {
+ int (*writepage)(struct page *page, struct writeback_control *wbc);
+ int (*readpage)(struct file *, struct page *);
+ int (*writepages)(struct address_space *, struct writeback_control *);
+ int (*set_page_dirty)(struct page *page);
+ int (*readpages)(struct file *filp, struct address_space *mapping,
+ struct list_head *pages, unsigned nr_pages);
+ int (*write_begin)(struct file *, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned flags,
+ struct page **pagep, void **fsdata);
+ int (*write_end)(struct file *, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned copied,
+ struct page *page, void *fsdata);
+ sector_t (*bmap)(struct address_space *, sector_t);
+ void (*invalidatepage) (struct page *, unsigned int, unsigned int);
+ int (*releasepage) (struct page *, int);
+ void (*freepage)(struct page *);
+ ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
+ /* isolate a page for migration */
+ bool (*isolate_page) (struct page *, isolate_mode_t);
+ /* migrate the contents of a page to the specified target */
+ int (*migratepage) (struct page *, struct page *);
+ /* put migration-failed page back to right list */
+ void (*putback_page) (struct page *);
+ int (*launder_page) (struct page *);
+
+ int (*is_partially_uptodate) (struct page *, unsigned long,
+ unsigned long);
+ void (*is_dirty_writeback) (struct page *, bool *, bool *);
+ int (*error_remove_page) (struct mapping *mapping, struct page *page);
+ int (*swap_activate)(struct file *);
+ int (*swap_deactivate)(struct file *);
+ };
+
+``writepage``: called by the VM to write a dirty page to backing store.
+ This may happen for data integrity reasons (i.e. 'sync'), or
+ to free up memory (flush). The difference can be seen in
+ wbc->sync_mode.
+ The PG_Dirty flag has been cleared and PageLocked is true.
+ writepage should start writeout, should set PG_Writeback,
+ and should make sure the page is unlocked, either synchronously
+ or asynchronously when the write operation completes.
+
+ If wbc->sync_mode is WB_SYNC_NONE, ->writepage doesn't have to
+ try too hard if there are problems, and may choose to write out
+ other pages from the mapping if that is easier (e.g. due to
+ internal dependencies). If it chooses not to start writeout, it
+ should return AOP_WRITEPAGE_ACTIVATE so that the VM will not keep
+ calling ->writepage on that page.
+
+ See the file "Locking" for more details.
+
+``readpage``: called by the VM to read a page from backing store.
+ The page will be Locked when readpage is called, and should be
+ unlocked and marked uptodate once the read completes.
+ If ->readpage discovers that it needs to unlock the page for
+ some reason, it can do so, and then return AOP_TRUNCATED_PAGE.
+ In this case, the page will be relocated, relocked and if
+ that all succeeds, ->readpage will be called again.
+
+``writepages``: called by the VM to write out pages associated with the
+ address_space object. If wbc->sync_mode is WBC_SYNC_ALL, then
+ the writeback_control will specify a range of pages that must be
+ written out. If it is WBC_SYNC_NONE, then a nr_to_write is given
+ and that many pages should be written if possible.
+ If no ->writepages is given, then mpage_writepages is used
+ instead. This will choose pages from the address space that are
+ tagged as DIRTY and will pass them to ->writepage.
+
+``set_page_dirty``: called by the VM to set a page dirty.
+ This is particularly needed if an address space attaches
+ private data to a page, and that data needs to be updated when
+ a page is dirtied. This is called, for example, when a memory
+ mapped page gets modified.
+ If defined, it should set the PageDirty flag, and the
+ PAGECACHE_TAG_DIRTY tag in the radix tree.
+
+``readpages``: called by the VM to read pages associated with the address_space
+ object. This is essentially just a vector version of
+ readpage. Instead of just one page, several pages are
+ requested.
+ readpages is only used for read-ahead, so read errors are
+ ignored. If anything goes wrong, feel free to give up.
+
+``write_begin``:
+ Called by the generic buffered write code to ask the filesystem to
+ prepare to write len bytes at the given offset in the file. The
+ address_space should check that the write will be able to complete,
+ by allocating space if necessary and doing any other internal
+ housekeeping. If the write will update parts of any basic-blocks on
+ storage, then those blocks should be pre-read (if they haven't been
+ read already) so that the updated blocks can be written out properly.
+
+ The filesystem must return the locked pagecache page for the specified
+ offset, in ``*pagep``, for the caller to write into.
+
+ It must be able to cope with short writes (where the length passed to
+ write_begin is greater than the number of bytes copied into the page).
+
+ flags is a field for AOP_FLAG_xxx flags, described in
+ include/linux/fs.h.
+
+ A void * may be returned in fsdata, which then gets passed into
+ write_end.
+
+ Returns 0 on success; < 0 on failure (which is the error code), in
+ which case write_end is not called.
+
+``write_end``: After a successful write_begin, and data copy, write_end must
+ be called. len is the original len passed to write_begin, and copied
+ is the amount that was able to be copied.
+
+ The filesystem must take care of unlocking the page and releasing it
+ refcount, and updating i_size.
+
+ Returns < 0 on failure, otherwise the number of bytes (<= 'copied')
+ that were able to be copied into pagecache.
+
+``bmap``: called by the VFS to map a logical block offset within object to
+ physical block number. This method is used by the FIBMAP
+ ioctl and for working with swap-files. To be able to swap to
+ a file, the file must have a stable mapping to a block
+ device. The swap system does not go through the filesystem
+ but instead uses bmap to find out where the blocks in the file
+ are and uses those addresses directly.
+
+``invalidatepage``: If a page has PagePrivate set, then invalidatepage
+ will be called when part or all of the page is to be removed
+ from the address space. This generally corresponds to either a
+ truncation, punch hole or a complete invalidation of the address
+ space (in the latter case 'offset' will always be 0 and 'length'
+ will be PAGE_SIZE). Any private data associated with the page
+ should be updated to reflect this truncation. If offset is 0 and
+ length is PAGE_SIZE, then the private data should be released,
+ because the page must be able to be completely discarded. This may
+ be done by calling the ->releasepage function, but in this case the
+ release MUST succeed.
+
+``releasepage``: releasepage is called on PagePrivate pages to indicate
+ that the page should be freed if possible. ->releasepage
+ should remove any private data from the page and clear the
+ PagePrivate flag. If releasepage() fails for some reason, it must
+ indicate failure with a 0 return value.
+ releasepage() is used in two distinct though related cases. The
+ first is when the VM finds a clean page with no active users and
+ wants to make it a free page. If ->releasepage succeeds, the
+ page will be removed from the address_space and become free.
+
+ The second case is when a request has been made to invalidate
+ some or all pages in an address_space. This can happen
+ through the fadvise(POSIX_FADV_DONTNEED) system call or by the
+ filesystem explicitly requesting it as nfs and 9fs do (when
+ they believe the cache may be out of date with storage) by
+ calling invalidate_inode_pages2().
+ If the filesystem makes such a call, and needs to be certain
+ that all pages are invalidated, then its releasepage will
+ need to ensure this. Possibly it can clear the PageUptodate
+ bit if it cannot free private data yet.
+
+``freepage``: freepage is called once the page is no longer visible in
+ the page cache in order to allow the cleanup of any private
+ data. Since it may be called by the memory reclaimer, it
+ should not assume that the original address_space mapping still
+ exists, and it should not block.
+
+``direct_IO``: called by the generic read/write routines to perform
+ direct_IO - that is IO requests which bypass the page cache
+ and transfer data directly between the storage and the
+ application's address space.
+
+``isolate_page``: Called by the VM when isolating a movable non-lru page.
+ If page is successfully isolated, VM marks the page as PG_isolated
+ via __SetPageIsolated.
+
+``migrate_page``: This is used to compact the physical memory usage.
+ If the VM wants to relocate a page (maybe off a memory card
+ that is signalling imminent failure) it will pass a new page
+ and an old page to this function. migrate_page should
+ transfer any private data across and update any references
+ that it has to the page.
+
+``putback_page``: Called by the VM when isolated page's migration fails.
+
+``launder_page``: Called before freeing a page - it writes back the dirty page. To
+ prevent redirtying the page, it is kept locked during the whole
+ operation.
+
+``is_partially_uptodate``: Called by the VM when reading a file through the
+ pagecache when the underlying blocksize != pagesize. If the required
+ block is up to date then the read can complete without needing the IO
+ to bring the whole page up to date.
+
+``is_dirty_writeback``: Called by the VM when attempting to reclaim a page.
+ The VM uses dirty and writeback information to determine if it needs
+ to stall to allow flushers a chance to complete some IO. Ordinarily
+ it can use PageDirty and PageWriteback but some filesystems have
+ more complex state (unstable pages in NFS prevent reclaim) or
+ do not set those flags due to locking problems. This callback
+ allows a filesystem to indicate to the VM if a page should be
+ treated as dirty or writeback for the purposes of stalling.
+
+``error_remove_page``: normally set to generic_error_remove_page if truncation
+ is ok for this address space. Used for memory failure handling.
+ Setting this implies you deal with pages going away under you,
+ unless you have them locked or reference counts increased.
+
+``swap_activate``: Called when swapon is used on a file to allocate
+ space if necessary and pin the block lookup information in
+ memory. A return value of zero indicates success,
+ in which case this file can be used to back swapspace.
+
+``swap_deactivate``: Called during swapoff on files where swap_activate
+ was successful.
+
+
+The File Object
+===============
+
+A file object represents a file opened by a process. This is also known
+as an "open file description" in POSIX parlance.
+
+
+struct file_operations
+----------------------
+
+This describes how the VFS can manipulate an open file. As of kernel
+4.18, the following members are defined:
+
+.. code-block:: c
+
+ struct file_operations {
+ struct module *owner;
+ loff_t (*llseek) (struct file *, loff_t, int);
+ ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
+ ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
+ ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
+ ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
+ int (*iopoll)(struct kiocb *kiocb, bool spin);
+ int (*iterate) (struct file *, struct dir_context *);
+ int (*iterate_shared) (struct file *, struct dir_context *);
+ __poll_t (*poll) (struct file *, struct poll_table_struct *);
+ long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
+ long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
+ int (*mmap) (struct file *, struct vm_area_struct *);
+ int (*open) (struct inode *, struct file *);
+ int (*flush) (struct file *, fl_owner_t id);
+ int (*release) (struct inode *, struct file *);
+ int (*fsync) (struct file *, loff_t, loff_t, int datasync);
+ int (*fasync) (int