summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst6
-rw-r--r--Documentation/admin-guide/hw-vuln/l1tf.rst2
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt4
-rw-r--r--Documentation/admin-guide/mm/numa_memory_policy.rst2
-rw-r--r--Documentation/block/bfq-iosched.txt2
-rw-r--r--Documentation/cgroup-v1/blkio-controller.rst (renamed from Documentation/cgroup-v1/blkio-controller.txt)79
-rw-r--r--Documentation/cgroup-v1/cgroups.rst (renamed from Documentation/cgroup-v1/cgroups.txt)186
-rw-r--r--Documentation/cgroup-v1/cpuacct.rst (renamed from Documentation/cgroup-v1/cpuacct.txt)15
-rw-r--r--Documentation/cgroup-v1/cpusets.rst (renamed from Documentation/cgroup-v1/cpusets.txt)209
-rw-r--r--Documentation/cgroup-v1/devices.rst (renamed from Documentation/cgroup-v1/devices.txt)40
-rw-r--r--Documentation/cgroup-v1/freezer-subsystem.rst (renamed from Documentation/cgroup-v1/freezer-subsystem.txt)14
-rw-r--r--Documentation/cgroup-v1/hugetlb.rst (renamed from Documentation/cgroup-v1/hugetlb.txt)41
-rw-r--r--Documentation/cgroup-v1/index.rst30
-rw-r--r--Documentation/cgroup-v1/memcg_test.rst (renamed from Documentation/cgroup-v1/memcg_test.txt)265
-rw-r--r--Documentation/cgroup-v1/memory.rst (renamed from Documentation/cgroup-v1/memory.txt)463
-rw-r--r--Documentation/cgroup-v1/net_cls.rst (renamed from Documentation/cgroup-v1/net_cls.txt)37
-rw-r--r--Documentation/cgroup-v1/net_prio.rst (renamed from Documentation/cgroup-v1/net_prio.txt)24
-rw-r--r--Documentation/cgroup-v1/pids.rst (renamed from Documentation/cgroup-v1/pids.txt)82
-rw-r--r--Documentation/cgroup-v1/rdma.rst (renamed from Documentation/cgroup-v1/rdma.txt)66
-rw-r--r--Documentation/filesystems/tmpfs.txt2
-rw-r--r--Documentation/scheduler/sched-deadline.txt2
-rw-r--r--Documentation/scheduler/sched-design-CFS.txt2
-rw-r--r--Documentation/scheduler/sched-rt-group.txt2
-rw-r--r--Documentation/vm/numa.rst4
-rw-r--r--Documentation/vm/page_migration.rst2
-rw-r--r--Documentation/vm/unevictable-lru.rst2
-rw-r--r--Documentation/x86/x86_64/fake-numa-for-cpusets.rst4
-rw-r--r--MAINTAINERS2
-rw-r--r--block/Kconfig2
-rw-r--r--include/linux/cgroup-defs.h2
-rw-r--r--include/linux/cgroup.h2
-rw-r--r--include/uapi/linux/bpf.h2
-rw-r--r--init/Kconfig2
-rw-r--r--kernel/cgroup/cgroup.c43
-rw-r--r--kernel/cgroup/cpuset.c2
-rw-r--r--security/device_cgroup.c2
-rw-r--r--tools/include/uapi/linux/bpf.h2
37 files changed, 1005 insertions, 643 deletions
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index cf88c1f98270..a5c845338d6d 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -705,6 +705,12 @@ Conventions
informational files on the root cgroup which end up showing global
information available elsewhere shouldn't exist.
+- The default time unit is microseconds. If a different unit is ever
+ used, an explicit unit suffix must be present.
+
+- A parts-per quantity should use a percentage decimal with at least
+ two digit fractional part - e.g. 13.40.
+
- If a controller implements weight based resource distribution, its
interface file should be named "weight" and have the range [1,
10000] with 100 as the default. The values are chosen to allow
diff --git a/Documentation/admin-guide/hw-vuln/l1tf.rst b/Documentation/admin-guide/hw-vuln/l1tf.rst
index 31653a9f0e1b..656aee262e23 100644
--- a/Documentation/admin-guide/hw-vuln/l1tf.rst
+++ b/Documentation/admin-guide/hw-vuln/l1tf.rst
@@ -241,7 +241,7 @@ Guest mitigation mechanisms
For further information about confining guests to a single or to a group
of cores consult the cpusets documentation:
- https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
+ https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.rst
.. _interrupt_isolation:
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index e6e806285703..74d28efa1c40 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -4084,7 +4084,7 @@
relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
- See Documentation/cgroup-v1/cpusets.txt.
+ See Documentation/cgroup-v1/cpusets.rst.
reserve= [KNL,BUGS] Force kernel to ignore I/O ports or memory
Format: <base1>,<size1>[,<base2>,<size2>,...]
@@ -4594,7 +4594,7 @@
swapaccount=[0|1]
[KNL] Enable accounting of swap in memory resource
controller if no parameter or 1 is given or disable
- it if 0 is given (See Documentation/cgroup-v1/memory.txt)
+ it if 0 is given (See Documentation/cgroup-v1/memory.rst)
swiotlb= [ARM,IA-64,PPC,MIPS,X86]
Format: { <int> | force | noforce }
diff --git a/Documentation/admin-guide/mm/numa_memory_policy.rst b/Documentation/admin-guide/mm/numa_memory_policy.rst
index d78c5b315f72..546f174e5d6a 100644
--- a/Documentation/admin-guide/mm/numa_memory_policy.rst
+++ b/Documentation/admin-guide/mm/numa_memory_policy.rst
@@ -15,7 +15,7 @@ document attempts to describe the concepts and APIs of the 2.6 memory policy
support.
Memory policies should not be confused with cpusets
-(``Documentation/cgroup-v1/cpusets.txt``)
+(``Documentation/cgroup-v1/cpusets.rst``)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.txt
index 1a0f2ac02eb6..b2265cf6c9c3 100644
--- a/Documentation/block/bfq-iosched.txt
+++ b/Documentation/block/bfq-iosched.txt
@@ -539,7 +539,7 @@ As for cgroups-v1 (blkio controller), the exact set of stat files
created, and kept up-to-date by bfq, depends on whether
CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq creates all
the stat files documented in
-Documentation/cgroup-v1/blkio-controller.txt. If, instead,
+Documentation/cgroup-v1/blkio-controller.rst. If, instead,
CONFIG_DEBUG_BLK_CGROUP is not set, then bfq creates only the files
blkio.bfq.io_service_bytes
blkio.bfq.io_service_bytes_recursive
diff --git a/Documentation/cgroup-v1/blkio-controller.txt b/Documentation/cgroup-v1/blkio-controller.rst
index d1a1b7bdd03a..fd3184537d23 100644
--- a/Documentation/cgroup-v1/blkio-controller.txt
+++ b/Documentation/cgroup-v1/blkio-controller.rst
@@ -1,5 +1,7 @@
- Block IO Controller
- ===================
+===================
+Block IO Controller
+===================
+
Overview
========
cgroup subsys "blkio" implements the block io controller. There seems to be
@@ -17,24 +19,27 @@ HOWTO
=====
Throttling/Upper Limit policy
-----------------------------
-- Enable Block IO controller
+- Enable Block IO controller::
+
CONFIG_BLK_CGROUP=y
-- Enable throttling in block layer
+- Enable throttling in block layer::
+
CONFIG_BLK_DEV_THROTTLING=y
-- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)
+- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)::
+
mount -t cgroup -o blkio none /sys/fs/cgroup/blkio
- Specify a bandwidth rate on particular device for root group. The format
- for policy is "<major>:<minor> <bytes_per_second>".
+ for policy is "<major>:<minor> <bytes_per_second>"::
echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.throttle.read_bps_device
Above will put a limit of 1MB/second on reads happening for root group
on device having major/minor number 8:16.
-- Run dd to read a file and see if rate is throttled to 1MB/s or not.
+- Run dd to read a file and see if rate is throttled to 1MB/s or not::
# dd iflag=direct if=/mnt/common/zerofile of=/dev/null bs=4K count=1024
1024+0 records in
@@ -51,7 +56,7 @@ throttling's hierarchy support is enabled iff "sane_behavior" is
enabled from cgroup side, which currently is a development option and
not publicly available.
-If somebody created a hierarchy like as follows.
+If somebody created a hierarchy like as follows::
root
/ \
@@ -66,7 +71,7 @@ directly generated by tasks in that cgroup.
Throttling without "sane_behavior" enabled from cgroup side will
practically treat all groups at same level as if it looks like the
-following.
+following::
pivot
/ / \ \
@@ -99,27 +104,31 @@ Proportional weight policy files
These rules override the default value of group weight as specified
by blkio.weight.
- Following is the format.
+ Following is the format::
+
+ # echo dev_maj:dev_minor weight > blkio.weight_device
+
+ Configure weight=300 on /dev/sdb (8:16) in this cgroup::
+
+ # echo 8:16 300 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
+
+ Configure weight=500 on /dev/sda (8:0) in this cgroup::
- # echo dev_maj:dev_minor weight > blkio.weight_device
- Configure weight=300 on /dev/sdb (8:16) in this cgroup
- # echo 8:16 300 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
+ # echo 8:0 500 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:0 500
+ 8:16 300
- Configure weight=500 on /dev/sda (8:0) in this cgroup
- # echo 8:0 500 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:0 500
- 8:16 300
+ Remove specific weight for /dev/sda in this cgroup::
- Remove specific weight for /dev/sda in this cgroup
- # echo 8:0 0 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
+ # echo 8:0 0 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
- blkio.leaf_weight[_device]
- Equivalents of blkio.weight[_device] for the purpose of
@@ -244,30 +253,30 @@ Throttling/Upper limit policy files
- blkio.throttle.read_bps_device
- Specifies upper limit on READ rate from the device. IO rate is
specified in bytes per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
- blkio.throttle.write_bps_device
- Specifies upper limit on WRITE rate to the device. IO rate is
specified in bytes per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
- blkio.throttle.read_iops_device
- Specifies upper limit on READ rate from the device. IO rate is
specified in IO per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
- blkio.throttle.write_iops_device
- Specifies upper limit on WRITE rate to the device. IO rate is
specified in io per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
Note: If both BW and IOPS rules are specified for a device, then IO is
subjected to both the constraints.
diff --git a/Documentation/cgroup-v1/cgroups.txt b/Documentation/cgroup-v1/cgroups.rst
index 059f7063eea6..46bbe7e022d4 100644
--- a/Documentation/cgroup-v1/cgroups.txt
+++ b/Documentation/cgroup-v1/cgroups.rst
@@ -1,35 +1,39 @@
- CGROUPS
- -------
+==============
+Control Groups
+==============
Written by Paul Menage <menage@google.com> based on
-Documentation/cgroup-v1/cpusets.txt
+Documentation/cgroup-v1/cpusets.rst
Original copyright statements from cpusets.txt:
+
Portions Copyright (C) 2004 BULL SA.
+
Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+
Modified by Paul Jackson <pj@sgi.com>
+
Modified by Christoph Lameter <cl@linux.com>
-CONTENTS:
-=========
-
-1. Control Groups
- 1.1 What are cgroups ?
- 1.2 Why are cgroups needed ?
- 1.3 How are cgroups implemented ?
- 1.4 What does notify_on_release do ?
- 1.5 What does clone_children do ?
- 1.6 How do I use cgroups ?
-2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Attaching processes
- 2.3 Mounting hierarchies by name
-3. Kernel API
- 3.1 Overview
- 3.2 Synchronization
- 3.3 Subsystem API
-4. Extended attributes usage
-5. Questions
+.. CONTENTS:
+
+ 1. Control Groups
+ 1.1 What are cgroups ?
+ 1.2 Why are cgroups needed ?
+ 1.3 How are cgroups implemented ?
+ 1.4 What does notify_on_release do ?
+ 1.5 What does clone_children do ?
+ 1.6 How do I use cgroups ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Attaching processes
+ 2.3 Mounting hierarchies by name
+ 3. Kernel API
+ 3.1 Overview
+ 3.2 Synchronization
+ 3.3 Subsystem API
+ 4. Extended attributes usage
+ 5. Questions
1. Control Groups
=================
@@ -72,7 +76,7 @@ On their own, the only use for cgroups is for simple job
tracking. The intention is that other subsystems hook into the generic
cgroup support to provide new attributes for cgroups, such as
accounting/limiting the resources which processes in a cgroup can
-access. For example, cpusets (see Documentation/cgroup-v1/cpusets.txt) allow
+access. For example, cpusets (see Documentation/cgroup-v1/cpusets.rst) allow
you to associate a set of CPUs and a set of memory nodes with the
tasks in each cgroup.
@@ -108,7 +112,7 @@ As an example of a scenario (originally proposed by vatsa@in.ibm.com)
that can benefit from multiple hierarchies, consider a large
university server with various users - students, professors, system
tasks etc. The resource planning for this server could be along the
-following lines:
+following lines::
CPU : "Top cpuset"
/ \
@@ -136,7 +140,7 @@ depending on who launched it (prof/student).
With the ability to classify tasks differently for different resources
(by putting those resource subsystems in different hierarchies),
the admin can easily set up a script which receives exec notifications
-and depending on who is launching the browser he can
+and depending on who is launching the browser he can::
# echo browser_pid > /sys/fs/cgroup/<restype>/<userclass>/tasks
@@ -151,7 +155,7 @@ wants to do online gaming :)) OR give one of the student's simulation
apps enhanced CPU power.
With ability to write PIDs directly to resource classes, it's just a
-matter of:
+matter of::
# echo pid > /sys/fs/cgroup/network/<new_class>/tasks
(after some time)
@@ -306,7 +310,7 @@ configuration from the parent during initialization.
--------------------------
To start a new job that is to be contained within a cgroup, using
-the "cpuset" cgroup subsystem, the steps are something like:
+the "cpuset" cgroup subsystem, the steps are something like::
1) mount -t tmpfs cgroup_root /sys/fs/cgroup
2) mkdir /sys/fs/cgroup/cpuset
@@ -320,7 +324,7 @@ the "cpuset" cgroup subsystem, the steps are something like:
For example, the following sequence of commands will setup a cgroup
named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
-and then start a subshell 'sh' in that cgroup:
+and then start a subshell 'sh' in that cgroup::
mount -t tmpfs cgroup_root /sys/fs/cgroup
mkdir /sys/fs/cgroup/cpuset
@@ -345,8 +349,9 @@ and then start a subshell 'sh' in that cgroup:
Creating, modifying, using cgroups can be done through the cgroup
virtual filesystem.
-To mount a cgroup hierarchy with all available subsystems, type:
-# mount -t cgroup xxx /sys/fs/cgroup
+To mount a cgroup hierarchy with all available subsystems, type::
+
+ # mount -t cgroup xxx /sys/fs/cgroup
The "xxx" is not interpreted by the cgroup code, but will appear in
/proc/mounts so may be any useful identifying string that you like.
@@ -355,18 +360,19 @@ Note: Some subsystems do not work without some user input first. For instance,
if cpusets are enabled the user will have to populate the cpus and mems files
for each new cgroup created before that group can be used.
-As explained in section `1.2 Why are cgroups needed?' you should create
+As explained in section `1.2 Why are cgroups needed?` you should create
different hierarchies of cgroups for each single resource or group of
resources you want to control. Therefore, you should mount a tmpfs on
/sys/fs/cgroup and create directories for each cgroup resource or resource
-group.
+group::
-# mount -t tmpfs cgroup_root /sys/fs/cgroup
-# mkdir /sys/fs/cgroup/rg1
+ # mount -t tmpfs cgroup_root /sys/fs/cgroup
+ # mkdir /sys/fs/cgroup/rg1
To mount a cgroup hierarchy with just the cpuset and memory
-subsystems, type:
-# mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
+subsystems, type::
+
+ # mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
While remounting cgroups is currently supported, it is not recommend
to use it. Remounting allows changing bound subsystems and
@@ -375,9 +381,10 @@ hierarchy is empty and release_agent itself should be replaced with
conventional fsnotify. The support for remounting will be removed in
the future.
-To Specify a hierarchy's release_agent:
-# mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
- xxx /sys/fs/cgroup/rg1
+To Specify a hierarchy's release_agent::
+
+ # mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
+ xxx /sys/fs/cgroup/rg1
Note that specifying 'release_agent' more than once will return failure.
@@ -390,32 +397,39 @@ Then under /sys/fs/cgroup/rg1 you can find a tree that corresponds to the
tree of the cgroups in the system. For instance, /sys/fs/cgroup/rg1
is the cgroup that holds the whole system.
-If you want to change the value of release_agent:
-# echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
+If you want to change the value of release_agent::
+
+ # echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
It can also be changed via remount.
-If you want to create a new cgroup under /sys/fs/cgroup/rg1:
-# cd /sys/fs/cgroup/rg1
-# mkdir my_cgroup
+If you want to create a new cgroup under /sys/fs/cgroup/rg1::
+
+ # cd /sys/fs/cgroup/rg1
+ # mkdir my_cgroup
+
+Now you want to do something with this cgroup:
+
+ # cd my_cgroup
-Now you want to do something with this cgroup.
-# cd my_cgroup
+In this directory you can find several files::
-In this directory you can find several files:
-# ls
-cgroup.procs notify_on_release tasks
-(plus whatever files added by the attached subsystems)
+ # ls
+ cgroup.procs notify_on_release tasks
+ (plus whatever files added by the attached subsystems)
-Now attach your shell to this cgroup:
-# /bin/echo $$ > tasks
+Now attach your shell to this cgroup::
+
+ # /bin/echo $$ > tasks
You can also create cgroups inside your cgroup by using mkdir in this
-directory.
-# mkdir my_sub_cs
+directory::
+
+ # mkdir my_sub_cs
+
+To remove a cgroup, just use rmdir::
-To remove a cgroup, just use rmdir:
-# rmdir my_sub_cs
+ # rmdir my_sub_cs
This will fail if the cgroup is in use (has cgroups inside, or
has processes attached, or is held alive by other subsystem-specific
@@ -424,19 +438,21 @@ reference).
2.2 Attaching processes
-----------------------
-# /bin/echo PID > tasks
+::
+
+ # /bin/echo PID > tasks
Note that it is PID, not PIDs. You can only attach ONE task at a time.
-If you have several tasks to attach, you have to do it one after another:
+If you have several tasks to attach, you have to do it one after another::
-# /bin/echo PID1 > tasks
-# /bin/echo PID2 > tasks
- ...
-# /bin/echo PIDn > tasks
+ # /bin/echo PID1 > tasks
+ # /bin/echo PID2 > tasks
+ ...
+ # /bin/echo PIDn > tasks
-You can attach the current shell task by echoing 0:
+You can attach the current shell task by echoing 0::
-# echo 0 > tasks
+ # echo 0 > tasks
You can use the cgroup.procs file instead of the tasks file to move all
threads in a threadgroup at once. Echoing the PID of any task in a
@@ -529,7 +545,7 @@ Each subsystem may export the following methods. The only mandatory
methods are css_alloc/free. Any others that are null are presumed to
be successful no-ops.
-struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)
+``struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
Called to allocate a subsystem state object for a cgroup. The
@@ -544,7 +560,7 @@ identified by the passed cgroup object having a NULL parent (since
it's the root of the hierarchy) and may be an appropriate place for
initialization code.
-int css_online(struct cgroup *cgrp)
+``int css_online(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
Called after @cgrp successfully completed all allocations and made
@@ -554,7 +570,7 @@ callback can be used to implement reliable state sharing and
propagation along the hierarchy. See the comment on
cgroup_for_each_descendant_pre() for details.
-void css_offline(struct cgroup *cgrp);
+``void css_offline(struct cgroup *cgrp);``
(cgroup_mutex held by caller)
This is the counterpart of css_online() and called iff css_online()
@@ -564,7 +580,7 @@ all references it's holding on @cgrp. When all references are dropped,
cgroup removal will proceed to the next step - css_free(). After this
callback, @cgrp should be considered dead to the subsystem.
-void css_free(struct cgroup *cgrp)
+``void css_free(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
The cgroup system is about to free @cgrp; the subsystem should free
@@ -573,7 +589,7 @@ is completely unused; @cgrp->parent is still valid. (Note - can also
be called for a newly-created cgroup if an error occurs after this
subsystem's create() method has been called for the new cgroup).
-int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called prior to moving one or more tasks into a cgroup; if the
@@ -594,7 +610,7 @@ fork. If this method returns 0 (success) then this should remain valid
while the caller holds cgroup_mutex and it is ensured that either
attach() or cancel_attach() will be called in future.
-void css_reset(struct cgroup_subsys_state *css)
+``void css_reset(struct cgroup_subsys_state *css)``
(cgroup_mutex held by caller)
An optional operation which should restore @css's configuration to the
@@ -608,7 +624,7 @@ This prevents unexpected resource control from a hidden css and
ensures that the configuration is in the initial state when it is made
visible again later.
-void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called when a task attach operation has failed after can_attach() has succeeded.
@@ -617,26 +633,26 @@ function, so that the subsystem can implement a rollback. If not, not necessary.
This will be called only about subsystems whose can_attach() operation have
succeeded. The parameters are identical to can_attach().
-void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called after the task has been attached to the cgroup, to allow any
post-attachment activity that requires memory allocations or blocking.
The parameters are identical to can_attach().
-void fork(struct task_struct *task)
+``void fork(struct task_struct *task)``
Called when a task is forked into a cgroup.
-void exit(struct task_struct *task)
+``void exit(struct task_struct *task)``
Called during task exit.
-void free(struct task_struct *task)
+``void free(struct task_struct *task)``
Called when the task_struct is freed.
-void bind(struct cgroup *root)
+``void bind(struct cgroup *root)``
(cgroup_mutex held by caller)
Called when a cgroup subsystem is rebound to a different hierarchy
@@ -649,6 +665,7 @@ that is being created/destroyed (and hence has no sub-cgroups).
cgroup filesystem supports certain types of extended attributes in its
directories and files. The current supported types are:
+
- Trusted (XATTR_TRUSTED)
- Security (XATTR_SECURITY)
@@ -666,12 +683,13 @@ in containers and systemd for assorted meta data like main PID in a cgroup
5. Questions
============
-Q: what's up with this '/bin/echo' ?
-A: bash's builtin 'echo' command does not check calls to write() against
- errors. If you use it in the cgroup file system, you won't be
- able to tell whether a command succeeded or failed.
+::
-Q: When I attach processes, only the first of the line gets really attached !
-A: We can only return one error code per call to write(). So you should also
- put only ONE PID.
+ Q: what's up with this '/bin/echo' ?
+ A: bash's builtin 'echo' command does not check calls to write() against
+ errors. If you use it in the cgroup file system, you won't be
+ able to tell whether a command succeeded or failed.
+ Q: When I attach processes, only the first of the line gets really attached !
+ A: We can only return one error code per call to write(). So you should also
+ put only ONE PID.
diff --git a/Documentation/cgroup-v1/cpuacct.txt b/Documentation/cgroup-v1/cpuacct.rst
index 9d73cc0cadb9..d30ed81d2ad7 100644
--- a/Documentation/cgroup-v1/cpuacct.txt
+++ b/Documentation/cgroup-v1/cpuacct.rst
@@ -1,5 +1,6 @@
+=========================
CPU Accounting Controller
--------------------------
+=========================
The CPU accounting controller is used to group tasks using cgroups and
account the CPU usage of these groups of tasks.
@@ -8,9 +9,9 @@ The CPU accounting controller supports multi-hierarchy groups. An accounting
group accumulates the CPU usage of all of its child groups and the tasks
directly present in its group.
-Accounting groups can be created by first mounting the cgroup filesystem.
+Accounting groups can be created by first mounting the cgroup filesystem::
-# mount -t cgroup -ocpuacct none /sys/fs/cgroup
+ # mount -t cgroup -ocpuacct none /sys/fs/cgroup
With the above step, the initial or the parent accounting group becomes
visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
@@ -19,11 +20,11 @@ the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
by this group which is essentially the CPU time obtained by all the tasks
in the system.
-New accounting groups can be created under the parent group /sys/fs/cgroup.
+New accounting groups can be created under the parent group /sys/fs/cgroup::
-# cd /sys/fs/cgroup
-# mkdir g1
-# echo $$ > g1/tasks
+ # cd /sys/fs/cgroup
+ # mkdir g1
+ # echo $$ > g1/tasks
The above steps create a new group g1 and move the current shell
process (bash) into it. CPU time consumed by this bash and its children
diff --git a/Documentation/cgroup-v1/cpusets.txt b/Documentation/cgroup-v1/cpusets.rst
index 8402dd6de8df..b6a42cdea72b 100644
--- a/Documentation/cgroup-v1/cpusets.txt
+++ b/Documentation/cgroup-v1/cpusets.rst
@@ -1,35 +1,36 @@
- CPUSETS
- -------
+=======
+CPUSETS
+=======
Copyright (C) 2004 BULL SA.
-Written by Simon.Derr@bull.net
-
-Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
-Modified by Paul Jackson <pj@sgi.com>
-Modified by Christoph Lameter <cl@linux.com>
-Modified by Paul Menage <menage@google.com>
-Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
-CONTENTS:
-=========
+Written by Simon.Derr@bull.net
-1. Cpusets
- 1.1 What are cpusets ?
- 1.2 Why are cpusets needed ?
- 1.3 How are cpusets implemented ?
- 1.4 What are exclusive cpusets ?
- 1.5 What is memory_pressure ?
- 1.6 What is memory spread ?
- 1.7 What is sched_load_balance ?
- 1.8 What is sched_relax_domain_level ?
- 1.9 How do I use cpusets ?
-2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Adding/removing cpus
- 2.3 Setting flags
- 2.4 Attaching processes
-3. Questions
-4. Contact
+- Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+- Modified by Paul Jackson <pj@sgi.com>
+- Modified by Christoph Lameter <cl@linux.com>
+- Modified by Paul Menage <menage@google.com>
+- Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
+
+.. CONTENTS:
+
+ 1. Cpusets
+ 1.1 What are cpusets ?
+ 1.2 Why are cpusets needed ?
+ 1.3 How are cpusets implemented ?
+ 1.4 What are exclusive cpusets ?
+ 1.5 What is memory_pressure ?
+ 1.6 What is memory spread ?
+ 1.7 What is sched_load_balance ?
+ 1.8 What is sched_relax_domain_level ?
+ 1.9 How do I use cpusets ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Adding/removing cpus
+ 2.3 Setting flags
+ 2.4 Attaching processes
+ 3. Questions
+ 4. Contact
1. Cpusets
==========
@@ -48,7 +49,7 @@ hooks, beyond what is already present, required to manage dynamic
job placement on large systems.
Cpus