summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/fmc/API.txt47
-rw-r--r--Documentation/fmc/FMC-and-SDB.txt88
-rw-r--r--Documentation/fmc/carrier.txt311
-rw-r--r--Documentation/fmc/fmc-chardev.txt64
-rw-r--r--Documentation/fmc/fmc-fakedev.txt36
-rw-r--r--Documentation/fmc/fmc-trivial.txt17
-rw-r--r--Documentation/fmc/fmc-write-eeprom.txt98
-rw-r--r--Documentation/fmc/identifiers.txt168
-rw-r--r--Documentation/fmc/mezzanine.txt123
-rw-r--r--Documentation/fmc/parameters.txt56
-rw-r--r--drivers/Kconfig2
-rw-r--r--drivers/Makefile1
-rw-r--r--drivers/fmc/Kconfig52
-rw-r--r--drivers/fmc/Makefile15
-rw-r--r--drivers/fmc/fmc-chardev.c199
-rw-r--r--drivers/fmc/fmc-core.c388
-rw-r--r--drivers/fmc/fmc-debug.c172
-rw-r--r--drivers/fmc/fmc-dump.c58
-rw-r--r--drivers/fmc/fmc-fakedev.c355
-rw-r--r--drivers/fmc/fmc-match.c113
-rw-r--r--drivers/fmc/fmc-private.h8
-rw-r--r--drivers/fmc/fmc-sdb.c219
-rw-r--r--drivers/fmc/fmc-trivial.c102
-rw-r--r--drivers/fmc/fmc-write-eeprom.c175
-rw-r--r--drivers/fmc/fru-parse.c80
-rw-r--r--include/linux/fmc-sdb.h39
-rw-r--r--include/linux/fmc.h271
27 files changed, 0 insertions, 3257 deletions
diff --git a/Documentation/fmc/API.txt b/Documentation/fmc/API.txt
deleted file mode 100644
index 06b06b92c794..000000000000
--- a/Documentation/fmc/API.txt
+++ /dev/null
@@ -1,47 +0,0 @@
-Functions Exported by fmc.ko
-****************************
-
-The FMC core exports the usual 4 functions that are needed for a bus to
-work, and a few more:
-
- int fmc_driver_register(struct fmc_driver *drv);
- void fmc_driver_unregister(struct fmc_driver *drv);
- int fmc_device_register(struct fmc_device *fmc);
- void fmc_device_unregister(struct fmc_device *fmc);
-
- int fmc_device_register_n(struct fmc_device **fmc, int n);
- void fmc_device_unregister_n(struct fmc_device **fmc, int n);
-
- uint32_t fmc_readl(struct fmc_device *fmc, int offset);
- void fmc_writel(struct fmc_device *fmc, uint32_t val, int off);
- void *fmc_get_drvdata(struct fmc_device *fmc);
- void fmc_set_drvdata(struct fmc_device *fmc, void *data);
-
- int fmc_reprogram(struct fmc_device *f, struct fmc_driver *d, char *gw,
- int sdb_entry);
-
-The data structure that describe a device is detailed in *note FMC
-Device::, the one that describes a driver is detailed in *note FMC
-Driver::. Please note that structures of type fmc_device must be
-allocated by the caller, but must not be released after unregistering.
-The fmc-bus itself takes care of releasing the structure when their use
-count reaches zero - actually, the device model does that in lieu of us.
-
-The functions to register and unregister n devices are meant to be used
-by carriers that host more than one mezzanine. The devices must all be
-registered at the same time because if the FPGA is reprogrammed, all
-devices in the array are affected. Usually, the driver matching the
-first device will reprogram the FPGA, so other devices must know they
-are already driven by a reprogrammed FPGA.
-
-If a carrier hosts slots that are driven by different FPGA devices, it
-should register as a group only mezzanines that are driven by the same
-FPGA, for the reason outlined above.
-
-Finally, the fmc_reprogram function calls the reprogram method (see
-*note The API Offered by Carriers:: and also scans the memory area for
-an SDB tree. You can pass -1 as sdb_entry to disable such scan.
-Otherwise, the function fails if no tree is found at the specified
-entry point. The function is meant to factorize common code, and by
-the time you read this it is already used by the spec-sw and fine-delay
-modules.
diff --git a/Documentation/fmc/FMC-and-SDB.txt b/Documentation/fmc/FMC-and-SDB.txt
deleted file mode 100644
index fa14e0b24521..000000000000
--- a/Documentation/fmc/FMC-and-SDB.txt
+++ /dev/null
@@ -1,88 +0,0 @@
-
-FMC (FPGA Mezzanine Card) is the standard we use for our I/O devices,
-in the context of White Rabbit and related hardware.
-
-In our I/O environments we need to write drivers for each mezzanine
-card, and such drivers must work regardless of the carrier being used.
-To achieve this, we abstract the FMC interface.
-
-We have a carrier for PCI-E called SPEC and one for VME called SVEC,
-but more are planned. Also, we support stand-alone devices (usually
-plugged on a SPEC card), controlled through Etherbone, developed by GSI.
-
-Code and documentation for the FMC bus was born as part of the spec-sw
-project, but now it lives in its own project. Other projects, i.e.
-software support for the various carriers, should include this as a
-submodule.
-
-The most up to date version of code and documentation is always
-available from the repository you can clone from:
-
- git://ohwr.org/fmc-projects/fmc-bus.git (read-only)
- git@ohwr.org:fmc-projects/fmc-bus.git (read-write for developers)
-
-Selected versions of the documentation, as well as complete tar
-archives for selected revisions are placed to the Files section of the
-project: `http://www.ohwr.org/projects/fmc-bus/files'
-
-
-What is FMC
-***********
-
-FMC, as said, stands for "FPGA Mezzanine Card". It is a standard
-developed by the VME consortium called VITA (VMEbus International Trade
-Association and ratified by ANSI, the American National Standard
-Institute. The official documentation is called "ANSI-VITA 57.1".
-
-The FMC card is an almost square PCB, around 70x75 millimeters, that is
-called mezzanine in this document. It usually lives plugged into
-another PCB for power supply and control; such bigger circuit board is
-called carrier from now on, and a single carrier may host more than one
-mezzanine.
-
-In the typical application the mezzanine is mostly analog while the
-carrier is mostly digital, and hosts an FPGA that must be configured to
-match the specific mezzanine and the desired application. Thus, you may
-need to load different FPGA images to drive different instances of the
-same mezzanine.
-
-FMC, as such, is not a bus in the usual meaning of the term, because
-most carriers have only one connector, and carriers with several
-connectors have completely separate electrical connections to them.
-This package, however, implements a bus as a software abstraction.
-
-
-What is SDB
-***********
-
-SDB (Self Describing Bus) is a set of data structures that we use for
-enumerating the internal structure of an FPGA image. We also use it as
-a filesystem inside the FMC EEPROM.
-
-SDB is not mandatory for use of this FMC kernel bus, but if you have SDB
-this package can make good use of it. SDB itself is developed in the
-fpga-config-space OHWR project. The link to the repository is
-`git://ohwr.org/hdl-core-lib/fpga-config-space.git' and what is used in
-this project lives in the sdbfs subdirectory in there.
-
-SDB support for FMC is described in *note FMC Identification:: and
-*note SDB Support::
-
-
-SDB Support
-***********
-
-The fmc.ko bus driver exports a few functions to help drivers taking
-advantage of the SDB information that may be present in your own FPGA
-memory image.
-
-The module exports the following functions, in the special header
-<linux/fmc-sdb.h>. The linux/ prefix in the name is there because we
-plan to submit it upstream in the future, and don't want to force
-changes on our drivers if that happens.
-
- int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address);
- void fmc_show_sdb_tree(struct fmc_device *fmc);
- signed long fmc_find_sdb_device(struct sdb_array *tree, uint64_t vendor,
- uint32_t device, unsigned long *sz);
- int fmc_free_sdb_tree(struct fmc_device *fmc);
diff --git a/Documentation/fmc/carrier.txt b/Documentation/fmc/carrier.txt
deleted file mode 100644
index 5e4f1dd3e98b..000000000000
--- a/Documentation/fmc/carrier.txt
+++ /dev/null
@@ -1,311 +0,0 @@
-FMC Device
-**********
-
-Within the Linux bus framework, the FMC device is created and
-registered by the carrier driver. For example, the PCI driver for the
-SPEC card fills a data structure for each SPEC that it drives, and
-registers an associated FMC device for each card. The SVEC driver can
-do exactly the same for the VME carrier (actually, it should do it
-twice, because the SVEC carries two FMC mezzanines). Similarly, an
-Etherbone driver will be able to register its own FMC devices, offering
-communication primitives through frame exchange.
-
-The contents of the EEPROM within the FMC are used for identification
-purposes, i.e. for matching the device with its own driver. For this
-reason the device structure includes a complete copy of the EEPROM
-(actually, the carrier driver may choose whether or not to return it -
-for example we most likely won't have the whole EEPROM available for
-Etherbone devices.
-
-The following listing shows the current structure defining a device.
-Please note that all the machinery is in place but some details may
-still change in the future. For this reason, there is a version field
-at the beginning of the structure. As usual, the minor number will
-change for compatible changes (like a new flag) and the major number
-will increase when an incompatible change happens (for example, a
-change in layout of some fmc data structures). Device writers should
-just set it to the value FMC_VERSION, and be ready to get back -EINVAL
-at registration time.
-
- struct fmc_device {
- unsigned long version;
- unsigned long flags;
- struct module *owner; /* char device must pin it */
- struct fmc_fru_id id; /* for EEPROM-based match */
- struct fmc_operations *op; /* carrier-provided */
- int irq; /* according to host bus. 0 == none */
- int eeprom_len; /* Usually 8kB, may be less */
- int eeprom_addr; /* 0x50, 0x52 etc */
- uint8_t *eeprom; /* Full contents or leading part */
- char *carrier_name; /* "SPEC" or similar, for special use */
- void *carrier_data; /* "struct spec *" or equivalent */
- __iomem void *fpga_base; /* May be NULL (Etherbone) */
- __iomem void *slot_base; /* Set by the driver */
- struct fmc_device **devarray; /* Allocated by the bus */
- int slot_id; /* Index in the slot array */
- int nr_slots; /* Number of slots in this carrier */
- unsigned long memlen; /* Used for the char device */
- struct device dev; /* For Linux use */
- struct device *hwdev; /* The underlying hardware device */
- unsigned long sdbfs_entry;
- struct sdb_array *sdb;
- uint32_t device_id; /* Filled by the device */
- char *mezzanine_name; /* Defaults to ``fmc'' */
- void *mezzanine_data;
- };
-
-The meaning of most fields is summarized in the code comment above.
-
-The following fields must be filled by the carrier driver before
-registration:
-
- * version: must be set to FMC_VERSION.
-
- * owner: set to MODULE_OWNER.
-
- * op: the operations to act on the device.
-
- * irq: number for the mezzanine; may be zero.
-
- * eeprom_len: length of the following array.
-
- * eeprom_addr: 0x50 for first mezzanine and so on.
-
- * eeprom: the full content of the I2C EEPROM.
-
- * carrier_name.
-
- * carrier_data: a unique pointer for the carrier.
-
- * fpga_base: the I/O memory address (may be NULL).
-
- * slot_id: the index of this slot (starting from zero).
-
- * memlen: if fpga_base is valid, the length of I/O memory.
-
- * hwdev: to be used in some dev_err() calls.
-
- * device_id: a slot-specific unique integer number.
-
-
-Please note that the carrier should read its own EEPROM memory before
-registering the device, as well as fill all other fields listed above.
-
-The following fields should not be assigned, because they are filled
-later by either the bus or the device driver:
-
- * flags.
-
- * fru_id: filled by the bus, parsing the eeprom.
-
- * slot_base: filled and used by the driver, if useful to it.
-
- * devarray: an array og all mezzanines driven by a singe FPGA.
-
- * nr_slots: set by the core at registration time.
-
- * dev: used by Linux.
-
- * sdb: FPGA contents, scanned according to driver's directions.
-
- * sdbfs_entry: SDB entry point in EEPROM: autodetected.
-
- * mezzanine_data: available for the driver.
-
- * mezzanine_name: filled by fmc-bus during identification.
-
-
-Note: mezzanine_data may be redundant, because Linux offers the drvdata
-approach, so the field may be removed in later versions of this bus
-implementation.
-
-As I write this, she SPEC carrier is already completely functional in
-the fmc-bus environment, and is a good reference to look at.
-
-
-The API Offered by Carriers
-===========================
-
-The carrier provides a number of methods by means of the
-`fmc_operations' structure, which currently is defined like this
-(again, it is a moving target, please refer to the header rather than
-this document):
-
- struct fmc_operations {
- uint32_t (*readl)(struct fmc_device *fmc, int offset);
- void (*writel)(struct fmc_device *fmc, uint32_t value, int offset);
- int (*reprogram)(struct fmc_device *f, struct fmc_driver *d, char *gw);
- int (*validate)(struct fmc_device *fmc, struct fmc_driver *drv);
- int (*irq_request)(struct fmc_device *fmc, irq_handler_t h,
- char *name, int flags);
- void (*irq_ack)(struct fmc_device *fmc);
- int (*irq_free)(struct fmc_device *fmc);
- int (*gpio_config)(struct fmc_device *fmc, struct fmc_gpio *gpio,
- int ngpio);
- int (*read_ee)(struct fmc_device *fmc, int pos, void *d, int l);
- int (*write_ee)(struct fmc_device *fmc, int pos, const void *d, int l);
- };
-
-The individual methods perform the following tasks:
-
-`readl'
-`writel'
- These functions access FPGA registers by whatever means the
- carrier offers. They are not expected to fail, and most of the time
- they will just make a memory access to the host bus. If the
- carrier provides a fpga_base pointer, the driver may use direct
- access through that pointer. For this reason the header offers the
- inline functions fmc_readl and fmc_writel that access fpga_base if
- the respective method is NULL. A driver that wants to be portable
- and efficient should use fmc_readl and fmc_writel. For Etherbone,
- or other non-local carriers, error-management is still to be
- defined.
-
-`validate'
- Module parameters are used to manage different applications for
- two or more boards of the same kind. Validation is based on the
- busid module parameter, if provided, and returns the matching
- index in the associated array. See *note Module Parameters:: in in
- doubt. If no match is found, `-ENOENT' is returned; if the user
- didn't pass `busid=', all devices will pass validation. The value
- returned by the validate method can be used as index into other
- parameters (for example, some drivers use the `lm32=' parameter in
- this way). Such "generic parameters" are documented in *note
- Module Parameters::, below. The validate method is used by
- `fmc-trivial.ko', described in *note fmc-trivial::.
-
-`reprogram'
- The carrier enumerates FMC devices by loading a standard (or
- golden) FPGA binary that allows EEPROM access. Each driver, then,
- will need to reprogram the FPGA by calling this function. If the
- name argument is NULL, the carrier should reprogram the golden
- binary. If the gateware name has been overridden through module
- parameters (in a carrier-specific way) the file loaded will match
- the parameters. Per-device gateware names can be specified using
- the `gateware=' parameter, see *note Module Parameters::. Note:
- Clients should call rhe new helper, fmc_reprogram, which both
- calls this method and parse the SDB tree of the FPGA.
-
-`irq_request'
-`irq_ack'
-`irq_free'
- Interrupt management is carrier-specific, so it is abstracted as
- operations. The interrupt number is listed in the device
- structure, and for the mezzanine driver the number is only
- informative. The handler will receive the fmc pointer as dev_id;
- the flags argument is passed to the Linux request_irq function,
- but fmc-specific flags may be added in the future. You'll most
- likely want to pass the `IRQF_SHARED' flag.
-
-`gpio_config'
- The method allows to configure a GPIO pin in the carrier, and read
- its current value if it is configured as input. See *note The GPIO
- Abstraction:: for details.
-
-`read_ee'
-`write_ee'
- Read or write the EEPROM. The functions are expected to be only
- called before reprogramming and the carrier should refuse them
- with `ENODEV' after reprogramming. The offset is expected to be
- within 8kB (the current size), but addresses up to 1MB are
- reserved to fit bigger I2C devices in the future. Carriers may
- offer access to other internal flash memories using these same
- methods: for example the SPEC driver may define that its carrier
- I2C memory is seen at offset 1M and the internal SPI flash is seen
- at offset 16M. This multiplexing of several flash memories in the
- same address space is carrier-specific and should only be used
- by a driver that has verified the `carrier_name' field.
-
-
-
-The GPIO Abstraction
-====================
-
-Support for GPIO pins in the fmc-bus environment is not very
-straightforward and deserves special discussion.
-
-While the general idea of a carrier-independent driver seems to fly,
-configuration of specific signals within the carrier needs at least
-some knowledge of the carrier itself. For this reason, the specific
-driver can request to configure carrier-specific GPIO pins, numbered
-from 0 to at most 4095. Configuration is performed by passing a
-pointer to an array of struct fmc_gpio items, as well as the length of
-the array. This is the data structure:
-
- struct fmc_gpio {
- char *carrier_name;
- int gpio;
- int _gpio; /* internal use by the carrier */
- int mode; /* GPIOF_DIR_OUT etc, from <linux/gpio.h> */
- int irqmode; /* IRQF_TRIGGER_LOW and so on */
- };
-
-By specifying a carrier_name for each pin, the driver may access
-different pins in different carriers. The gpio_config method is
-expected to return the number of pins successfully configured, ignoring
-requests for other carriers. However, if no pin is configured (because
-no structure at all refers to the current carrier_name), the operation
-returns an error so the caller will know that it is running under a
-yet-unsupported carrier.
-
-So, for example, a driver that has been developed and tested on both
-the SPEC and the SVEC may request configuration of two different GPIO
-pins, and expect one such configuration to succeed - if none succeeds
-it most likely means that the current carrier is a still-unknown one.
-
-If, however, your GPIO pin has a specific known role, you can pass a
-special number in the gpio field, using one of the following macros:
-
- #define FMC_GPIO_RAW(x) (x) /* 4096 of them */
- #define FMC_GPIO_IRQ(x) ((x) + 0x1000) /* 256 of them */
- #define FMC_GPIO_LED(x) ((x) + 0x1100) /* 256 of them */
- #define FMC_GPIO_KEY(x) ((x) + 0x1200) /* 256 of them */
- #define FMC_GPIO_TP(x) ((x) + 0x1300) /* 256 of them */
- #define FMC_GPIO_USER(x) ((x) + 0x1400) /* 256 of them */
-
-Use of virtual GPIO numbers (anything but FMC_GPIO_RAW) is allowed
-provided the carrier_name field in the data structure is left
-unspecified (NULL). Each carrier is responsible for providing a mapping
-between virtual and physical GPIO numbers. The carrier may then use the
-_gpio field to cache the result of this mapping.
-
-All carriers must map their I/O lines to the sets above starting from
-zero. The SPEC, for example, maps interrupt pins 0 and 1, and test
-points 0 through 3 (even if the test points on the PCB are called
-5,6,7,8).
-
-If, for example, a driver requires a free LED and a test point (for a
-scope probe to be plugged at some point during development) it may ask
-for FMC_GPIO_LED(0) and FMC_GPIO_TP(0). Each carrier will provide
-suitable GPIO pins. Clearly, the person running the drivers will know
-the order used by the specific carrier driver in assigning leds and
-testpoints, so to make a carrier-dependent use of the diagnostic tools.
-
-In theory, some form of autodetection should be possible: a driver like
-the wr-nic (which uses IRQ(1) on the SPEC card) should configure
-IRQ(0), make a test with software-generated interrupts and configure
-IRQ(1) if the test fails. This probing step should be used because even
-if the wr-nic gateware is known to use IRQ1 on the SPEC, the driver
-should be carrier-independent and thus use IRQ(0) as a first bet -
-actually, the knowledge that IRQ0 may fail is carrier-dependent
-information, but using it doesn't make the driver unsuitable for other
-carriers.
-
-The return value of gpio_config is defined as follows:
-
- * If no pin in the array can be used by the carrier, `-ENODEV'.
-
- * If at least one virtual GPIO number cannot be mapped, `-ENOENT'.
-
- * On success, 0 or positive. The value returned is the number of
- high input bits (if no input is configured, the value for success
- is 0).
-
-While I admit the procedure is not completely straightforward, it
-allows configuration, input and output with a single carrier operation.
-Given the typical use case of FMC devices, GPIO operations are not
-expected to ever by in hot paths, and GPIO access so fare has only been
-used to configure the interrupt pin, mode and polarity. Especially
-reading inputs is not expected to be common. If your device has GPIO
-capabilities in the hot path, you should consider using the kernel's
-GPIO mechanisms.
diff --git a/Documentation/fmc/fmc-chardev.txt b/Documentation/fmc/fmc-chardev.txt
deleted file mode 100644
index d9ccb278e597..000000000000
--- a/Documentation/fmc/fmc-chardev.txt
+++ /dev/null
@@ -1,64 +0,0 @@
-fmc-chardev
-===========
-
-This is a simple generic driver, that allows user access by means of a
-character device (actually, one for each mezzanine it takes hold of).
-
-The char device is created as a misc device. Its name in /dev (as
-created by udev) is the same name as the underlying FMC device. Thus,
-the name can be a silly fmc-0000 look-alike if the device has no
-identifiers nor bus_id, a more specific fmc-0400 if the device has a
-bus-specific address but no associated name, or something like
-fdelay-0400 if the FMC core can rely on both a mezzanine name and a bus
-address.
-
-Currently the driver only supports read and write: you can lseek to the
-desired address and read or write a register.
-
-The driver assumes all registers are 32-bit in size, and only accepts a
-single read or write per system call. However, as a result of Unix read
-and write semantics, users can simply fread or fwrite bigger areas in
-order to dump or store bigger memory areas.
-
-There is currently no support for mmap, user-space interrupt management
-and DMA buffers. They may be added in later versions, if the need
-arises.
-
-The example below shows raw access to a SPEC card programmed with its
-golden FPGA file, that features an SDB structure at offset 256 - i.e.
-64 words. The mezzanine's EEPROM in this case is not programmed, so the
-default name is fmc-<bus><devfn>, and there are two cards in the system:
-
- spusa.root# insmod fmc-chardev.ko
- [ 1073.339332] spec 0000:02:00.0: Driver has no ID: matches all
- [ 1073.345051] spec 0000:02:00.0: Created misc device "fmc-0200"
- [ 1073.350821] spec 0000:04:00.0: Driver has no ID: matches all
- [ 1073.356525] spec 0000:04:00.0: Created misc device "fmc-0400"
- spusa.root# ls -l /dev/fmc*
- crw------- 1 root root 10, 58 Nov 20 19:23 /dev/fmc-0200
- crw------- 1 root root 10, 57 Nov 20 19:23 /dev/fmc-0400
- spusa.root# dd bs=4 skip=64 count=1 if=/dev/fmc-0200 2> /dev/null | od -t x1z
- 0000000 2d 42 44 53 >-BDS<
- 0000004
-
-The simple program tools/fmc-mem in this package can access an FMC char
-device and read or write a word or a whole area. Actually, the program
-is not specific to FMC at all, it just uses lseek, read and write.
-
-Its first argument is the device name, the second the offset, the third
-(if any) the value to write and the optional last argument that must
-begin with "+" is the number of bytes to read or write. In case of
-repeated reading data is written to stdout; repeated writes read from
-stdin and the value argument is ignored.
-
-The following examples show reading the SDB magic number and the first
-SDB record from a SPEC device programmed with its golden image:
-
- spusa.root# ./fmc-mem /dev/fmc-0200 100
- 5344422d
- spusa.root# ./fmc-mem /dev/fmc-0200 100 +40 | od -Ax -t x1z
- 000000 2d 42 44 53 00 01 02 00 00 00 00 00 00 00 00 00 >-BDS............<
- 000010 00 00 00 00 ff 01 00 00 00 00 00 00 51 06 00 00 >............Q...<
- 000020 c9 42 a5 e6 02 00 00 00 11 05 12 20 2d 34 42 57 >.B......... -4BW<
- 000030 73 6f 72 43 72 61 62 73 49 53 47 2d 00 20 20 20 >sorCrabsISG-. <
- 000040
diff --git a/Documentation/fmc/fmc-fakedev.txt b/Documentation/fmc/fmc-fakedev.txt
deleted file mode 100644
index e85b74a4ae30..000000000000
--- a/Documentation/fmc/fmc-fakedev.txt
+++ /dev/null
@@ -1,36 +0,0 @@
-fmc-fakedev
-===========
-
-This package includes a software-only device, called fmc-fakedev, which
-is able to register up to 4 mezzanines (by default it registers one).
-Unlike the SPEC driver, which creates an FMC device for each PCI cards
-it manages, this module creates a single instance of its set of
-mezzanines.
-
-It is meant as the simplest possible example of how a driver should be
-written, and it includes a fake EEPROM image (built using the tools
-described in *note FMC Identification::),, which by default is
-replicated for each fake mezzanine.
-
-You can also use this device to verify the match algorithms, by asking
-it to test your own EEPROM image. You can provide the image by means of
-the eeprom= module parameter: the new EEPROM image is loaded, as usual,
-by means of the firmware loader. This example shows the defaults and a
-custom EEPROM image:
-
- spusa.root# insmod fmc-fakedev.ko
- [ 99.971247] fake-fmc-carrier: mezzanine 0
- [ 99.975393] Manufacturer: fake-vendor
- [ 99.979624] Product name: fake-design-for-testing
- spusa.root# rmmod fmc-fakedev
- spusa.root# insmod fmc-fakedev.ko eeprom=fdelay-eeprom.bin
- [ 121.447464] fake-fmc-carrier: Mezzanine 0: eeprom "fdelay-eeprom.bin"
- [ 121.462725] fake-fmc-carrier: mezzanine 0
- [ 121.466858] Manufacturer: CERN
- [ 121.470477] Product name: FmcDelay1ns4cha
- spusa.root# rmmod fmc-fakedev
-
-After loading the device, you can use the write_ee method do modify its
-own internal fake EEPROM: whenever the image is overwritten starting at
-offset 0, the module will unregister and register again the FMC device.
-This is shown in fmc-write-eeprom.txt
diff --git a/Documentation/fmc/fmc-trivial.txt b/Documentation/fmc/fmc-trivial.txt
deleted file mode 100644
index d1910bc67159..000000000000
--- a/Documentation/fmc/fmc-trivial.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-fmc-trivial
-===========
-
-The simple module fmc-trivial is just a simple client that registers an
-interrupt handler. I used it to verify the basic mechanism of the FMC
-bus and how interrupts worked.
-
-The module implements the generic FMC parameters, so it can program a
-different gateware file in each card. The whole list of parameters it
-accepts are:
-
-`busid='
-`gateware='
- Generic parameters. See mezzanine.txt
-
-
-This driver is worth reading, in my opinion.
diff --git a/Documentation/fmc/fmc-write-eeprom.txt b/Documentation/fmc/fmc-write-eeprom.txt
deleted file mode 100644
index e0a9712156aa..000000000000
--- a/Documentation/fmc/fmc-write-eeprom.txt
+++ /dev/null
@@ -1,98 +0,0 @@
-fmc-write-eeprom
-================
-
-This module is designed to load a binary file from /lib/firmware and to
-write it to the internal EEPROM of the mezzanine card. This driver uses
-the `busid' generic parameter.
-
-Overwriting the EEPROM is not something you should do daily, and it is
-expected to only happen during manufacturing. For this reason, the
-module makes it unlikely for the random user to change a working EEPROM.
-
-However, since the EEPROM may include application-specific information
-other than the identification, later versions of this packages added
-write-support through sysfs. See *note Accessing the EEPROM::.
-
-To avoid damaging the EEPROM content, the module takes the following
-measures:
-
- * It accepts a `file=' argument (within /lib/firmware) and if no
- such argument is received, it doesn't write anything to EEPROM
- (i.e. there is no default file name).
-
- * If the file name ends with `.bin' it is written verbatim starting
- at offset 0.
-
- * If the file name ends with `.tlv' it is interpreted as
- type-length-value (i.e., it allows writev(2)-like operation).
-
- * If the file name doesn't match any of the patterns above, it is
- ignored and no write is performed.
-
- * Only cards listed with `busid=' are written to. If no busid is
- specified, no programming is done (and the probe function of the
- driver will fail).
-
-
-Each TLV tuple is formatted in this way: the header is 5 bytes,
-followed by data. The first byte is `w' for write, the next two bytes
-represent the address, in little-endian byte order, and the next two
-represent the data length, in little-endian order. The length does not
-include the header (it is the actual number of bytes to be written).
-
-This is a real example: that writes 5 bytes at position 0x110:
-
- spusa.root# od -t x1 -Ax /lib/firmware/try.tlv
- 000000 77 10 01 05 00 30 31 32 33 34
- 00000a
- spusa.root# insmod /tmp/fmc-write-eeprom.ko busid=0x0200 file=try.tlv
- [19983.391498] spec 0000:03:00.0: write 5 bytes at 0x0110
- [19983.414615] spec 0000:03:00.0: write_eeprom: success
-
-Please note that you'll most likely want to use SDBFS to build your
-EEPROM image, at least if your mezzanines are being used in the White
-Rabbit environment. For this reason the TLV format is not expected to
-be used much and is not expected to be developed further.
-
-If you want to try reflashing fake EEPROM devices, you can use the
-fmc-fakedev.ko module (see *note fmc-fakedev::). Whenever you change
-the image starting at offset 0, it will deregister and register again
-after two seconds. Please note, however, that if fmc-write-eeprom is
-still loaded, the system will associate it to the new device, which
-will be reprogrammed and thus will be unloaded after two seconds. The
-following example removes the module after it reflashed fakedev the
-first time.
-
- spusa.root# insmod fmc-fakedev.ko
- [ 72.984733] fake-fmc: Manufacturer: fake-vendor
- [ 72.989434] fake-fmc: Product name: fake-design-for-testing
- spusa.root# insmod fmc-write-eeprom.ko busid=0 file=fdelay-eeprom.bin; \
- rmmod fmc-write-eeprom
- [ 130.874098] fake-fmc: Matching a generic driver (no ID)
- [ 130.887845] fake-fmc: programming 6155 bytes
- [ 130.894567] fake-fmc: write_eeprom: success
- [ 132.895794] fake-fmc: Manufacturer: CERN
- [ 132.899872] fake-fmc: Product name: FmcDelay1ns4cha
-
-
-Accessing the EEPROM
-=====================
-
-The bus creates a sysfs binary file called eeprom for each mezzanine it
-knows about:
-
- spusa.root# cd /sys/bus/fmc/devices; ls -l */eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcAdc100m14b4cha-0800/eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDelay1ns4cha-0200/eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDio5cha-0400/eeprom
-
-Everybody can read the files and the superuser can also modify it, but
-the operation may on the carrier driver, if the carrier is unable to
-access the I2C bus. For example, the spec driver can access the bus
-only with its golden gateware: after a mezzanine driver reprogrammed
-the FPGA with a custom circuit, the carrier is unable to access the
-EEPROM and returns ENOTSUPP.
-
-An alternative way to write the EEPROM is the mezzanine driver
-fmc-write-eeprom (See *note fmc-write-eeprom::), but the procedure is
-more complex.
diff --git a/Documentation/fmc/identifiers.txt b/Documentation/fmc/identifiers.txt
deleted file mode 100644
index 3bb577ff0d52..000000000000
--- a/Documentation/fmc/identifiers.txt
+++ /dev/null
@@ -1,168 +0,0 @@
-FMC Identification
-******************
-
-The FMC standard requires every compliant mezzanine to carry
-identification information in an I2C EEPROM. The information must be
-laid out according to the "IPMI Platform Management FRU Information",
-where IPMI is a lie I'd better not expand, and FRU means "Field
-Replaceable Unit".
-
-The FRU information is an intricate unreadable binary blob that must
-live at offset 0 of the EEPROM, and typically extends for a few hundred
-bytes. The standard allows the application to use all the remaining
-storage area of the EEPROM as it wants.
-
-This chapter explains how to create your own EEPROM image and how to
-write it in your mezzanine, as well as how devices and drivers are
-paired at run time. EEPROM programming uses tools that are part of this
-package and SDB (part of the fpga-config-space package).
-
-The first sections are only interesting for manufacturers who need to
-write the EEPROM. If you are just a software developer writing an FMC
-device or driver, you may jump straight to *note SDB Support::.
-
-
-Building the FRU Structure
-==========================
-
-If you want to know the internals of the FRU structure and despair, you
-can retrieve t