summaryrefslogtreecommitdiffstats
path: root/tools
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@linux.vnet.ibm.com>2018-01-18 19:58:55 -0800
committerPaul E. McKenney <paulmck@linux.vnet.ibm.com>2018-01-24 20:53:49 -0800
commit1c27b644c0fdbc61e113b8faee14baeb8df32486 (patch)
tree466961ad0343bd9b7b47ee7a40c4b9c99a5d73a1 /tools
parent0c5b9b5d9adbad4b60491f9ba0d2af38904bb4b9 (diff)
Automate memory-barriers.txt; provide Linux-kernel memory model
There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
Diffstat (limited to 'tools')
-rw-r--r--tools/memory-model/Documentation/cheatsheet.txt30
-rw-r--r--tools/memory-model/Documentation/explanation.txt1840
-rw-r--r--tools/memory-model/Documentation/recipes.txt570
-rw-r--r--tools/memory-model/Documentation/references.txt107
-rw-r--r--tools/memory-model/MAINTAINERS15
-rw-r--r--tools/memory-model/README220
-rw-r--r--tools/memory-model/linux-kernel.bell53
-rw-r--r--tools/memory-model/linux-kernel.cat124
-rw-r--r--tools/memory-model/linux-kernel.cfg21
-rw-r--r--tools/memory-model/linux-kernel.def108
-rw-r--r--tools/memory-model/litmus-tests/CoRR+poonceonce+Once.litmus19
-rw-r--r--tools/memory-model/litmus-tests/CoRW+poonceonce+Once.litmus18
-rw-r--r--tools/memory-model/litmus-tests/CoWR+poonceonce+Once.litmus18
-rw-r--r--tools/memory-model/litmus-tests/CoWW+poonceonce.litmus11
-rw-r--r--tools/memory-model/litmus-tests/IRIW+mbonceonces+OnceOnce.litmus35
-rw-r--r--tools/memory-model/litmus-tests/IRIW+poonceonces+OnceOnce.litmus33
-rw-r--r--tools/memory-model/litmus-tests/ISA2+poonceonces.litmus28
-rw-r--r--tools/memory-model/litmus-tests/ISA2+pooncerelease+poacquirerelease+poacquireonce.litmus28
-rw-r--r--tools/memory-model/litmus-tests/LB+ctrlonceonce+mbonceonce.litmus23
-rw-r--r--tools/memory-model/litmus-tests/LB+poacquireonce+pooncerelease.litmus21
-rw-r--r--tools/memory-model/litmus-tests/LB+poonceonces.litmus21
-rw-r--r--tools/memory-model/litmus-tests/MP+onceassign+derefonce.litmus25
-rw-r--r--tools/memory-model/litmus-tests/MP+polocks.litmus24
-rw-r--r--tools/memory-model/litmus-tests/MP+poonceonces.litmus20
-rw-r--r--tools/memory-model/litmus-tests/MP+pooncerelease+poacquireonce.litmus20
-rw-r--r--tools/memory-model/litmus-tests/MP+porevlocks.litmus24
-rw-r--r--tools/memory-model/litmus-tests/MP+wmbonceonce+rmbonceonce.litmus22
-rw-r--r--tools/memory-model/litmus-tests/R+mbonceonces.litmus21
-rw-r--r--tools/memory-model/litmus-tests/R+poonceonces.litmus19
-rw-r--r--tools/memory-model/litmus-tests/README125
-rw-r--r--tools/memory-model/litmus-tests/S+poonceonces.litmus19
-rw-r--r--tools/memory-model/litmus-tests/S+wmbonceonce+poacquireonce.litmus20
-rw-r--r--tools/memory-model/litmus-tests/SB+mbonceonces.litmus23
-rw-r--r--tools/memory-model/litmus-tests/SB+poonceonces.litmus21
-rw-r--r--tools/memory-model/litmus-tests/WRC+poonceonces+Once.litmus27
-rw-r--r--tools/memory-model/litmus-tests/WRC+pooncerelease+rmbonceonce+Once.litmus28
-rw-r--r--tools/memory-model/litmus-tests/Z6.0+pooncelock+poonceLock+pombonce.litmus33
-rw-r--r--tools/memory-model/litmus-tests/Z6.0+pooncelock+pooncelock+pombonce.litmus32
-rw-r--r--tools/memory-model/litmus-tests/Z6.0+pooncerelease+poacquirerelease+mbonceonce.litmus28
-rw-r--r--tools/memory-model/lock.cat99
40 files changed, 3973 insertions, 0 deletions
diff --git a/tools/memory-model/Documentation/cheatsheet.txt b/tools/memory-model/Documentation/cheatsheet.txt
new file mode 100644
index 000000000000..1917712bce99
--- /dev/null
+++ b/tools/memory-model/Documentation/cheatsheet.txt
@@ -0,0 +1,30 @@
+ Prior Operation Subsequent Operation
+ --------------- ---------------------------
+ C Self R W RWM Self R W DR DW RMW SV
+ __ ---- - - --- ---- - - -- -- --- --
+
+Store, e.g., WRITE_ONCE() Y Y
+Load, e.g., READ_ONCE() Y Y Y
+Unsuccessful RMW operation Y Y Y
+smp_read_barrier_depends() Y Y Y
+*_dereference() Y Y Y Y
+Successful *_acquire() R Y Y Y Y Y Y
+Successful *_release() C Y Y Y W Y
+smp_rmb() Y R Y Y R
+smp_wmb() Y W Y Y W
+smp_mb() & synchronize_rcu() CP Y Y Y Y Y Y Y Y
+Successful full non-void RMW CP Y Y Y Y Y Y Y Y Y Y Y
+smp_mb__before_atomic() CP Y Y Y a a a a Y
+smp_mb__after_atomic() CP a a Y Y Y Y Y
+
+
+Key: C: Ordering is cumulative
+ P: Ordering propagates
+ R: Read, for example, READ_ONCE(), or read portion of RMW
+ W: Write, for example, WRITE_ONCE(), or write portion of RMW
+ Y: Provides ordering
+ a: Provides ordering given intervening RMW atomic operation
+ DR: Dependent read (address dependency)
+ DW: Dependent write (address, data, or control dependency)
+ RMW: Atomic read-modify-write operation
+ SV Same-variable access
diff --git a/tools/memory-model/Documentation/explanation.txt b/tools/memory-model/Documentation/explanation.txt
new file mode 100644
index 000000000000..867e0ea69b6d
--- /dev/null
+++ b/tools/memory-model/Documentation/explanation.txt
@@ -0,0 +1,1840 @@
+Explanation of the Linux-Kernel Memory Model
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+:Author: Alan Stern <stern@rowland.harvard.edu>
+:Created: October 2017
+
+.. Contents
+
+ 1. INTRODUCTION
+ 2. BACKGROUND
+ 3. A SIMPLE EXAMPLE
+ 4. A SELECTION OF MEMORY MODELS
+ 5. ORDERING AND CYCLES
+ 6. EVENTS
+ 7. THE PROGRAM ORDER RELATION: po AND po-loc
+ 8. A WARNING
+ 9. DEPENDENCY RELATIONS: data, addr, and ctrl
+ 10. THE READS-FROM RELATION: rf, rfi, and rfe
+ 11. CACHE COHERENCE AND THE COHERENCE ORDER RELATION: co, coi, and coe
+ 12. THE FROM-READS RELATION: fr, fri, and fre
+ 13. AN OPERATIONAL MODEL
+ 14. PROPAGATION ORDER RELATION: cumul-fence
+ 15. DERIVATION OF THE LKMM FROM THE OPERATIONAL MODEL
+ 16. SEQUENTIAL CONSISTENCY PER VARIABLE
+ 17. ATOMIC UPDATES: rmw
+ 18. THE PRESERVED PROGRAM ORDER RELATION: ppo
+ 19. AND THEN THERE WAS ALPHA
+ 20. THE HAPPENS-BEFORE RELATION: hb
+ 21. THE PROPAGATES-BEFORE RELATION: pb
+ 22. RCU RELATIONS: link, gp-link, rscs-link, and rcu-path
+ 23. ODDS AND ENDS
+
+
+
+INTRODUCTION
+------------
+
+The Linux-kernel memory model (LKMM) is rather complex and obscure.
+This is particularly evident if you read through the linux-kernel.bell
+and linux-kernel.cat files that make up the formal version of the
+memory model; they are extremely terse and their meanings are far from
+clear.
+
+This document describes the ideas underlying the LKMM. It is meant
+for people who want to understand how the memory model was designed.
+It does not go into the details of the code in the .bell and .cat
+files; rather, it explains in English what the code expresses
+symbolically.
+
+Sections 2 (BACKGROUND) through 5 (ORDERING AND CYCLES) are aimed
+toward beginners; they explain what memory models are and the basic
+notions shared by all such models. People already familiar with these
+concepts can skim or skip over them. Sections 6 (EVENTS) through 12
+(THE FROM_READS RELATION) describe the fundamental relations used in
+many memory models. Starting in Section 13 (AN OPERATIONAL MODEL),
+the workings of the LKMM itself are covered.
+
+Warning: The code examples in this document are not written in the
+proper format for litmus tests. They don't include a header line, the
+initializations are not enclosed in braces, the global variables are
+not passed by pointers, and they don't have an "exists" clause at the
+end. Converting them to the right format is left as an exercise for
+the reader.
+
+
+BACKGROUND
+----------
+
+A memory consistency model (or just memory model, for short) is
+something which predicts, given a piece of computer code running on a
+particular kind of system, what values may be obtained by the code's
+load instructions. The LKMM makes these predictions for code running
+as part of the Linux kernel.
+
+In practice, people tend to use memory models the other way around.
+That is, given a piece of code and a collection of values specified
+for the loads, the model will predict whether it is possible for the
+code to run in such a way that the loads will indeed obtain the
+specified values. Of course, this is just another way of expressing
+the same idea.
+
+For code running on a uniprocessor system, the predictions are easy:
+Each load instruction must obtain the value written by the most recent
+store instruction accessing the same location (we ignore complicating
+factors such as DMA and mixed-size accesses.) But on multiprocessor
+systems, with multiple CPUs making concurrent accesses to shared
+memory locations, things aren't so simple.
+
+Different architectures have differing memory models, and the Linux
+kernel supports a variety of architectures. The LKMM has to be fairly
+permissive, in the sense that any behavior allowed by one of these
+architectures also has to be allowed by the LKMM.
+
+
+A SIMPLE EXAMPLE
+----------------
+
+Here is a simple example to illustrate the basic concepts. Consider
+some code running as part of a device driver for an input device. The
+driver might contain an interrupt handler which collects data from the
+device, stores it in a buffer, and sets a flag to indicate the buffer
+is full. Running concurrently on a different CPU might be a part of
+the driver code being executed by a process in the midst of a read(2)
+system call. This code tests the flag to see whether the buffer is
+ready, and if it is, copies the data back to userspace. The buffer
+and the flag are memory locations shared between the two CPUs.
+
+We can abstract out the important pieces of the driver code as follows
+(the reason for using WRITE_ONCE() and READ_ONCE() instead of simple
+assignment statements is discussed later):
+
+ int buf = 0, flag = 0;
+
+ P0()
+ {
+ WRITE_ONCE(buf, 1);
+ WRITE_ONCE(flag, 1);
+ }
+
+ P1()
+ {
+ int r1;
+ int r2 = 0;
+
+ r1 = READ_ONCE(flag);
+ if (r1)
+ r2 = READ_ONCE(buf);
+ }
+
+Here the P0() function represents the interrupt handler running on one
+CPU and P1() represents the read() routine running on another. The
+value 1 stored in buf represents input data collected from the device.
+Thus, P0 stores the data in buf and then sets flag. Meanwhile, P1
+reads flag into the private variable r1, and if it is set, reads the
+data from buf into a second private variable r2 for copying to
+userspace. (Presumably if flag is not set then the driver will wait a
+while and try again.)
+
+This pattern of memory accesses, where one CPU stores values to two
+shared memory locations and another CPU loads from those locations in
+the opposite order, is widely known as the "Message Passing" or MP
+pattern. It is typical of memory access patterns in the kernel.
+
+Please note that this example code is a simplified abstraction. Real
+buffers are usually larger than a single integer, real device drivers
+usually use sleep and wakeup mechanisms rather than polling for I/O
+completion, and real code generally doesn't bother to copy values into
+private variables before using them. All that is beside the point;
+the idea here is simply to illustrate the overall pattern of memory
+accesses by the CPUs.
+
+A memory model will predict what values P1 might obtain for its loads
+from flag and buf, or equivalently, what values r1 and r2 might end up
+with after the code has finished running.
+
+Some predictions are trivial. For instance, no sane memory model would
+predict that r1 = 42 or r2 = -7, because neither of those values ever
+gets stored in flag or buf.
+
+Some nontrivial predictions are nonetheless quite simple. For
+instance, P1 might run entirely before P0 begins, in which case r1 and
+r2 will both be 0 at the end. Or P0 might run entirely before P1
+begins, in which case r1 and r2 will both be 1.
+
+The interesting predictions concern what might happen when the two
+routines run concurrently. One possibility is that P1 runs after P0's
+store to buf but before the store to flag. In this case, r1 and r2
+will again both be 0. (If P1 had been designed to read buf
+unconditionally then we would instead have r1 = 0 and r2 = 1.)
+
+However, the most interesting possibility is where r1 = 1 and r2 = 0.
+If this were to occur it would mean the driver contains a bug, because
+incorrect data would get sent to the user: 0 instead of 1. As it
+happens, the LKMM does predict this outcome can occur, and the example
+driver code shown above is indeed buggy.
+
+
+A SELECTION OF MEMORY MODELS
+----------------------------
+
+The first widely cited memory model, and the simplest to understand,
+is Sequential Consistency. According to this model, systems behave as
+if each CPU executed its instructions in order but with unspecified
+timing. In other words, the instructions from the various CPUs get
+interleaved in a nondeterministic way, always according to some single
+global order that agrees with the order of the instructions in the
+program source for each CPU. The model says that the value obtained
+by each load is simply the value written by the most recently executed
+store to the same memory location, from any CPU.
+
+For the MP example code shown above, Sequential Consistency predicts
+that the undesired result r1 = 1, r2 = 0 cannot occur. The reasoning
+goes like this:
+
+ Since r1 = 1, P0 must store 1 to flag before P1 loads 1 from
+ it, as loads can obtain values only from earlier stores.
+
+ P1 loads from flag before loading from buf, since CPUs execute
+ their instructions in order.
+
+ P1 must load 0 from buf before P0 stores 1 to it; otherwise r2
+ would be 1 since a load obtains its value from the most recent
+ store to the same address.
+
+ P0 stores 1 to buf before storing 1 to flag, since it executes
+ its instructions in order.
+
+ Since an instruction (in this case, P1's store to flag) cannot
+ execute before itself, the specified outcome is impossible.
+
+However, real computer hardware almost never follows the Sequential
+Consistency memory model; doing so would rule out too many valuable
+performance optimizations. On ARM and PowerPC architectures, for
+instance, the MP example code really does sometimes yield r1 = 1 and
+r2 = 0.
+
+x86 and SPARC follow yet a different memory model: TSO (Total Store
+Ordering). This model predicts that the undesired outcome for the MP
+pattern cannot occur, but in other respects it differs from Sequential
+Consistency. One example is the Store Buffer (SB) pattern, in which
+each CPU stores to its own shared location and then loads from the
+other CPU's location:
+
+ int x = 0, y = 0;
+
+ P0()
+ {
+ int r0;
+
+ WRITE_ONCE(x, 1);
+ r0 = READ_ONCE(y);
+ }
+
+ P1()
+ {
+ int r1;
+
+ WRITE_ONCE(y, 1);
+ r1 = READ_ONCE(x);
+ }
+
+Sequential Consistency predicts that the outcome r0 = 0, r1 = 0 is
+impossible. (Exercise: Figure out the reasoning.) But TSO allows
+this outcome to occur, and in fact it does sometimes occur on x86 and
+SPARC systems.
+
+The LKMM was inspired by the memory models followed by PowerPC, ARM,
+x86, Alpha, and other architectures. However, it is different in
+detail from each of them.
+
+
+ORDERING AND CYCLES
+-------------------
+
+Memory models are all about ordering. Often this is temporal ordering
+(i.e., the order in which certain events occur) but it doesn't have to
+be; consider for example the order of instructions in a program's
+source code. We saw above that Sequential Consistency makes an
+important assumption that CPUs execute instructions in the same order
+as those instructions occur in the code, and there are many other
+instances of ordering playing central roles in memory models.
+
+The counterpart to ordering is a cycle. Ordering rules out cycles:
+It's not possible to have X ordered before Y, Y ordered before Z, and
+Z ordered before X, because this would mean that X is ordered before
+itself. The analysis of the MP example under Sequential Consistency
+involved just such an impossible cycle:
+
+ W: P0 stores 1 to flag executes before
+ X: P1 loads 1 from flag executes before
+ Y: P1 loads 0 from buf executes before
+ Z: P0 stores 1 to buf executes before
+ W: P0 stores 1 to flag.
+
+In short, if a memory model requires certain accesses to be ordered,
+and a certain outcome for the loads in a piece of code can happen only
+if those accesses would form a cycle, then the memory model predicts
+that outcome cannot occur.
+
+The LKMM is defined largely in terms of cycles, as we will see.
+
+
+EVENTS
+------
+
+The LKMM does not work directly with the C statements that make up
+kernel source code. Instead it considers the effects of those
+statements in a more abstract form, namely, events. The model
+includes three types of events:
+
+ Read events correspond to loads from shared memory, such as
+ calls to READ_ONCE(), smp_load_acquire(), or
+ rcu_dereference().
+
+ Write events correspond to stores to shared memory, such as
+ calls to WRITE_ONCE(), smp_store_release(), or atomic_set().
+
+ Fence events correspond to memory barriers (also known as
+ fences), such as calls to smp_rmb() or rcu_read_lock().
+
+These categories are not exclusive; a read or write event can also be
+a fence. This happens with functions like smp_load_acquire() or
+spin_lock(). However, no single event can be both a read and a write.
+Atomic read-modify-write accesses, such as atomic_inc() or xchg(),
+correspond to a pair of events: a read followed by a write. (The
+write event is omitted for executions where it doesn't occur, such as
+a cmpxchg() where the comparison fails.)
+
+Other parts of the code, those which do not involve interaction with
+shared memory, do not give rise to events. Thus, arithmetic and
+logical computations, control-flow instructions, or accesses to
+private memory or CPU registers are not of central interest to the
+memory model. They only affect the model's predictions indirectly.
+For example, an arithmetic computation might determine the value that
+gets stored to a shared memory location (or in the case of an array
+index, the address where the value gets stored), but the memory model
+is concerned only with the store itself -- its value and its address
+-- not the computation leading up to it.
+
+Events in the LKMM can be linked by various relations, which we will
+describe in the following sections. The memory model requires certain
+of these relations to be orderings, that is, it requires them not to
+have any cycles.
+
+
+THE PROGRAM ORDER RELATION: po AND po-loc
+-----------------------------------------
+
+The most important relation between events is program order (po). You
+can think of it as the order in which statements occur in the source
+code after branches are taken into account and loops have been
+unrolled. A better description might be the order in which
+instructions are presented to a CPU's execution unit. Thus, we say
+that X is po-before Y (written as "X ->po Y" in formulas) if X occurs
+before Y in the instruction stream.
+
+This is inherently a single-CPU relation; two instructions executing
+on different CPUs are never linked by po. Also, it is by definition
+an ordering so it cannot have any cycles.
+
+po-loc is a sub-relation of po. It links two memory accesses when the
+first comes before the second in program order and they access the
+same memory location (the "-loc" suffix).
+
+Although this may seem straightforward, there is one subtle aspect to
+program order we need to explain. The LKMM was inspired by low-level
+architectural memory models which describe the behavior of machine
+code, and it retains their outlook to a considerable extent. The
+read, write, and fence events used by the model are close in spirit to
+individual machine instructions. Nevertheless, the LKMM describes
+kernel code written in C, and the mapping from C to machine code can
+be extremely complex.
+
+Optimizing compilers have great freedom in the way they translate
+source code to object code. They are allowed to apply transformations
+that add memory accesses, eliminate accesses, combine them, split them
+into pieces, or move them around. Faced with all these possibilities,
+the LKMM basically gives up. It insists that the code it analyzes
+must contain no ordinary accesses to shared memory; all accesses must
+be performed using READ_ONCE(), WRITE_ONCE(), or one of the other
+atomic or synchronization primitives. These primitives prevent a
+large number of compiler optimizations. In particular, it is
+guaranteed that the compiler will not remove such accesses from the
+generated code (unless it can prove the accesses will never be
+executed), it will not change the order in which they occur in the
+code (within limits imposed by the C standard), and it will not
+introduce extraneous accesses.
+
+This explains why the MP and SB examples above used READ_ONCE() and
+WRITE_ONCE() rather than ordinary memory accesses. Thanks to this
+usage, we can be certain that in the MP example, P0's write event to
+buf really is po-before its write event to flag, and similarly for the
+other shared memory accesses in the examples.
+
+Private variables are not subject to this restriction. Since they are
+not shared between CPUs, they can be accessed normally without
+READ_ONCE() or WRITE_ONCE(), and there will be no ill effects. In
+fact, they need not even be stored in normal memory at all -- in
+principle a private variable could be stored in a CPU register (hence
+the convention that these variables have names starting with the
+letter 'r').
+
+
+A WARNING
+---------
+
+The protections provided by READ_ONCE(), WRITE_ONCE(), and others are
+not perfect; and under some circumstances it is possible for the
+compiler to undermine the memory model. Here is an example. Suppose
+both branches of an "if" statement store the same value to the same
+location:
+
+ r1 = READ_ONCE(x);
+ if (r1) {
+ WRITE_ONCE(y, 2);
+ ... /* do something */
+ } else {
+ WRITE_ONCE(y, 2);
+ ... /* do something else */
+ }
+
+For this code, the LKMM predicts that the load from x will always be
+executed before either of the stores to y. However, a compiler could
+lift the stores out of the conditional, transforming the code into
+something resembling:
+
+ r1 = READ_ONCE(x);
+ WRITE_ONCE(y, 2);
+ if (r1) {
+ ... /* do something */
+ } else {
+ ... /* do something else */
+ }
+
+Given this version of the code, the LKMM would predict that the load
+from x could be executed after the store to y. Thus, the memory
+model's original prediction could be invalidated by the compiler.
+
+Another issue arises from the fact that in C, arguments to many
+operators and function calls can be evaluated in any order. For
+example:
+
+ r1 = f(5) + g(6);
+
+The object code might call f(5) either before or after g(6); the
+memory model cannot assume there is a fixed program order relation
+between them. (In fact, if the functions are inlined then the
+compiler might even interleave their object code.)
+
+
+DEPENDENCY RELATIONS: data, addr, and ctrl
+------------------------------------------
+
+We say that two events are linked by a dependency relation when the
+execution of the second event depends in some way on a value obtained
+from memory by the first. The first event must be a read, and the
+value it obtains must somehow affect what the second event does.
+There are three kinds of dependencies: data, address (addr), and
+control (ctrl).
+
+A read and a write event are linked by a data dependency if the value
+obtained by the read affects the value stored by the write. As a very
+simple example:
+
+ int x, y;
+
+ r1 = READ_ONCE(x);
+ WRITE_ONCE(y, r1 + 5);
+
+The value stored by the WRITE_ONCE obviously depends on the value
+loaded by the READ_ONCE. Such dependencies can wind through
+arbitrarily complicated computations, and a write can depend on the
+values of multiple reads.
+
+A read event and another memory access event are linked by an address
+dependency if the value obtained by the read affects the location
+accessed by the other event. The second event can be either a read or
+a write. Here's another simple example:
+
+ int a[20];
+ int i;
+
+ r1 = READ_ONCE(i);
+ r2 = READ_ONCE(a[r1]);
+
+Here the location accessed by the second READ_ONCE() depends on the
+index value loaded by the first. Pointer indirection also gives rise
+to address dependencies, since the address of a location accessed
+through a pointer will depend on the value read earlier from that
+pointer.
+
+Finally, a read event and another memory access event are linked by a
+control dependency if the value obtained by the read affects whether
+the second event is executed at all. Simple example:
+
+ int x, y;
+
+ r1 = READ_ONCE(x);
+ if (r1)
+ WRITE_ONCE(y, 1984);
+
+Execution of the WRITE_ONCE() is controlled by a conditional expression
+which depends on the value obtained by the READ_ONCE(); hence there is
+a control dependency from the load to the store.
+
+It should be pretty obvious that events can only depend on reads that
+come earlier in program order. Sy