summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2013-09-12 15:44:27 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2013-09-12 15:44:27 -0700
commitac4de9543aca59f2b763746647577302fbedd57e (patch)
tree40407750569ee030de56233c41c9a97f7e89cf67 /mm
parent26935fb06ee88f1188789807687c03041f3c70d9 (diff)
parentde32a8177f64bc62e1b19c685dd391af664ab13f (diff)
Merge branch 'akpm' (patches from Andrew Morton)
Merge more patches from Andrew Morton: "The rest of MM. Plus one misc cleanup" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (35 commits) mm/Kconfig: add MMU dependency for MIGRATION. kernel: replace strict_strto*() with kstrto*() mm, thp: count thp_fault_fallback anytime thp fault fails thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page() thp: do_huge_pmd_anonymous_page() cleanup thp: move maybe_pmd_mkwrite() out of mk_huge_pmd() mm: cleanup add_to_page_cache_locked() thp: account anon transparent huge pages into NR_ANON_PAGES truncate: drop 'oldsize' truncate_pagecache() parameter mm: make lru_add_drain_all() selective memcg: document cgroup dirty/writeback memory statistics memcg: add per cgroup writeback pages accounting memcg: check for proper lock held in mem_cgroup_update_page_stat memcg: remove MEMCG_NR_FILE_MAPPED memcg: reduce function dereference memcg: avoid overflow caused by PAGE_ALIGN memcg: rename RESOURCE_MAX to RES_COUNTER_MAX memcg: correct RESOURCE_MAX to ULLONG_MAX mm: memcg: do not trap chargers with full callstack on OOM mm: memcg: rework and document OOM waiting and wakeup ...
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig4
-rw-r--r--mm/filemap.c59
-rw-r--r--mm/huge_memory.c129
-rw-r--r--mm/memcontrol.c871
-rw-r--r--mm/memory.c52
-rw-r--r--mm/oom_kill.c7
-rw-r--r--mm/page-writeback.c15
-rw-r--r--mm/rmap.c22
-rw-r--r--mm/swap.c44
-rw-r--r--mm/truncate.c9
-rw-r--r--mm/vmscan.c83
11 files changed, 593 insertions, 702 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 6cdd27043303..026771a9b097 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -245,7 +245,7 @@ config COMPACTION
config MIGRATION
bool "Page migration"
def_bool y
- depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA
+ depends on (NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA) && MMU
help
Allows the migration of the physical location of pages of processes
while the virtual addresses are not changed. This is useful in
@@ -480,7 +480,7 @@ config FRONTSWAP
config CMA
bool "Contiguous Memory Allocator"
- depends on HAVE_MEMBLOCK
+ depends on HAVE_MEMBLOCK && MMU
select MIGRATION
select MEMORY_ISOLATION
help
diff --git a/mm/filemap.c b/mm/filemap.c
index e607728db4a8..1e6aec4a2d2e 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -467,32 +467,34 @@ int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
error = mem_cgroup_cache_charge(page, current->mm,
gfp_mask & GFP_RECLAIM_MASK);
if (error)
- goto out;
+ return error;
error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
- if (error == 0) {
- page_cache_get(page);
- page->mapping = mapping;
- page->index = offset;
-
- spin_lock_irq(&mapping->tree_lock);
- error = radix_tree_insert(&mapping->page_tree, offset, page);
- if (likely(!error)) {
- mapping->nrpages++;
- __inc_zone_page_state(page, NR_FILE_PAGES);
- spin_unlock_irq(&mapping->tree_lock);
- trace_mm_filemap_add_to_page_cache(page);
- } else {
- page->mapping = NULL;
- /* Leave page->index set: truncation relies upon it */
- spin_unlock_irq(&mapping->tree_lock);
- mem_cgroup_uncharge_cache_page(page);
- page_cache_release(page);
- }
- radix_tree_preload_end();
- } else
+ if (error) {
mem_cgroup_uncharge_cache_page(page);
-out:
+ return error;
+ }
+
+ page_cache_get(page);
+ page->mapping = mapping;
+ page->index = offset;
+
+ spin_lock_irq(&mapping->tree_lock);
+ error = radix_tree_insert(&mapping->page_tree, offset, page);
+ radix_tree_preload_end();
+ if (unlikely(error))
+ goto err_insert;
+ mapping->nrpages++;
+ __inc_zone_page_state(page, NR_FILE_PAGES);
+ spin_unlock_irq(&mapping->tree_lock);
+ trace_mm_filemap_add_to_page_cache(page);
+ return 0;
+err_insert:
+ page->mapping = NULL;
+ /* Leave page->index set: truncation relies upon it */
+ spin_unlock_irq(&mapping->tree_lock);
+ mem_cgroup_uncharge_cache_page(page);
+ page_cache_release(page);
return error;
}
EXPORT_SYMBOL(add_to_page_cache_locked);
@@ -1614,6 +1616,7 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
struct inode *inode = mapping->host;
pgoff_t offset = vmf->pgoff;
struct page *page;
+ bool memcg_oom;
pgoff_t size;
int ret = 0;
@@ -1622,7 +1625,11 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
return VM_FAULT_SIGBUS;
/*
- * Do we have something in the page cache already?
+ * Do we have something in the page cache already? Either
+ * way, try readahead, but disable the memcg OOM killer for it
+ * as readahead is optional and no errors are propagated up
+ * the fault stack. The OOM killer is enabled while trying to
+ * instantiate the faulting page individually below.
*/
page = find_get_page(mapping, offset);
if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
@@ -1630,10 +1637,14 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
* We found the page, so try async readahead before
* waiting for the lock.
*/
+ memcg_oom = mem_cgroup_toggle_oom(false);
do_async_mmap_readahead(vma, ra, file, page, offset);
+ mem_cgroup_toggle_oom(memcg_oom);
} else if (!page) {
/* No page in the page cache at all */
+ memcg_oom = mem_cgroup_toggle_oom(false);
do_sync_mmap_readahead(vma, ra, file, offset);
+ mem_cgroup_toggle_oom(memcg_oom);
count_vm_event(PGMAJFAULT);
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ret = VM_FAULT_MAJOR;
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index d66010e0049d..7489884682d8 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -695,11 +695,10 @@ pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
return pmd;
}
-static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
+static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
{
pmd_t entry;
- entry = mk_pmd(page, vma->vm_page_prot);
- entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+ entry = mk_pmd(page, prot);
entry = pmd_mkhuge(entry);
return entry;
}
@@ -732,7 +731,8 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
pte_free(mm, pgtable);
} else {
pmd_t entry;
- entry = mk_huge_pmd(page, vma);
+ entry = mk_huge_pmd(page, vma->vm_page_prot);
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
page_add_new_anon_rmap(page, vma, haddr);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, haddr, pmd, entry);
@@ -788,77 +788,57 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
{
struct page *page;
unsigned long haddr = address & HPAGE_PMD_MASK;
- pte_t *pte;
- if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
- if (unlikely(anon_vma_prepare(vma)))
- return VM_FAULT_OOM;
- if (unlikely(khugepaged_enter(vma)))
+ if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
+ return VM_FAULT_FALLBACK;
+ if (unlikely(anon_vma_prepare(vma)))
+ return VM_FAULT_OOM;
+ if (unlikely(khugepaged_enter(vma)))
+ return VM_FAULT_OOM;
+ if (!(flags & FAULT_FLAG_WRITE) &&
+ transparent_hugepage_use_zero_page()) {
+ pgtable_t pgtable;
+ struct page *zero_page;
+ bool set;
+ pgtable = pte_alloc_one(mm, haddr);
+ if (unlikely(!pgtable))
return VM_FAULT_OOM;
- if (!(flags & FAULT_FLAG_WRITE) &&
- transparent_hugepage_use_zero_page()) {
- pgtable_t pgtable;
- struct page *zero_page;
- bool set;
- pgtable = pte_alloc_one(mm, haddr);
- if (unlikely(!pgtable))
- return VM_FAULT_OOM;
- zero_page = get_huge_zero_page();
- if (unlikely(!zero_page)) {
- pte_free(mm, pgtable);
- count_vm_event(THP_FAULT_FALLBACK);
- goto out;
- }
- spin_lock(&mm->page_table_lock);
- set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
- zero_page);
- spin_unlock(&mm->page_table_lock);
- if (!set) {
- pte_free(mm, pgtable);
- put_huge_zero_page();
- }
- return 0;
- }
- page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
- vma, haddr, numa_node_id(), 0);
- if (unlikely(!page)) {
+ zero_page = get_huge_zero_page();
+ if (unlikely(!zero_page)) {
+ pte_free(mm, pgtable);
count_vm_event(THP_FAULT_FALLBACK);
- goto out;
- }
- count_vm_event(THP_FAULT_ALLOC);
- if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
- put_page(page);
- goto out;
+ return VM_FAULT_FALLBACK;
}
- if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
- page))) {
- mem_cgroup_uncharge_page(page);
- put_page(page);
- goto out;
+ spin_lock(&mm->page_table_lock);
+ set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
+ zero_page);
+ spin_unlock(&mm->page_table_lock);
+ if (!set) {
+ pte_free(mm, pgtable);
+ put_huge_zero_page();
}
-
return 0;
}
-out:
- /*
- * Use __pte_alloc instead of pte_alloc_map, because we can't
- * run pte_offset_map on the pmd, if an huge pmd could
- * materialize from under us from a different thread.
- */
- if (unlikely(pmd_none(*pmd)) &&
- unlikely(__pte_alloc(mm, vma, pmd, address)))
- return VM_FAULT_OOM;
- /* if an huge pmd materialized from under us just retry later */
- if (unlikely(pmd_trans_huge(*pmd)))
- return 0;
- /*
- * A regular pmd is established and it can't morph into a huge pmd
- * from under us anymore at this point because we hold the mmap_sem
- * read mode and khugepaged takes it in write mode. So now it's
- * safe to run pte_offset_map().
- */
- pte = pte_offset_map(pmd, address);
- return handle_pte_fault(mm, vma, address, pte, pmd, flags);
+ page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
+ vma, haddr, numa_node_id(), 0);
+ if (unlikely(!page)) {
+ count_vm_event(THP_FAULT_FALLBACK);
+ return VM_FAULT_FALLBACK;
+ }
+ if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
+ put_page(page);
+ count_vm_event(THP_FAULT_FALLBACK);
+ return VM_FAULT_FALLBACK;
+ }
+ if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
+ mem_cgroup_uncharge_page(page);
+ put_page(page);
+ count_vm_event(THP_FAULT_FALLBACK);
+ return VM_FAULT_FALLBACK;
+ }
+
+ count_vm_event(THP_FAULT_ALLOC);
+ return 0;
}
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
@@ -1170,7 +1150,6 @@ alloc:
new_page = NULL;
if (unlikely(!new_page)) {
- count_vm_event(THP_FAULT_FALLBACK);
if (is_huge_zero_pmd(orig_pmd)) {
ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
address, pmd, orig_pmd, haddr);
@@ -1181,9 +1160,9 @@ alloc:
split_huge_page(page);
put_page(page);
}
+ count_vm_event(THP_FAULT_FALLBACK);
goto out;
}
- count_vm_event(THP_FAULT_ALLOC);
if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
put_page(new_page);
@@ -1191,10 +1170,13 @@ alloc:
split_huge_page(page);
put_page(page);
}
+ count_vm_event(THP_FAULT_FALLBACK);
ret |= VM_FAULT_OOM;
goto out;
}
+ count_vm_event(THP_FAULT_ALLOC);
+
if (is_huge_zero_pmd(orig_pmd))
clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
else
@@ -1215,7 +1197,8 @@ alloc:
goto out_mn;
} else {
pmd_t entry;
- entry = mk_huge_pmd(new_page, vma);
+ entry = mk_huge_pmd(new_page, vma->vm_page_prot);
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
pmdp_clear_flush(vma, haddr, pmd);
page_add_new_anon_rmap(new_page, vma, haddr);
set_pmd_at(mm, haddr, pmd, entry);
@@ -1666,7 +1649,6 @@ static void __split_huge_page_refcount(struct page *page,
BUG_ON(atomic_read(&page->_count) <= 0);
__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
- __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
ClearPageCompound(page);
compound_unlock(page);
@@ -2364,7 +2346,8 @@ static void collapse_huge_page(struct mm_struct *mm,
__SetPageUptodate(new_page);
pgtable = pmd_pgtable(_pmd);
- _pmd = mk_huge_pmd(new_page, vma);
+ _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
+ _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
/*
* spin_lock() below is not the equivalent of smp_wmb(), so
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index c6bd28edd533..d5ff3ce13029 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -39,7 +39,6 @@
#include <linux/limits.h>
#include <linux/export.h>
#include <linux/mutex.h>
-#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/swapops.h>
@@ -85,26 +84,12 @@ static int really_do_swap_account __initdata = 0;
#endif
-/*
- * Statistics for memory cgroup.
- */
-enum mem_cgroup_stat_index {
- /*
- * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
- */
- MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
- MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
- MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
- MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
- MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
- MEM_CGROUP_STAT_NSTATS,
-};
-
static const char * const mem_cgroup_stat_names[] = {
"cache",
"rss",
"rss_huge",
"mapped_file",
+ "writeback",
"swap",
};
@@ -175,10 +160,6 @@ struct mem_cgroup_per_zone {
struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
- struct rb_node tree_node; /* RB tree node */
- unsigned long long usage_in_excess;/* Set to the value by which */
- /* the soft limit is exceeded*/
- bool on_tree;
struct mem_cgroup *memcg; /* Back pointer, we cannot */
/* use container_of */
};
@@ -187,26 +168,6 @@ struct mem_cgroup_per_node {
struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};
-/*
- * Cgroups above their limits are maintained in a RB-Tree, independent of
- * their hierarchy representation
- */
-
-struct mem_cgroup_tree_per_zone {
- struct rb_root rb_root;
- spinlock_t lock;
-};
-
-struct mem_cgroup_tree_per_node {
- struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
-};
-
-struct mem_cgroup_tree {
- struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
-};
-
-static struct mem_cgroup_tree soft_limit_tree __read_mostly;
-
struct mem_cgroup_threshold {
struct eventfd_ctx *eventfd;
u64 threshold;
@@ -280,6 +241,7 @@ struct mem_cgroup {
bool oom_lock;
atomic_t under_oom;
+ atomic_t oom_wakeups;
int swappiness;
/* OOM-Killer disable */
@@ -304,7 +266,7 @@ struct mem_cgroup {
* Should we move charges of a task when a task is moved into this
* mem_cgroup ? And what type of charges should we move ?
*/
- unsigned long move_charge_at_immigrate;
+ unsigned long move_charge_at_immigrate;
/*
* set > 0 if pages under this cgroup are moving to other cgroup.
*/
@@ -341,6 +303,22 @@ struct mem_cgroup {
atomic_t numainfo_events;
atomic_t numainfo_updating;
#endif
+ /*
+ * Protects soft_contributed transitions.
+ * See mem_cgroup_update_soft_limit
+ */
+ spinlock_t soft_lock;
+
+ /*
+ * If true then this group has increased parents' children_in_excess
+ * when it got over the soft limit.
+ * When a group falls bellow the soft limit, parents' children_in_excess
+ * is decreased and soft_contributed changed to false.
+ */
+ bool soft_contributed;
+
+ /* Number of children that are in soft limit excess */
+ atomic_t children_in_excess;
struct mem_cgroup_per_node *nodeinfo[0];
/* WARNING: nodeinfo must be the last member here */
@@ -444,7 +422,6 @@ static bool move_file(void)
* limit reclaim to prevent infinite loops, if they ever occur.
*/
#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
-#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
@@ -671,164 +648,6 @@ page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
return mem_cgroup_zoneinfo(memcg, nid, zid);
}
-static struct mem_cgroup_tree_per_zone *
-soft_limit_tree_node_zone(int nid, int zid)
-{
- return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
-}
-
-static struct mem_cgroup_tree_per_zone *
-soft_limit_tree_from_page(struct page *page)
-{
- int nid = page_to_nid(page);
- int zid = page_zonenum(page);
-
- return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
-}
-
-static void
-__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
- struct mem_cgroup_per_zone *mz,
- struct mem_cgroup_tree_per_zone *mctz,
- unsigned long long new_usage_in_excess)
-{
- struct rb_node **p = &mctz->rb_root.rb_node;
- struct rb_node *parent = NULL;
- struct mem_cgroup_per_zone *mz_node;
-
- if (mz->on_tree)
- return;
-
- mz->usage_in_excess = new_usage_in_excess;
- if (!mz->usage_in_excess)
- return;
- while (*p) {
- parent = *p;
- mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
- tree_node);
- if (mz->usage_in_excess < mz_node->usage_in_excess)
- p = &(*p)->rb_left;
- /*
- * We can't avoid mem cgroups that are over their soft
- * limit by the same amount
- */
- else if (mz->usage_in_excess >= mz_node->usage_in_excess)
- p = &(*p)->rb_right;
- }
- rb_link_node(&mz->tree_node, parent, p);
- rb_insert_color(&mz->tree_node, &mctz->rb_root);
- mz->on_tree = true;
-}
-
-static void
-__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
- struct mem_cgroup_per_zone *mz,
- struct mem_cgroup_tree_per_zone *mctz)
-{
- if (!mz->on_tree)
- return;
- rb_erase(&mz->tree_node, &mctz->rb_root);
- mz->on_tree = false;
-}
-
-static void
-mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
- struct mem_cgroup_per_zone *mz,
- struct mem_cgroup_tree_per_zone *mctz)
-{
- spin_lock(&mctz->lock);
- __mem_cgroup_remove_exceeded(memcg, mz, mctz);
- spin_unlock(&mctz->lock);
-}
-
-
-static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
-{
- unsigned long long excess;
- struct mem_cgroup_per_zone *mz;
- struct mem_cgroup_tree_per_zone *mctz;
- int nid = page_to_nid(page);
- int zid = page_zonenum(page);
- mctz = soft_limit_tree_from_page(page);
-
- /*
- * Necessary to update all ancestors when hierarchy is used.
- * because their event counter is not touched.
- */
- for (; memcg; memcg = parent_mem_cgroup(memcg)) {
- mz = mem_cgroup_zoneinfo(memcg, nid, zid);
- excess = res_counter_soft_limit_excess(&memcg->res);
- /*
- * We have to update the tree if mz is on RB-tree or
- * mem is over its softlimit.
- */
- if (excess || mz->on_tree) {
- spin_lock(&mctz->lock);
- /* if on-tree, remove it */
- if (mz->on_tree)
- __mem_cgroup_remove_exceeded(memcg, mz, mctz);
- /*
- * Insert again. mz->usage_in_excess will be updated.
- * If excess is 0, no tree ops.
- */
- __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
- spin_unlock(&mctz->lock);
- }
- }
-}
-
-static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
-{
- int node, zone;
- struct mem_cgroup_per_zone *mz;
- struct mem_cgroup_tree_per_zone *mctz;
-
- for_each_node(node) {
- for (zone = 0; zone < MAX_NR_ZONES; zone++) {
- mz = mem_cgroup_zoneinfo(memcg, node, zone);
- mctz = soft_limit_tree_node_zone(node, zone);
- mem_cgroup_remove_exceeded(memcg, mz, mctz);
- }
- }
-}
-
-static struct mem_cgroup_per_zone *
-__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
-{
- struct rb_node *rightmost = NULL;
- struct mem_cgroup_per_zone *mz;
-
-retry:
- mz = NULL;
- rightmost = rb_last(&mctz->rb_root);
- if (!rightmost)
- goto done; /* Nothing to reclaim from */
-
- mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
- /*
- * Remove the node now but someone else can add it back,
- * we will to add it back at the end of reclaim to its correct
- * position in the tree.
- */
- __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
- if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
- !css_tryget(&mz->memcg->css))
- goto retry;
-done:
- return mz;
-}
-
-static struct mem_cgroup_per_zone *
-mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
-{
- struct mem_cgroup_per_zone *mz;
-
- spin_lock(&mctz->lock);
- mz = __mem_cgroup_largest_soft_limit_node(mctz);
- spin_unlock(&mctz->lock);
- return mz;
-}
-
/*
* Implementation Note: reading percpu statistics for memcg.
*
@@ -1003,6 +822,48 @@ static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
}
/*
+ * Called from rate-limited memcg_check_events when enough
+ * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
+ * that all the parents up the hierarchy will be notified that this group
+ * is in excess or that it is not in excess anymore. mmecg->soft_contributed
+ * makes the transition a single action whenever the state flips from one to
+ * the other.
+ */
+static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
+{
+ unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
+ struct mem_cgroup *parent = memcg;
+ int delta = 0;
+
+ spin_lock(&memcg->soft_lock);
+ if (excess) {
+ if (!memcg->soft_contributed) {
+ delta = 1;
+ memcg->soft_contributed = true;
+ }
+ } else {
+ if (memcg->soft_contributed) {
+ delta = -1;
+ memcg->soft_contributed = false;
+ }
+ }
+
+ /*
+ * Necessary to update all ancestors when hierarchy is used
+ * because their event counter is not touched.
+ * We track children even outside the hierarchy for the root
+ * cgroup because tree walk starting at root should visit
+ * all cgroups and we want to prevent from pointless tree
+ * walk if no children is below the limit.
+ */
+ while (delta && (parent = parent_mem_cgroup(parent)))
+ atomic_add(delta, &parent->children_in_excess);
+ if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
+ atomic_add(delta, &root_mem_cgroup->children_in_excess);
+ spin_unlock(&memcg->soft_lock);
+}
+
+/*
* Check events in order.
*
*/
@@ -1025,7 +886,7 @@ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
mem_cgroup_threshold(memcg);
if (unlikely(do_softlimit))
- mem_cgroup_update_tree(memcg, page);
+ mem_cgroup_update_soft_limit(memcg);
#if MAX_NUMNODES > 1
if (unlikely(do_numainfo))
atomic_inc(&memcg->numainfo_events);
@@ -1068,6 +929,15 @@ struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
return memcg;
}
+static enum mem_cgroup_filter_t
+mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
+ mem_cgroup_iter_filter cond)
+{
+ if (!cond)
+ return VISIT;
+ return cond(memcg, root);
+}
+
/*
* Returns a next (in a pre-order walk) alive memcg (with elevated css
* ref. count) or NULL if the whole root's subtree has been visited.
@@ -1075,7 +945,7 @@ struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
* helper function to be used by mem_cgroup_iter
*/
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
- struct mem_cgroup *last_visited)
+ struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
{
struct cgroup_subsys_state *prev_css, *next_css;
@@ -1093,11 +963,31 @@ skip_node:
if (next_css) {
struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
- if (css_tryget(&mem->css))
- return mem;
- else {
+ switch (mem_cgroup_filter(mem, root, cond)) {
+ case SKIP:
prev_css = next_css;
goto skip_node;
+ case SKIP_TREE:
+ if (mem == root)
+ return NULL;
+ /*
+ * css_rightmost_descendant is not an optimal way to
+ * skip through a subtree (especially for imbalanced
+ * trees leaning to right) but that's what we have right
+ * now. More effective solution would be traversing
+ * right-up for first non-NULL without calling
+ * css_next_descendant_pre afterwards.
+ */
+ prev_css = css_rightmost_descendant(next_css);
+ goto skip_node;
+ case VISIT:
+ if (css_tryget(&mem->css))
+ return mem;
+ else {
+ prev_css = next_css;
+ goto skip_node;
+ }
+ break;
}
}
@@ -1161,6 +1051,7 @@ static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
* @root: hierarchy root
* @prev: previously returned memcg, NULL on first invocation
* @reclaim: cookie for shared reclaim walks, NULL for full walks
+ * @cond: filter for visited nodes, NULL for no filter
*
* Returns references to children of the hierarchy below @root, or
* @root itself, or %NULL after a full round-trip.
@@ -1173,15 +1064,18 @@ static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
* divide up the memcgs in the hierarchy among all concurrent
* reclaimers operating on the same zone and priority.
*/
-struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
+struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
struct mem_cgroup *prev,
- struct mem_cgroup_reclaim_cookie *reclaim)
+ struct mem_cgroup_reclaim_cookie *reclaim,
+ mem_cgroup_iter_filter cond)
{
struct mem_cgroup *memcg = NULL;
struct mem_cgroup *last_visited = NULL;
- if (mem_cgroup_disabled())
- return NULL;
+ if (mem_cgroup_disabled()) {
+ /* first call must return non-NULL, second return NULL */
+ return (struct mem_cgroup *)(unsigned long)!prev;
+ }
if (!root)
root = root_mem_cgroup;
@@ -1192,7 +1086,9 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
if (!root->use_hierarchy && root != root_mem_cgroup) {
if (prev)
goto out_css_put;
- return root;
+ if (mem_cgroup_filter(root, root, cond) == VISIT)
+ return root;
+ return NULL;
}
rcu_read_lock();
@@ -1215,7 +1111,7 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
last_visited = mem_cgroup_iter_load(iter, root, &seq);
}
- memcg = __mem_cgroup_iter_next(root, last_visited);
+ memcg = __mem_cgroup_iter_next(root, last_visited, cond);
if (reclaim) {
mem_cgroup_iter_update(iter, last_visited, memcg, seq);
@@ -1226,7 +1122,11 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
reclaim->generation = iter->generation;
}
- if (prev && !memcg)
+ /*
+ * We have finished the whole tree walk or no group has been
+ * visited because filter told us to skip the root node.
+ */
+ if (!memcg && (prev || (cond && !last_visited)))
goto out_unlock;
}
out_unlock:
@@ -1867,6 +1767,7 @@ static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
return total;
}
+#if MAX_NUMNODES > 1
/**
* test_mem_cgroup_node_reclaimable
* @memcg: the target memcg
@@ -1889,7 +1790,6 @@ static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
return false;
}
-#if MAX_NUMNODES > 1
/*
* Always updating the nodemask is not very good - even if we have an empty
@@ -1957,115 +1857,64 @@ int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
return node;
}
-/*
- * Check all nodes whether it contains reclaimable pages or not.
- * For quick scan, we make use of scan_nodes. This will allow us to skip
- * unused nodes. But scan_nodes is lazily updated and may not cotain
- * enough new information. We need to do double check.
- */
-static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
-{
- int nid;
-
- /*
- * quick check...making use of scan_node.
- * We can skip unused nodes.
- */
- if (!nodes_empty(memcg->scan_nodes)) {
- for (nid = first_node(memcg->scan_nodes);
- nid < MAX_NUMNODES;
- nid = next_node(nid, memcg->scan_nodes)) {
-
- if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
- return true;
- }
- }
- /*
- * Check rest of nodes.
- */
- for_each_node_state(nid, N_MEMORY) {
- if (node_isset(nid, memcg->scan_nodes))
- continue;
- if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
- return true;
- }
- return false;
-}
-
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
{
return 0;
}
-static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
-{
- return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
-}
#endif
-static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
- struct zone *zone,
- gfp_t gfp_mask,
- unsigned long *total_scanned)
-{
- struct mem_cgroup *victim = NULL;
- int total = 0;
- int loop = 0;
- unsigned long excess;
- unsigned long nr_scanned;
- struct mem_cgroup_reclaim_cookie reclaim = {
- .zone = zone,
- .priority = 0,
- };
-
- excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
-
- while (1) {
- victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
- if (!victim) {
- loop++;
- if (loop >= 2) {
- /*
- * If we have not been able to reclaim
- * anything, it might because there are
- * no reclaimable pages under this hierarchy
- */
- if (!total)
- break;
- /*
- * We want to do more targeted reclaim.
- * excess >> 2 is not to excessive so as to
- * reclaim too much, nor too less that we keep
- * coming back to reclaim from this cgroup
- */
- if (total >= (excess >> 2) ||
- (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
- break;
- }
- continue;
- }
- if (!mem_cgroup_reclaimable(victim, false))
- continue;
- total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
- zone, &nr_scanned);
- *total_scanned += nr_scanned;
- if (!res_counter_soft_limit_excess(&root_memcg->res))
+/*
+ * A group is eligible for the soft limit reclaim under the given root
+ * hierarchy if
+ * a) it is over its soft limit
+ * b) any parent up the hierarchy is over its soft limit
+ *
+ * If the given group doesn't have any children over the limit then it
+ * doesn't make any sense to iterate its subtree.
+ */
+enum mem_cgroup_filter_t
+mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
+ struct mem_cgroup *root)
+{
+ struct mem_cgroup *parent;
+
+ if (!memcg)
+ memcg = root_mem_cgroup;
+ parent = memcg;
+
+ if (res_counter_soft_limit_excess(&memcg->res))
+ return VISIT;
+
+ /*
+ * If any parent up to the root in the hierarchy is over its soft limit
+ * then we have to obey and reclaim from this group as well.
+ */
+ while ((parent = parent_mem_cgroup(parent))) {
+ if (res_counter_soft_limit_excess(&parent->res))
+ return VISIT;
+ if (parent == root)
break;
}
- mem_cgroup_iter_break(root_memcg, victim);
- return total;
+
+ if (!atomic_read(&memcg->children_in_excess))
+ return SKIP_TREE;
+ return SKIP;
}
+static DEFINE_SPINLOCK(memcg_oom_lock);
+
/*
* Check OOM-Killer is already running under our hierarchy.
* If someone is running, return false.
- * Has to be called with memcg_oom_lock
*/
-static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
+static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter, *failed = NULL;
+ spin_lock(&memcg_oom_lock);
+
for_each_mem_cgroup_tree(iter, memcg) {
if (iter->oom_lock) {
/*
@@ -2079,33 +1928,33 @@ static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
iter->oom_lock = true;
}
- if (!failed)
- return true;
-
- /*
- * OK, we failed to lock the whole subtree so we have to clean up
- * what we set up to the failing subtree
- */
- for_each_mem_cgroup_tree(iter, memcg) {
- if (iter == failed) {
- mem_cgroup_iter_break(memcg, iter);
- break;
+ if (failed) {
+ /*
+ * OK, we failed to lock the whole subtree so we have
+ * to clean up what we set up to the failing subtree
+ */
+ for_each_mem_cgroup_tree(iter, memcg) {
+ if (iter == failed) {
+ mem_cgroup_iter_break(memcg, iter);
+ break;
+ }
+ iter->oom_lock = false;
}
- iter->oom_lock = false;
}
- return false;
+
+ spin_unlock(&memcg_oom_lock);
+
+ return !failed;
}
-/*
- * Has to be called with memcg_oom_lock
- */
-static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
+static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
+ spin_lock(&memcg_oom_lock);
for_each_mem_cgroup_tree(iter, memcg)
iter->oom_lock = false;
- return 0;
+ spin_unlock(&memcg_oom_lock);
}
static