summaryrefslogtreecommitdiffstats
path: root/fs/reiserfs/stree.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/reiserfs/stree.c
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'fs/reiserfs/stree.c')
-rw-r--r--fs/reiserfs/stree.c2073
1 files changed, 2073 insertions, 0 deletions
diff --git a/fs/reiserfs/stree.c b/fs/reiserfs/stree.c
new file mode 100644
index 000000000000..73ec5212178b
--- /dev/null
+++ b/fs/reiserfs/stree.c
@@ -0,0 +1,2073 @@
+/*
+ * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
+ */
+
+/*
+ * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
+ * Programm System Institute
+ * Pereslavl-Zalessky Russia
+ */
+
+/*
+ * This file contains functions dealing with S+tree
+ *
+ * B_IS_IN_TREE
+ * copy_item_head
+ * comp_short_keys
+ * comp_keys
+ * comp_short_le_keys
+ * le_key2cpu_key
+ * comp_le_keys
+ * bin_search
+ * get_lkey
+ * get_rkey
+ * key_in_buffer
+ * decrement_bcount
+ * decrement_counters_in_path
+ * reiserfs_check_path
+ * pathrelse_and_restore
+ * pathrelse
+ * search_by_key_reada
+ * search_by_key
+ * search_for_position_by_key
+ * comp_items
+ * prepare_for_direct_item
+ * prepare_for_direntry_item
+ * prepare_for_delete_or_cut
+ * calc_deleted_bytes_number
+ * init_tb_struct
+ * padd_item
+ * reiserfs_delete_item
+ * reiserfs_delete_solid_item
+ * reiserfs_delete_object
+ * maybe_indirect_to_direct
+ * indirect_to_direct_roll_back
+ * reiserfs_cut_from_item
+ * truncate_directory
+ * reiserfs_do_truncate
+ * reiserfs_paste_into_item
+ * reiserfs_insert_item
+ */
+
+#include <linux/config.h>
+#include <linux/time.h>
+#include <linux/string.h>
+#include <linux/pagemap.h>
+#include <linux/reiserfs_fs.h>
+#include <linux/smp_lock.h>
+#include <linux/buffer_head.h>
+#include <linux/quotaops.h>
+
+/* Does the buffer contain a disk block which is in the tree. */
+inline int B_IS_IN_TREE (const struct buffer_head * p_s_bh)
+{
+
+ RFALSE( B_LEVEL (p_s_bh) > MAX_HEIGHT,
+ "PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh);
+
+ return ( B_LEVEL (p_s_bh) != FREE_LEVEL );
+}
+
+//
+// to gets item head in le form
+//
+inline void copy_item_head(struct item_head * p_v_to,
+ const struct item_head * p_v_from)
+{
+ memcpy (p_v_to, p_v_from, IH_SIZE);
+}
+
+
+/* k1 is pointer to on-disk structure which is stored in little-endian
+ form. k2 is pointer to cpu variable. For key of items of the same
+ object this returns 0.
+ Returns: -1 if key1 < key2
+ 0 if key1 == key2
+ 1 if key1 > key2 */
+inline int comp_short_keys (const struct reiserfs_key * le_key,
+ const struct cpu_key * cpu_key)
+{
+ __u32 * p_s_le_u32, * p_s_cpu_u32;
+ int n_key_length = REISERFS_SHORT_KEY_LEN;
+
+ p_s_le_u32 = (__u32 *)le_key;
+ p_s_cpu_u32 = (__u32 *)&cpu_key->on_disk_key;
+ for( ; n_key_length--; ++p_s_le_u32, ++p_s_cpu_u32 ) {
+ if ( le32_to_cpu (*p_s_le_u32) < *p_s_cpu_u32 )
+ return -1;
+ if ( le32_to_cpu (*p_s_le_u32) > *p_s_cpu_u32 )
+ return 1;
+ }
+
+ return 0;
+}
+
+
+/* k1 is pointer to on-disk structure which is stored in little-endian
+ form. k2 is pointer to cpu variable.
+ Compare keys using all 4 key fields.
+ Returns: -1 if key1 < key2 0
+ if key1 = key2 1 if key1 > key2 */
+static inline int comp_keys (const struct reiserfs_key * le_key, const struct cpu_key * cpu_key)
+{
+ int retval;
+
+ retval = comp_short_keys (le_key, cpu_key);
+ if (retval)
+ return retval;
+ if (le_key_k_offset (le_key_version(le_key), le_key) < cpu_key_k_offset (cpu_key))
+ return -1;
+ if (le_key_k_offset (le_key_version(le_key), le_key) > cpu_key_k_offset (cpu_key))
+ return 1;
+
+ if (cpu_key->key_length == 3)
+ return 0;
+
+ /* this part is needed only when tail conversion is in progress */
+ if (le_key_k_type (le_key_version(le_key), le_key) < cpu_key_k_type (cpu_key))
+ return -1;
+
+ if (le_key_k_type (le_key_version(le_key), le_key) > cpu_key_k_type (cpu_key))
+ return 1;
+
+ return 0;
+}
+
+
+inline int comp_short_le_keys (const struct reiserfs_key * key1, const struct reiserfs_key * key2)
+{
+ __u32 * p_s_1_u32, * p_s_2_u32;
+ int n_key_length = REISERFS_SHORT_KEY_LEN;
+
+ p_s_1_u32 = (__u32 *)key1;
+ p_s_2_u32 = (__u32 *)key2;
+ for( ; n_key_length--; ++p_s_1_u32, ++p_s_2_u32 ) {
+ if ( le32_to_cpu (*p_s_1_u32) < le32_to_cpu (*p_s_2_u32) )
+ return -1;
+ if ( le32_to_cpu (*p_s_1_u32) > le32_to_cpu (*p_s_2_u32) )
+ return 1;
+ }
+ return 0;
+}
+
+inline void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from)
+{
+ to->on_disk_key.k_dir_id = le32_to_cpu (from->k_dir_id);
+ to->on_disk_key.k_objectid = le32_to_cpu (from->k_objectid);
+
+ // find out version of the key
+ to->version = le_key_version (from);
+ if (to->version == KEY_FORMAT_3_5) {
+ to->on_disk_key.u.k_offset_v1.k_offset = le32_to_cpu (from->u.k_offset_v1.k_offset);
+ to->on_disk_key.u.k_offset_v1.k_uniqueness = le32_to_cpu (from->u.k_offset_v1.k_uniqueness);
+ } else {
+ to->on_disk_key.u.k_offset_v2.k_offset = offset_v2_k_offset(&from->u.k_offset_v2);
+ to->on_disk_key.u.k_offset_v2.k_type = offset_v2_k_type(&from->u.k_offset_v2);
+ }
+}
+
+
+
+// this does not say which one is bigger, it only returns 1 if keys
+// are not equal, 0 otherwise
+inline int comp_le_keys (const struct reiserfs_key * k1, const struct reiserfs_key * k2)
+{
+ return memcmp (k1, k2, sizeof (struct reiserfs_key));
+}
+
+/**************************************************************************
+ * Binary search toolkit function *
+ * Search for an item in the array by the item key *
+ * Returns: 1 if found, 0 if not found; *
+ * *p_n_pos = number of the searched element if found, else the *
+ * number of the first element that is larger than p_v_key. *
+ **************************************************************************/
+/* For those not familiar with binary search: n_lbound is the leftmost item that it
+ could be, n_rbound the rightmost item that it could be. We examine the item
+ halfway between n_lbound and n_rbound, and that tells us either that we can increase
+ n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that
+ there are no possible items, and we have not found it. With each examination we
+ cut the number of possible items it could be by one more than half rounded down,
+ or we find it. */
+static inline int bin_search (
+ const void * p_v_key, /* Key to search for. */
+ const void * p_v_base,/* First item in the array. */
+ int p_n_num, /* Number of items in the array. */
+ int p_n_width, /* Item size in the array.
+ searched. Lest the reader be
+ confused, note that this is crafted
+ as a general function, and when it
+ is applied specifically to the array
+ of item headers in a node, p_n_width
+ is actually the item header size not
+ the item size. */
+ int * p_n_pos /* Number of the searched for element. */
+ ) {
+ int n_rbound, n_lbound, n_j;
+
+ for ( n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0))/2; n_lbound <= n_rbound; n_j = (n_rbound + n_lbound)/2 )
+ switch( comp_keys((struct reiserfs_key *)((char * )p_v_base + n_j * p_n_width), (struct cpu_key *)p_v_key) ) {
+ case -1: n_lbound = n_j + 1; continue;
+ case 1: n_rbound = n_j - 1; continue;
+ case 0: *p_n_pos = n_j; return ITEM_FOUND; /* Key found in the array. */
+ }
+
+ /* bin_search did not find given key, it returns position of key,
+ that is minimal and greater than the given one. */
+ *p_n_pos = n_lbound;
+ return ITEM_NOT_FOUND;
+}
+
+#ifdef CONFIG_REISERFS_CHECK
+extern struct tree_balance * cur_tb;
+#endif
+
+
+
+/* Minimal possible key. It is never in the tree. */
+const struct reiserfs_key MIN_KEY = {0, 0, {{0, 0},}};
+
+/* Maximal possible key. It is never in the tree. */
+const struct reiserfs_key MAX_KEY = {0xffffffff, 0xffffffff, {{0xffffffff, 0xffffffff},}};
+
+
+/* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
+ of the path, and going upwards. We must check the path's validity at each step. If the key is not in
+ the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
+ case we return a special key, either MIN_KEY or MAX_KEY. */
+static inline const struct reiserfs_key * get_lkey (
+ const struct path * p_s_chk_path,
+ const struct super_block * p_s_sb
+ ) {
+ int n_position, n_path_offset = p_s_chk_path->path_length;
+ struct buffer_head * p_s_parent;
+
+ RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
+ "PAP-5010: invalid offset in the path");
+
+ /* While not higher in path than first element. */
+ while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) {
+
+ RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
+ "PAP-5020: parent is not uptodate");
+
+ /* Parent at the path is not in the tree now. */
+ if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) )
+ return &MAX_KEY;
+ /* Check whether position in the parent is correct. */
+ if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) )
+ return &MAX_KEY;
+ /* Check whether parent at the path really points to the child. */
+ if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
+ PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr )
+ return &MAX_KEY;
+ /* Return delimiting key if position in the parent is not equal to zero. */
+ if ( n_position )
+ return B_N_PDELIM_KEY(p_s_parent, n_position - 1);
+ }
+ /* Return MIN_KEY if we are in the root of the buffer tree. */
+ if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
+ SB_ROOT_BLOCK (p_s_sb) )
+ return &MIN_KEY;
+ return &MAX_KEY;
+}
+
+
+/* Get delimiting key of the buffer at the path and its right neighbor. */
+inline const struct reiserfs_key * get_rkey (
+ const struct path * p_s_chk_path,
+ const struct super_block * p_s_sb
+ ) {
+ int n_position,
+ n_path_offset = p_s_chk_path->path_length;
+ struct buffer_head * p_s_parent;
+
+ RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
+ "PAP-5030: invalid offset in the path");
+
+ while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) {
+
+ RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
+ "PAP-5040: parent is not uptodate");
+
+ /* Parent at the path is not in the tree now. */
+ if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) )
+ return &MIN_KEY;
+ /* Check whether position in the parent is correct. */
+ if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) )
+ return &MIN_KEY;
+ /* Check whether parent at the path really points to the child. */
+ if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
+ PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr )
+ return &MIN_KEY;
+ /* Return delimiting key if position in the parent is not the last one. */
+ if ( n_position != B_NR_ITEMS(p_s_parent) )
+ return B_N_PDELIM_KEY(p_s_parent, n_position);
+ }
+ /* Return MAX_KEY if we are in the root of the buffer tree. */
+ if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
+ SB_ROOT_BLOCK (p_s_sb) )
+ return &MAX_KEY;
+ return &MIN_KEY;
+}
+
+
+/* Check whether a key is contained in the tree rooted from a buffer at a path. */
+/* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
+ the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
+ buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
+ this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
+static inline int key_in_buffer (
+ struct path * p_s_chk_path, /* Path which should be checked. */
+ const struct cpu_key * p_s_key, /* Key which should be checked. */
+ struct super_block * p_s_sb /* Super block pointer. */
+ ) {
+
+ RFALSE( ! p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET ||
+ p_s_chk_path->path_length > MAX_HEIGHT,
+ "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
+ p_s_key, p_s_chk_path->path_length);
+ RFALSE( !PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev,
+ "PAP-5060: device must not be NODEV");
+
+ if ( comp_keys(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1 )
+ /* left delimiting key is bigger, that the key we look for */
+ return 0;
+ // if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 )
+ if ( comp_keys(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1 )
+ /* p_s_key must be less than right delimitiing key */
+ return 0;
+ return 1;
+}
+
+
+inline void decrement_bcount(
+ struct buffer_head * p_s_bh
+ ) {
+ if ( p_s_bh ) {
+ if ( atomic_read (&(p_s_bh->b_count)) ) {
+ put_bh(p_s_bh) ;
+ return;
+ }
+ reiserfs_panic(NULL, "PAP-5070: decrement_bcount: trying to free free buffer %b", p_s_bh);
+ }
+}
+
+
+/* Decrement b_count field of the all buffers in the path. */
+void decrement_counters_in_path (
+ struct path * p_s_search_path
+ ) {
+ int n_path_offset = p_s_search_path->path_length;
+
+ RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET ||
+ n_path_offset > EXTENDED_MAX_HEIGHT - 1,
+ "PAP-5080: invalid path offset of %d", n_path_offset);
+
+ while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) {
+ struct buffer_head * bh;
+
+ bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--);
+ decrement_bcount (bh);
+ }
+ p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
+}
+
+
+int reiserfs_check_path(struct path *p) {
+ RFALSE( p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
+ "path not properly relsed") ;
+ return 0 ;
+}
+
+
+/* Release all buffers in the path. Restore dirty bits clean
+** when preparing the buffer for the log
+**
+** only called from fix_nodes()
+*/
+void pathrelse_and_restore (
+ struct super_block *s,
+ struct path * p_s_search_path
+ ) {
+ int n_path_offset = p_s_search_path->path_length;
+
+ RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
+ "clm-4000: invalid path offset");
+
+ while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) {
+ reiserfs_restore_prepared_buffer(s, PATH_OFFSET_PBUFFER(p_s_search_path,
+ n_path_offset));
+ brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
+ }
+ p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
+}
+
+/* Release all buffers in the path. */
+void pathrelse (
+ struct path * p_s_search_path
+ ) {
+ int n_path_offset = p_s_search_path->path_length;
+
+ RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
+ "PAP-5090: invalid path offset");
+
+ while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET )
+ brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
+
+ p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
+}
+
+
+
+static int is_leaf (char * buf, int blocksize, struct buffer_head * bh)
+{
+ struct block_head * blkh;
+ struct item_head * ih;
+ int used_space;
+ int prev_location;
+ int i;
+ int nr;
+
+ blkh = (struct block_head *)buf;
+ if ( blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
+ reiserfs_warning (NULL, "is_leaf: this should be caught earlier");
+ return 0;
+ }
+
+ nr = blkh_nr_item(blkh);
+ if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
+ /* item number is too big or too small */
+ reiserfs_warning (NULL, "is_leaf: nr_item seems wrong: %z", bh);
+ return 0;
+ }
+ ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
+ used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location (ih));
+ if (used_space != blocksize - blkh_free_space(blkh)) {
+ /* free space does not match to calculated amount of use space */
+ reiserfs_warning (NULL, "is_leaf: free space seems wrong: %z", bh);
+ return 0;
+ }
+
+ // FIXME: it is_leaf will hit performance too much - we may have
+ // return 1 here
+
+ /* check tables of item heads */
+ ih = (struct item_head *)(buf + BLKH_SIZE);
+ prev_location = blocksize;
+ for (i = 0; i < nr; i ++, ih ++) {
+ if ( le_ih_k_type(ih) == TYPE_ANY) {
+ reiserfs_warning (NULL, "is_leaf: wrong item type for item %h",ih);
+ return 0;
+ }
+ if (ih_location (ih) >= blocksize || ih_location (ih) < IH_SIZE * nr) {
+ reiserfs_warning (NULL, "is_leaf: item location seems wrong: %h", ih);
+ return 0;
+ }
+ if (ih_item_len (ih) < 1 || ih_item_len (ih) > MAX_ITEM_LEN (blocksize)) {
+ reiserfs_warning (NULL, "is_leaf: item length seems wrong: %h", ih);
+ return 0;
+ }
+ if (prev_location - ih_location (ih) != ih_item_len (ih)) {
+ reiserfs_warning (NULL, "is_leaf: item location seems wrong (second one): %h", ih);
+ return 0;
+ }
+ prev_location = ih_location (ih);
+ }
+
+ // one may imagine much more checks
+ return 1;
+}
+
+
+/* returns 1 if buf looks like an internal node, 0 otherwise */
+static int is_internal (char * buf, int blocksize, struct buffer_head * bh)
+{
+ struct block_head * blkh;
+ int nr;
+ int used_space;
+
+ blkh = (struct block_head *)buf;
+ nr = blkh_level(blkh);
+ if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
+ /* this level is not possible for internal nodes */
+ reiserfs_warning (NULL, "is_internal: this should be caught earlier");
+ return 0;
+ }
+
+ nr = blkh_nr_item(blkh);
+ if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
+ /* for internal which is not root we might check min number of keys */
+ reiserfs_warning (NULL, "is_internal: number of key seems wrong: %z", bh);
+ return 0;
+ }
+
+ used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
+ if (used_space != blocksize - blkh_free_space(blkh)) {
+ reiserfs_warning (NULL, "is_internal: free space seems wrong: %z", bh);
+ return 0;
+ }
+
+ // one may imagine much more checks
+ return 1;
+}
+
+
+// make sure that bh contains formatted node of reiserfs tree of
+// 'level'-th level
+static int is_tree_node (struct buffer_head * bh, int level)
+{
+ if (B_LEVEL (bh) != level) {
+ reiserfs_warning (NULL, "is_tree_node: node level %d does not match to the expected one %d",
+ B_LEVEL (bh), level);
+ return 0;
+ }
+ if (level == DISK_LEAF_NODE_LEVEL)
+ return is_leaf (bh->b_data, bh->b_size, bh);
+
+ return is_internal (bh->b_data, bh->b_size, bh);
+}
+
+
+
+#define SEARCH_BY_KEY_READA 16
+
+/* The function is NOT SCHEDULE-SAFE! */
+static void search_by_key_reada (struct super_block * s,
+ struct buffer_head **bh,
+ unsigned long *b, int num)
+{
+ int i,j;
+
+ for (i = 0 ; i < num ; i++) {
+ bh[i] = sb_getblk (s, b[i]);
+ }
+ for (j = 0 ; j < i ; j++) {
+ /*
+ * note, this needs attention if we are getting rid of the BKL
+ * you have to make sure the prepared bit isn't set on this buffer
+ */
+ if (!buffer_uptodate(bh[j]))
+ ll_rw_block(READA, 1, bh + j);
+ brelse(bh[j]);
+ }
+}
+
+/**************************************************************************
+ * Algorithm SearchByKey *
+ * look for item in the Disk S+Tree by its key *
+ * Input: p_s_sb - super block *
+ * p_s_key - pointer to the key to search *
+ * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
+ * p_s_search_path - path from the root to the needed leaf *
+ **************************************************************************/
+
+/* This function fills up the path from the root to the leaf as it
+ descends the tree looking for the key. It uses reiserfs_bread to
+ try to find buffers in the cache given their block number. If it
+ does not find them in the cache it reads them from disk. For each
+ node search_by_key finds using reiserfs_bread it then uses
+ bin_search to look through that node. bin_search will find the
+ position of the block_number of the next node if it is looking
+ through an internal node. If it is looking through a leaf node
+ bin_search will find the position of the item which has key either
+ equal to given key, or which is the maximal key less than the given
+ key. search_by_key returns a path that must be checked for the
+ correctness of the top of the path but need not be checked for the
+ correctness of the bottom of the path */
+/* The function is NOT SCHEDULE-SAFE! */
+int search_by_key (struct super_block * p_s_sb,
+ const struct cpu_key * p_s_key, /* Key to search. */
+ struct path * p_s_search_path, /* This structure was
+ allocated and initialized
+ by the calling
+ function. It is filled up
+ by this function. */
+ int n_stop_level /* How far down the tree to search. To
+ stop at leaf level - set to
+ DISK_LEAF_NODE_LEVEL */
+ ) {
+ int n_block_number;
+ int expected_level;
+ struct buffer_head * p_s_bh;
+ struct path_element * p_s_last_element;
+ int n_node_level, n_retval;
+ int right_neighbor_of_leaf_node;
+ int fs_gen;
+ struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
+ unsigned long reada_blocks[SEARCH_BY_KEY_READA];
+ int reada_count = 0;
+
+#ifdef CONFIG_REISERFS_CHECK
+ int n_repeat_counter = 0;
+#endif
+
+ PROC_INFO_INC( p_s_sb, search_by_key );
+
+ /* As we add each node to a path we increase its count. This means that
+ we must be careful to release all nodes in a path before we either
+ discard the path struct or re-use the path struct, as we do here. */
+
+ decrement_counters_in_path(p_s_search_path);
+
+ right_neighbor_of_leaf_node = 0;
+
+ /* With each iteration of this loop we search through the items in the
+ current node, and calculate the next current node(next path element)
+ for the next iteration of this loop.. */
+ n_block_number = SB_ROOT_BLOCK (p_s_sb);
+ expected_level = -1;
+ while ( 1 ) {
+
+#ifdef CONFIG_REISERFS_CHECK
+ if ( !(++n_repeat_counter % 50000) )
+ reiserfs_warning (p_s_sb, "PAP-5100: search_by_key: %s:"
+ "there were %d iterations of while loop "
+ "looking for key %K",
+ current->comm, n_repeat_counter, p_s_key);
+#endif
+
+ /* prep path to have another element added to it. */
+ p_s_last_element = PATH_OFFSET_PELEMENT(p_s_search_path, ++p_s_search_path->path_length);
+ fs_gen = get_generation (p_s_sb);
+
+ /* Read the next tree node, and set the last element in the path to
+ have a pointer to it. */
+ if ((p_s_bh = p_s_last_element->pe_buffer =
+ sb_getblk(p_s_sb, n_block_number)) ) {
+ if (!buffer_uptodate(p_s_bh) && reada_count > 1) {
+ search_by_key_reada (p_s_sb, reada_bh,
+ reada_blocks, reada_count);
+ }
+ ll_rw_block(READ, 1, &p_s_bh);
+ wait_on_buffer(p_s_bh);
+ if (!buffer_uptodate(p_s_bh))
+ goto io_error;
+ } else {
+io_error:
+ p_s_search_path->path_length --;
+ pathrelse(p_s_search_path);
+ return IO_ERROR;
+ }
+ reada_count = 0;
+ if (expected_level == -1)
+ expected_level = SB_TREE_HEIGHT (p_s_sb);
+ expected_level --;
+
+ /* It is possible that schedule occurred. We must check whether the key
+ to search is still in the tree rooted from the current buffer. If
+ not then repeat search from the root. */
+ if ( fs_changed (fs_gen, p_s_sb) &&
+ (!B_IS_IN_TREE (p_s_bh) ||
+ B_LEVEL(p_s_bh) != expected_level ||
+ !key_in_buffer(p_s_search_path, p_s_key, p_s_sb))) {
+ PROC_INFO_INC( p_s_sb, search_by_key_fs_changed );
+ PROC_INFO_INC( p_s_sb, search_by_key_restarted );
+ PROC_INFO_INC( p_s_sb, sbk_restarted[ expected_level - 1 ] );
+ decrement_counters_in_path(p_s_search_path);
+
+ /* Get the root block number so that we can repeat the search
+ starting from the root. */
+ n_block_number = SB_ROOT_BLOCK (p_s_sb);
+ expected_level = -1;
+ right_neighbor_of_leaf_node = 0;
+
+ /* repeat search from the root */
+ continue;
+ }
+
+ /* only check that the key is in the buffer if p_s_key is not
+ equal to the MAX_KEY. Latter case is only possible in
+ "finish_unfinished()" processing during mount. */
+ RFALSE( comp_keys( &MAX_KEY, p_s_key ) &&
+ ! key_in_buffer(p_s_search_path, p_s_key, p_s_sb),
+ "PAP-5130: key is not in the buffer");
+#ifdef CONFIG_REISERFS_CHECK
+ if ( cur_tb ) {
+ print_cur_tb ("5140");
+ reiserfs_panic(p_s_sb, "PAP-5140: search_by_key: schedule occurred in do_balance!");
+ }
+#endif
+
+ // make sure, that the node contents look like a node of
+ // certain level
+ if (!is_tree_node (p_s_bh, expected_level)) {
+ reiserfs_warning (p_s_sb, "vs-5150: search_by_key: "
+ "invalid format found in block %ld. Fsck?",
+ p_s_bh->b_blocknr);
+ pathrelse (p_s_search_path);
+ return IO_ERROR;
+ }
+
+ /* ok, we have acquired next formatted node in the tree */
+ n_node_level = B_LEVEL (p_s_bh);
+
+ PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level - 1 );
+
+ RFALSE( n_node_level < n_stop_level,
+ "vs-5152: tree level (%d) is less than stop level (%d)",
+ n_node_level, n_stop_level);
+
+ n_retval = bin_search( p_s_key, B_N_PITEM_HEAD(p_s_bh, 0),
+ B_NR_ITEMS(p_s_bh),
+ ( n_node_level == DISK_LEAF_NODE_LEVEL ) ? IH_SIZE : KEY_SIZE,
+ &(p_s_last_element->pe_position));
+ if (n_node_level == n_stop_level) {
+ return n_retval;
+ }
+
+ /* we are not in the stop level */
+ if (n_retval == ITEM_FOUND)
+ /* item has been found, so we choose the pointer which is to the right of the found one */
+ p_s_last_element->pe_position++;
+
+ /* if item was not found we choose the position which is to
+ the left of the found item. This requires no code,
+ bin_search did it already.*/
+
+ /* So we have chosen a position in the current node which is
+ an internal node. Now we calculate child block number by
+ position in the node. */
+ n_block_number = B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position);
+
+ /* if we are going to read leaf nodes, try for read ahead as well */
+ if ((p_s_search_path->reada & PATH_READA) &&
+ n_node_level == DISK_LEAF_NODE_LEVEL + 1)
+ {
+ int pos = p_s_last_element->pe_position;
+ int limit = B_NR_ITEMS(p_s_bh);
+ struct reiserfs_key *le_key;
+
+ if (p_s_search_path->reada & PATH_READA_BACK)
+ limit = 0;
+ while(reada_count < SEARCH_BY_KEY_READA) {
+ if (pos == limit)
+ break;
+ reada_blocks[reada_count++] = B_N_CHILD_NUM(p_s_bh, pos);
+ if (p_s_search_path->reada & PATH_READA_BACK)
+ pos--;
+ else
+ pos++;
+
+ /*
+ * check to make sure we're in the same object
+ */
+ le_key = B_N_PDELIM_KEY(p_s_bh, pos);
+ if (le32_to_cpu(le_key->k_objectid) !=
+ p_s_key->on_disk_key.k_objectid)
+ {
+ break;
+ }
+ }
+ }
+ }
+}
+
+
+/* Form the path to an item and position in this item which contains
+ file byte defined by p_s_key. If there is no such item
+ corresponding to the key, we point the path to the item with
+ maximal key less than p_s_key, and *p_n_pos_in_item is set to one
+ past the last entry/byte in the item. If searching for entry in a
+ directory item, and it is not found, *p_n_pos_in_item is set to one
+ entry more than the entry with maximal key which is less than the
+ sought key.
+
+ Note that if there is no entry in this same node which is one more,
+ then we point to an imaginary entry. for direct items, the
+ position is in units of bytes, for indirect items the position is
+ in units of blocknr entries, for directory items the position is in
+ units of directory entries. */
+
+/* The function is NOT SCHEDULE-SAFE! */
+int search_for_position_by_key (struct super_block * p_s_sb, /* Pointer to the super block. */
+ const struct cpu_key * p_cpu_key, /* Key to search (cpu variable) */
+ struct path * p_s_search_path /* Filled up by this function. */
+ ) {
+ struct item_head * p_le_ih; /* pointer to on-disk structure */
+ int n_blk_size;
+ loff_t item_offset, offset;
+ struct reiserfs_dir_entry de;
+ int retval;
+
+ /* If searching for directory entry. */
+ if ( is_direntry_cpu_key (p_cpu_key) )
+ return search_by_entry_key (p_s_sb, p_cpu_key, p_s_search_path, &de);
+
+ /* If not searching for directory entry. */
+
+ /* If item is found. */
+ retval = search_item (p_s_sb, p_cpu_key, p_s_search_path);
+ if (retval == IO_ERROR)
+ return retval;
+ if ( retval == ITEM_FOUND ) {
+
+ RFALSE( ! ih_item_len(
+ B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path),
+ PATH_LAST_POSITION(p_s_search_path))),
+ "PAP-5165: item length equals zero");
+
+ pos_in_item(p_s_search_path) = 0;
+ return POSITION_FOUND;
+ }
+
+ RFALSE( ! PATH_LAST_POSITION(p_s_search_path),
+ "PAP-5170: position equals zero");
+
+ /* Item is not found. Set path to the previous item. */
+ p_le_ih = B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), --PATH_LAST_POSITION(p_s_search_path));
+ n_blk_size = p_s_sb->s_blocksize;
+
+ if (comp_short_keys (&(p_le_ih->ih_key), p_cpu_key)) {
+ return FILE_NOT_FOUND;
+ }
+
+ // FIXME: quite ugly this far
+
+ item_offset = le_ih_k_offset (p_le_ih);
+ offset = cpu_key_k_offset (p_cpu_key);
+
+ /* Needed byte is contained in the item pointed to by the path.*/
+ if (item_offset <= offset &&
+ item_offset + op_bytes_number (p_le_ih, n_blk_size) > offset) {
+ pos_in_item (p_s_search_path) = offset - item_offset;
+ if ( is_indirect_le_ih(p_le_ih) ) {
+ pos_in_item (p_s_search_path) /= n_blk_size;
+ }
+ return POSITION_FOUND;
+ }
+
+ /* Needed byte is not contained in the item pointed to by the
+ path. Set pos_in_item out of the item. */
+ if ( is_indirect_le_ih (p_le_ih) )
+ pos_in_item (p_s_search_path) = ih_item_len(p_le_ih) / UNFM_P_SIZE;
+ else
+ pos_in_item (p_s_search_path) = ih_item_len( p_le_ih );
+
+ return POSITION_NOT_FOUND;
+}
+
+
+/* Compare given item and item pointed to by the path. */
+int comp_items (const struct item_head * stored_ih, const struct path * p_s_path)
+{
+ struct buffer_head * p_s_bh;
+ struct item_head * ih;
+
+ /* Last buffer at the path is not in the tree. */
+ if ( ! B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path)) )
+ return 1;
+
+ /* Last path position is invalid. */
+ if ( PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh) )
+ return 1;
+
+ /* we need only to know, whether it is the same item */
+ ih = get_ih (p_s_path);
+ return memcmp (stored_ih, ih, IH_SIZE);
+}
+
+
+/* unformatted nodes are not logged anymore, ever. This is safe
+** now
+*/
+#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
+
+// block can not be forgotten as it is in I/O or held by someone
+#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
+
+
+
+// prepare for delete or cut of direct item
+static inline int prepare_for_direct_item (struct path * path,
+ struct item_head * le_ih,
+ struct inode * inode,
+ loff_t new_file_length,
+ int * cut_size)
+{
+ loff_t round_len;
+
+
+ if ( new_file_length == max_reiserfs_offset (inode) ) {
+ /* item has to be deleted */
+ *cut_size = -(IH_SIZE + ih_item_len(le_ih));
+ return M_DELETE;
+ }
+
+ // new file gets truncated
+ if (get_inode_item_key_version (inode) == KEY_FORMAT_3_6) {
+ //
+ round_len = ROUND_UP (new_file_length);
+ /* this was n_new_file_length < le_ih ... */
+ if ( round_len < le_ih_k_offset (le_ih) ) {
+ *cut_size = -(IH_SIZE + ih_item_len(le_ih));
+ return M_DELETE; /* Delete this item. */
+ }
+ /* Calculate first position and size for cutting from item. */
+ pos_in_item (path) = round_len - (le_ih_k_offset (le_ih) - 1);
+ *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
+
+ return M_CUT; /* Cut from this item. */
+ }
+
+
+ // old file: items may have any length
+
+ if ( new_file_length < le_ih_k_offset (le_ih) ) {
+ *cut_size = -(IH_SIZE + ih_item_len(le_ih));
+ return M_DELETE; /* Delete this item. */
+ }
+ /* Calculate first position and size for cutting from item. */
+ *cut_size = -(ih_item_len(le_ih) -
+ (pos_in_item (path) = new_file_length + 1 - le_ih_k_offset (le_ih)));
+ return M_CUT; /* Cut from this item. */
+}
+
+
+static inline int prepare_for_direntry_item (struct path * path,
+ struct item_head * le_ih,
+ struct inode * inode,
+ loff_t new_file_length,
+ int * cut_size)
+{
+ if (le_ih_k_offset (le_ih) == DOT_OFFSET &&
+ new_file_length == max_reiserfs_offset (inode)) {
+ RFALSE( ih_entry_count (le_ih) != 2,
+ "PAP-5220: incorrect empty directory item (%h)", le_ih);
+ *cut_size = -(IH_SIZE + ih_item_len(le_ih));
+ return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
+ }
+
+ if ( ih_entry_count (le_ih) == 1 ) {
+ /* Delete the directory item such as there is one record only
+ in this item*/
+ *cut_size = -(IH_SIZE + ih_item_len(le_ih));
+ return M_DELETE;
+ }
+
+ /* Cut one record from the directory item. */
+ *cut_size = -(DEH_SIZE + entry_length (get_last_bh (path), le_ih, pos_in_item (path)));
+ return M_CUT;
+}
+
+
+/* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
+ If the path points to an indirect item, remove some number of its unformatted nodes.
+ In case of file truncate calculate whether this item must be deleted/truncated or last
+ unformatted node of this item will be converted to a direct item.
+ This function returns a determination of what balance mode the calling function should employ. */
+static char prepare_for_delete_or_cut(
+ struct reiserfs_transaction_handle *th,
+ struct inode * inode,
+ struct path * p_s_path,
+ const struct cpu_key * p_s_item_key,
+ int * p_n_removed, /* Number of unformatted nodes which were removed
+ from end of the file. */
+ int * p_n_cut_size,
+ unsigned long long n_new_file_length /* MAX_KEY_OFFSET in case of delete. */
+ ) {
+ struct super_block * p_s_sb = inode->i_sb;
+ struct item_head * p_le_ih = PATH_PITEM_HEAD(p_s_path);
+ struct buffer_head * p_s_bh = PATH_PLAST_BUFFER(p_s_path);
+
+ BUG_ON (!th->t_trans_id);
+
+ /* Stat_data item. */
+ if ( is_statdata_le_ih (p_le_ih) ) {
+
+ RFALSE( n_new_file_length != max_reiserfs_offset (inode),
+ "PAP-5210: mode must be M_DELETE");
+
+ *p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
+ return M_DELETE;
+ }
+
+
+ /* Directory item. */
+ if ( is_direntry_le_ih (p_le_ih) )
+ return prepare_for_direntry_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size);
+
+ /* Direct item. */
+ if ( is_direct_le_ih (p_le_ih) )
+ return prepare_for_direct_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size);
+
+
+ /* Case of an indirect item. */
+ {
+ int n_unfm_number, /* Number of the item unformatted nodes. */
+ n_counter,
+ n_blk_size;
+ __u32 * p_n_unfm_pointer; /* Pointer to the unformatted node number. */