summaryrefslogtreecommitdiffstats
path: root/src/linux/btop_collect.cpp
blob: 64f55f7e6bfe6c0405f5ca1e9d0f01c897005c42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
/* Copyright 2021 Aristocratos (jakob@qvantnet.com)

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

	   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

indent = tab
tab-size = 4
*/

#include <cstdlib>
#include <unordered_map>
#include <unordered_set>
#include <fstream>
#include <ranges>
#include <cmath>
#include <unistd.h>
#include <numeric>
#include <sys/statvfs.h>
#include <netdb.h>
#include <ifaddrs.h>
#include <net/if.h>
#include <arpa/inet.h> // for inet_ntop()
#include <filesystem>
#include <future>
#include <dlfcn.h>
#include <unordered_map>
#include <utility>

#if defined(RSMI_STATIC)
	#include <rocm_smi/rocm_smi.h>
#endif

#if !(defined(STATIC_BUILD) && defined(__GLIBC__))
	#include <pwd.h>
#endif

#include "../btop_shared.hpp"
#include "../btop_config.hpp"
#include "../btop_tools.hpp"

using std::clamp;
using std::cmp_greater;
using std::cmp_less;
using std::ifstream;
using std::max;
using std::min;
using std::numeric_limits;
using std::round;
using std::streamsize;
using std::vector;
using std::future;
using std::async;
using std::pair;


namespace fs = std::filesystem;
namespace rng = std::ranges;

using namespace Tools;
using namespace std::literals; // for operator""s
using namespace std::chrono_literals;
//? --------------------------------------------------- FUNCTIONS -----------------------------------------------------

namespace Cpu {
	vector<long long> core_old_totals;
	vector<long long> core_old_idles;
	vector<string> available_fields = {"Auto", "total"};
	vector<string> available_sensors = {"Auto"};
	cpu_info current_cpu;
	fs::path freq_path = "/sys/devices/system/cpu/cpufreq/policy0/scaling_cur_freq";
	bool got_sensors{};
	bool cpu_temp_only{};

	//* Populate found_sensors map
	bool get_sensors();

	//* Get current cpu clock speed
	string get_cpuHz();

	//* Search /proc/cpuinfo for a cpu name
	string get_cpuName();

	struct Sensor {
		fs::path path;
		string label;
		int64_t temp{};
		int64_t high{};
		int64_t crit{};
	};

	std::unordered_map<string, Sensor> found_sensors;
	string cpu_sensor;
	vector<string> core_sensors;
	std::unordered_map<int, int> core_mapping;
}

namespace Gpu {
	vector<gpu_info> gpus;
#ifdef GPU_SUPPORT
	//? NVIDIA data collection
	namespace Nvml {
		//? NVML defines, structs & typedefs
		#define NVML_DEVICE_NAME_BUFFER_SIZE        64
		#define NVML_SUCCESS                         0
		#define NVML_TEMPERATURE_THRESHOLD_SHUTDOWN  0
		#define NVML_CLOCK_GRAPHICS                  0
		#define NVML_CLOCK_MEM                       2
		#define NVML_TEMPERATURE_GPU                 0
		#define NVML_PCIE_UTIL_TX_BYTES              0
		#define NVML_PCIE_UTIL_RX_BYTES              1

		typedef void* nvmlDevice_t; // we won't be accessing any of the underlying struct's properties, so this is fine
		typedef int nvmlReturn_t, // enums are basically ints
					nvmlTemperatureThresholds_t,
					nvmlClockType_t,
					nvmlPstates_t,
					nvmlTemperatureSensors_t,
					nvmlPcieUtilCounter_t;

		struct nvmlUtilization_t {unsigned int gpu, memory;};
		struct nvmlMemory_t {unsigned long long total, free, used;};

		//? Function pointers
		const char* (*nvmlErrorString)(nvmlReturn_t);
		nvmlReturn_t (*nvmlInit)();
		nvmlReturn_t (*nvmlShutdown)();
		nvmlReturn_t (*nvmlDeviceGetCount)(unsigned int*);
		nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t*);
		nvmlReturn_t (*nvmlDeviceGetName)(nvmlDevice_t, char*, unsigned int);
		nvmlReturn_t (*nvmlDeviceGetPowerManagementLimit)(nvmlDevice_t, unsigned int*);
		nvmlReturn_t (*nvmlDeviceGetTemperatureThreshold)(nvmlDevice_t, nvmlTemperatureThresholds_t, unsigned int*);
		nvmlReturn_t (*nvmlDeviceGetUtilizationRates)(nvmlDevice_t, nvmlUtilization_t*);
		nvmlReturn_t (*nvmlDeviceGetClockInfo)(nvmlDevice_t, nvmlClockType_t, unsigned int*);
		nvmlReturn_t (*nvmlDeviceGetPowerUsage)(nvmlDevice_t, unsigned int*);
		nvmlReturn_t (*nvmlDeviceGetPowerState)(nvmlDevice_t, nvmlPstates_t*);
		nvmlReturn_t (*nvmlDeviceGetTemperature)(nvmlDevice_t, nvmlTemperatureSensors_t, unsigned int*);
		nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t*);
		nvmlReturn_t (*nvmlDeviceGetPcieThroughput)(nvmlDevice_t, nvmlPcieUtilCounter_t, unsigned int*);

		//? Data
		void* nvml_dl_handle;
		bool initialized = false;
		bool init();
		bool shutdown();
		template <bool is_init> bool collect(gpu_info* gpus_slice);
		vector<nvmlDevice_t> devices;
		unsigned int device_count = 0;
	}

	//? AMD data collection
	namespace Rsmi {
	#if !defined(RSMI_STATIC)
		//? RSMI defines, structs & typedefs
		#define RSMI_MAX_NUM_FREQUENCIES_V5  32
		#define RSMI_MAX_NUM_FREQUENCIES_V6  33
		#define RSMI_STATUS_SUCCESS           0
		#define RSMI_MEM_TYPE_VRAM            0
		#define RSMI_TEMP_CURRENT             0
		#define RSMI_TEMP_TYPE_EDGE           0
		#define RSMI_CLK_TYPE_MEM             4
		#define RSMI_CLK_TYPE_SYS             0
		#define RSMI_TEMP_MAX                 1

		typedef int rsmi_status_t,
					rsmi_temperature_metric_t,
					rsmi_clk_type_t,
					rsmi_memory_type_t;

		struct rsmi_version_t {uint32_t major,  minor,  patch; const char* build;};
		struct rsmi_frequencies_t_v5 {uint32_t num_supported, current; uint64_t frequency[RSMI_MAX_NUM_FREQUENCIES_V5];};
		struct rsmi_frequencies_t_v6 {bool has_deep_sleep; uint32_t num_supported, current; uint64_t frequency[RSMI_MAX_NUM_FREQUENCIES_V6];};

		//? Function pointers
		rsmi_status_t (*rsmi_init)(uint64_t);
		rsmi_status_t (*rsmi_shut_down)();
		rsmi_status_t (*rsmi_version_get)(rsmi_version_t*);
		rsmi_status_t (*rsmi_num_monitor_devices)(uint32_t*);
		rsmi_status_t (*rsmi_dev_name_get)(uint32_t, char*, size_t);
		rsmi_status_t (*rsmi_dev_power_cap_get)(uint32_t, uint32_t, uint64_t*);
		rsmi_status_t (*rsmi_dev_temp_metric_get)(uint32_t, uint32_t, rsmi_temperature_metric_t, int64_t*);
		rsmi_status_t (*rsmi_dev_busy_percent_get)(uint32_t, uint32_t*);
		rsmi_status_t (*rsmi_dev_memory_busy_percent_get)(uint32_t, uint32_t*);
		rsmi_status_t (*rsmi_dev_gpu_clk_freq_get_v5)(uint32_t, rsmi_clk_type_t, rsmi_frequencies_t_v5*);
		rsmi_status_t (*rsmi_dev_gpu_clk_freq_get_v6)(uint32_t, rsmi_clk_type_t, rsmi_frequencies_t_v6*);
		rsmi_status_t (*rsmi_dev_power_ave_get)(uint32_t, uint32_t, uint64_t*);
		rsmi_status_t (*rsmi_dev_memory_total_get)(uint32_t, rsmi_memory_type_t, uint64_t*);
		rsmi_status_t (*rsmi_dev_memory_usage_get)(uint32_t, rsmi_memory_type_t, uint64_t*);
		rsmi_status_t (*rsmi_dev_pci_throughput_get)(uint32_t, uint64_t*, uint64_t*, uint64_t*);

		uint32_t version_major = 0;

		//? Data
		void* rsmi_dl_handle;
	#endif
		bool initialized = false;
		bool init();
		bool shutdown();
		template <bool is_init> bool collect(gpu_info* gpus_slice);
		uint32_t device_count = 0;
	}
#endif
}

namespace Mem {
	double old_uptime;
}

namespace Shared {

	fs::path procPath, passwd_path;
	long pageSize, clkTck, coreCount;

	void init() {

		//? Shared global variables init
		procPath = (fs::is_directory(fs::path("/proc")) and access("/proc", R_OK) != -1) ? "/proc" : "";
		if (procPath.empty())
			throw std::runtime_error("Proc filesystem not found or no permission to read from it!");

		passwd_path = (fs::is_regular_file(fs::path("/etc/passwd")) and access("/etc/passwd", R_OK) != -1) ? "/etc/passwd" : "";
		if (passwd_path.empty())
			Logger::warning("Could not read /etc/passwd, will show UID instead of username.");

		coreCount = sysconf(_SC_NPROCESSORS_ONLN);
		if (coreCount < 1) {
			coreCount = sysconf(_SC_NPROCESSORS_CONF);
			if (coreCount < 1) {
				coreCount = 1;
				Logger::warning("Could not determine number of cores, defaulting to 1.");
			}
		}

		pageSize = sysconf(_SC_PAGE_SIZE);
		if (pageSize <= 0) {
			pageSize = 4096;
			Logger::warning("Could not get system page size. Defaulting to 4096, processes memory usage might be incorrect.");
		}

		clkTck = sysconf(_SC_CLK_TCK);
		if (clkTck <= 0) {
			clkTck = 100;
			Logger::warning("Could not get system clock ticks per second. Defaulting to 100, processes cpu usage might be incorrect.");
		}

		//? Init for namespace Cpu
		if (not fs::exists(Cpu::freq_path) or access(Cpu::freq_path.c_str(), R_OK) == -1) Cpu::freq_path.clear();
		Cpu::current_cpu.core_percent.insert(Cpu::current_cpu.core_percent.begin(), Shared::coreCount, {});
		Cpu::current_cpu.temp.insert(Cpu::current_cpu.temp.begin(), Shared::coreCount + 1, {});
		Cpu::core_old_totals.insert(Cpu::core_old_totals.begin(), Shared::coreCount, 0);
		Cpu::core_old_idles.insert(Cpu::core_old_idles.begin(), Shared::coreCount, 0);
		Cpu::collect();
		if (Runner::coreNum_reset) Runner::coreNum_reset = false;
		for (auto& [field, vec] : Cpu::current_cpu.cpu_percent) {
			if (not vec.empty() and not v_contains(Cpu::available_fields, field)) Cpu::available_fields.push_back(field);
		}
		Cpu::cpuName = Cpu::get_cpuName();
		Cpu::got_sensors = Cpu::get_sensors();
		for (const auto& [sensor, ignored] : Cpu::found_sensors) {
			Cpu::available_sensors.push_back(sensor);
		}
		Cpu::core_mapping = Cpu::get_core_mapping();

		//? Init for namespace Gpu
	#ifdef GPU_SUPPORT
		Gpu::Nvml::init();
		Gpu::Rsmi::init();
		if (not Gpu::gpu_names.empty()) {
			for (auto const& [key, _] : Gpu::gpus[0].gpu_percent)
				Cpu::available_fields.push_back(key);
			for (auto const& [key, _] : Gpu::shared_gpu_percent)
				Cpu::available_fields.push_back(key);

			using namespace Gpu;
			gpu_b_height_offsets.resize(gpus.size());
			for (size_t i = 0; i < gpu_b_height_offsets.size(); ++i)
				gpu_b_height_offsets[i] = gpus[i].supported_functions.gpu_utilization
					   + gpus[i].supported_functions.pwr_usage
					   + (gpus[i].supported_functions.mem_total or gpus[i].supported_functions.mem_used)
						* (1 + 2*(gpus[i].supported_functions.mem_total and gpus[i].supported_functions.mem_used) + 2*gpus[i].supported_functions.mem_utilization);
		}
	#endif

		//? Init for namespace Mem
		Mem::old_uptime = system_uptime();
		Mem::collect();

		Logger::debug("Shared::init() : Initialized.");
	}
}

namespace Cpu {
	string cpuName;
	string cpuHz;
	bool has_battery = true;
	tuple<int, float, long, string> current_bat;

	const array time_names {
		"user"s, "nice"s, "system"s, "idle"s, "iowait"s,
		"irq"s, "softirq"s, "steal"s, "guest"s, "guest_nice"s
	};

	std::unordered_map<string, long long> cpu_old = {
			{"totals", 0},
			{"idles", 0},
			{"user", 0},
			{"nice", 0},
			{"system", 0},
			{"idle", 0},
			{"iowait", 0},
			{"irq", 0},
			{"softirq", 0},
			{"steal", 0},
			{"guest", 0},
			{"guest_nice", 0}
	};

	string get_cpuName() {
		string name;
		ifstream cpuinfo(Shared::procPath / "cpuinfo");
		if (cpuinfo.good()) {
			for (string instr; getline(cpuinfo, instr, ':') and not instr.starts_with("model name");)
				cpuinfo.ignore(SSmax, '\n');
			if (cpuinfo.bad()) return name;
			else if (not cpuinfo.eof()) {
				cpuinfo.ignore(1);
				getline(cpuinfo, name);
			}
			else if (fs::exists("/sys/devices")) {
				for (const auto& d : fs::directory_iterator("/sys/devices")) {
					if (string(d.path().filename()).starts_with("arm")) {
						name = d.path().filename();
						break;
					}
				}
				if (not name.empty()) {
					auto name_vec = ssplit(name, '_');
					if (name_vec.size() < 2) return capitalize(name);
					else return capitalize(name_vec.at(1)) + (name_vec.size() > 2 ? ' ' + capitalize(name_vec.at(2)) : "");
				}

			}

			auto name_vec = ssplit(name, ' ');

			if ((s_contains(name, "Xeon"s) or v_contains(name_vec, "Duo"s)) and v_contains(name_vec, "CPU"s)) {
				auto cpu_pos = v_index(name_vec, "CPU"s);
				if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')'))
					name = name_vec.at(cpu_pos + 1);
				else
					name.clear();
			}
			else if (v_contains(name_vec, "Ryzen"s)) {
				auto ryz_pos = v_index(name_vec, "Ryzen"s);
				name = "Ryzen"	+ (ryz_pos < name_vec.size() - 1 ? ' ' + name_vec.at(ryz_pos + 1) : "")
								+ (ryz_pos < name_vec.size() - 2 ? ' ' + name_vec.at(ryz_pos + 2) : "");
			}
			else if (s_contains(name, "Intel"s) and v_contains(name_vec, "CPU"s)) {
				auto cpu_pos = v_index(name_vec, "CPU"s);
				if (cpu_pos < name_vec.size() - 1 and not name_vec.at(cpu_pos + 1).ends_with(')') and name_vec.at(cpu_pos + 1).size() != 1)
					name = name_vec.at(cpu_pos + 1);
				else
					name.clear();
			}
			else
				name.clear();

			if (name.empty() and not name_vec.empty()) {
				for (const auto& n : name_vec) {
					if (n == "@") break;
					name += n + ' ';
				}
				name.pop_back();
				for (const auto& replace : {"Processor", "CPU", "(R)", "(TM)", "Intel", "AMD", "Core"}) {
					name = s_replace(name, replace, "");
					name = s_replace(name, "  ", " ");
				}
				name = trim(name);
			}
		}

		return name;
	}

	bool get_sensors() {
		bool got_cpu = false, got_coretemp = false;
		vector<fs::path> search_paths;
		try {
			//? Setup up paths to search for sensors
			if (fs::exists(fs::path("/sys/class/hwmon")) and access("/sys/class/hwmon", R_OK) != -1) {
				for (const auto& dir : fs::directory_iterator(fs::path("/sys/class/hwmon"))) {
					fs::path add_path = fs::canonical(dir.path());
					if (v_contains(search_paths, add_path) or v_contains(search_paths, add_path / "device")) continue;

					if (s_contains(add_path, "coretemp"))
						got_coretemp = true;

					for (const auto & file : fs::directory_iterator(add_path)) {
						if (string(file.path().filename()) == "device") {
							for (const auto & dev_file : fs::directory_iterator(file.path())) {
								string dev_filename = dev_file.path().filename();
								if (dev_filename.starts_with("temp") and dev_filename.ends_with("_input")) {
									search_paths.push_back(file.path());
									break;
								}
							}
						}

						string filename = file.path().filename();
						if (filename.starts_with("temp") and filename.ends_with("_input")) {
							search_paths.push_back(add_path);
							break;
						}
					}
				}
			}
			if (not got_coretemp and fs::exists(fs::path("/sys/devices/platform/coretemp.0/hwmon"))) {
				for (auto& d : fs::directory_iterator(fs::path("/sys/devices/platform/coretemp.0/hwmon"))) {
					fs::path add_path = fs::canonical(d.path());

					for (const auto & file : fs::directory_iterator(add_path)) {
						string filename = file.path().filename();
						if (filename.starts_with("temp") and filename.ends_with("_input") and not v_contains(search_paths, add_path)) {
								search_paths.push_back(add_path);
								got_coretemp = true;
								break;
						}
					}
				}
			}
			//? Scan any found directories for temperature sensors
			if (not search_paths.empty()) {
				for (const auto& path : search_paths) {
					const string pname = readfile(path / "name", path.filename());
					for (const auto & file : fs::directory_iterator(path)) {
						const string file_suffix = "input";
						const int file_id = atoi(file.path().filename().c_str() + 4); // skip "temp" prefix
						string file_path = file.path();

						if (!s_contains(file_path, file_suffix)) {
							continue;
						}

						const string basepath = file_path.erase(file_path.find(file_suffix), file_suffix.length());
						const string label = readfile(fs::path(basepath + "label"), "temp" + to_string(file_id));
						const string sensor_name = pname + "/" + label;
						const int64_t temp = stol(readfile(fs::path(basepath + "input"), "0")) / 1000;
						const int64_t high = stol(readfile(fs::path(basepath + "max"), "80000")) / 1000;
						const int64_t crit = stol(readfile(fs::path(basepath + "crit"), "95000")) / 1000;

						found_sensors[sensor_name] = {fs::path(basepath + "input"), label, temp, high, crit};

						if (not got_cpu and (label.starts_with("Package id") or label.starts_with("Tdie"))) {
							got_cpu = true;
							cpu_sensor = sensor_name;
						}
						else if (label.starts_with("Core") or label.starts_with("Tccd")) {
							got_coretemp = true;
							if (not v_contains(core_sensors, sensor_name)) core_sensors.push_back(sensor_name);
						}
					}
				}
			}
			//? If no good candidate for cpu temp has been found scan /sys/class/thermal
			if (not got_cpu and fs::exists(fs::path("/sys/class/thermal"))) {
				const string rootpath = fs::path("/sys/class/thermal/thermal_zone");
				for (int i = 0; fs::exists(fs::path(rootpath + to_string(i))); i++) {
					const fs::path basepath = rootpath + to_string(i);
					if (not fs::exists(basepath / "temp")) continue;
					const string label = readfile(basepath / "type", "temp" + to_string(i));
					const string sensor_name = "thermal" + to_string(i) + "/" + label;
					const int64_t temp = stol(readfile(basepath / "temp", "0")) / 1000;

					int64_t high, crit;
					for (int ii = 0; fs::exists(basepath / string("trip_point_" + to_string(ii) + "_temp")); ii++) {
						const string trip_type = readfile(basepath / string("trip_point_" + to_string(ii) + "_type"));
						if (not is_in(trip_type, "high", "critical")) continue;
						auto& val = (trip_type == "high" ? high : crit);
						val = stol(readfile(basepath / string("trip_point_" + to_string(ii) + "_temp"), "0")) / 1000;
					}
					if (high < 1) high = 80;
					if (crit < 1) crit = 95;

					found_sensors[sensor_name] = {basepath / "temp", label, temp, high, crit};
				}
			}

		}
		catch (...) {}

		if (not got_coretemp or core_sensors.empty()) {
			cpu_temp_only = true;
		}
		else {
			rng::sort(core_sensors, rng::less{});
			rng::stable_sort(core_sensors, [](const auto& a, const auto& b){
				return a.size() < b.size();
			});
		}

		if (cpu_sensor.empty() and not found_sensors.empty()) {
			for (const auto& [name, sensor] : found_sensors) {
				if (s_contains(str_to_lower(name), "cpu") or s_contains(str_to_lower(name), "k10temp")) {
					cpu_sensor = name;
					break;
				}
			}
			if (cpu_sensor.empty()) {
				cpu_sensor = found_sensors.begin()->first;
				Logger::warning("No good candidate for cpu sensor found, using random from all found sensors.");
			}
		}

		return not found_sensors.empty();
	}

	void update_sensors() {
		if (cpu_sensor.empty()) return;

		const auto& cpu_sensor = (not Config::getS("cpu_sensor").empty() and found_sensors.contains(Config::getS("cpu_sensor")) ? Config::getS("cpu_sensor") : Cpu::cpu_sensor);

		found_sensors.at(cpu_sensor).temp = stol(readfile(found_sensors.at(cpu_sensor).path, "0")) / 1000;
		current_cpu.temp.at(0).push_back(found_sensors.at(cpu_sensor).temp);
		current_cpu.temp_max = found_sensors.at(cpu_sensor).crit;
		if (current_cpu.temp.at(0).size() > 20) current_cpu.temp.at(0).pop_front();

		if (Config::getB("show_coretemp") and not cpu_temp_only) {
			vector<string> done;
			for (const auto& sensor : core_sensors) {
				if (v_contains(done, sensor)) continue;
				found_sensors.at(sensor).temp = stol(readfile(found_sensors.at(sensor).path, "0")) / 1000;
				done.push_back(sensor);
			}
			for (const auto& [core, temp] : core_mapping) {
				if (cmp_less(core + 1, current_cpu.temp.size()) and cmp_less(temp, core_sensors.size())) {
					current_cpu.temp.at(core + 1).push_back(found_sensors.at(core_sensors.at(temp)).temp);
					if (current_cpu.temp.at(core + 1).size() > 20) current_cpu.temp.at(core + 1).pop_front();
				}
			}
		}
	}

	string get_cpuHz() {
		static int failed{};

		if (failed > 4)
			return ""s;

		string cpuhz;
		try {
			double hz{};
			//? Try to get freq from /sys/devices/system/cpu/cpufreq/policy first (faster)
			if (not freq_path.empty()) {
				hz = stod(readfile(freq_path, "0.0")) / 1000;
				if (hz <= 0.0 and ++failed >= 2)
					freq_path.clear();
			}
			//? If freq from /sys failed or is missing try to use /proc/cpuinfo
			if (hz <= 0.0) {
				ifstream cpufreq(Shared::procPath / "cpuinfo");
				if (cpufreq.good()) {
					while (cpufreq.ignore(SSmax, '\n')) {
						if (cpufreq.peek() == 'c') {
							cpufreq.ignore(SSmax, ' ');
							if (cpufreq.peek() == 'M') {
								cpufreq.ignore(SSmax, ':');
								cpufreq.ignore(1);
								cpufreq >> hz;
								break;
							}
						}
					}
				}
			}

			if (hz <= 1 or hz >= 1000000)
				throw std::runtime_error("Failed to read /sys/devices/system/cpu/cpufreq/policy and /proc/cpuinfo.");

			if (hz >= 1000) {
				if (hz >= 10000) cpuhz = to_string((int)round(hz / 1000)); // Future proof until we reach THz speeds :)
				else cpuhz = to_string(round(hz / 100) / 10.0).substr(0, 3);
				cpuhz += " GHz";
			}
			else if (hz > 0)
				cpuhz = to_string((int)round(hz)) + " MHz";

		}
		catch (const std::exception& e) {
			if (++failed < 5)
				return ""s;
			else {
				Logger::warning("get_cpuHZ() : " + string{e.what()});
				return ""s;
			}
		}

		return cpuhz;
	}

	auto get_core_mapping() -> std::unordered_map<int, int> {
		std::unordered_map<int, int> core_map;
		if (cpu_temp_only) return core_map;

		//? Try to get core mapping from /proc/cpuinfo
		ifstream cpuinfo(Shared::procPath / "cpuinfo");
		if (cpuinfo.good()) {
			int cpu{};
			int core{};
			int n{};
			for (string instr; cpuinfo >> instr;) {
				if (instr == "processor") {
					cpuinfo.ignore(SSmax, ':');
					cpuinfo >> cpu;
				}
				else if (instr.starts_with("core")) {
					cpuinfo.ignore(SSmax, ':');
					cpuinfo >> core;
					if (std::cmp_greater_equal(core, core_sensors.size())) {
						if (std::cmp_greater_equal(n, core_sensors.size())) n = 0;
						core_map[cpu] = n++;
					}
					else
						core_map[cpu] = core;
				}
				cpuinfo.ignore(SSmax, '\n');
			}
		}

		//? If core mapping from cpuinfo was incomplete try to guess remainder, if missing completely, map 0-0 1-1 2-2 etc.
		if (cmp_less(core_map.size(), Shared::coreCount)) {
			if (Shared::coreCount % 2 == 0 and (long)core_map.size() == Shared::coreCount / 2) {
				for (int i = 0, n = 0; i < Shared::coreCount / 2; i++) {
					if (std::cmp_greater_equal(n, core_sensors.size())) n = 0;
					core_map[Shared::coreCount / 2 + i] = n++;
				}
			}
			else {
				core_map.clear();
				for (int i = 0, n = 0; i < Shared::coreCount; i++) {
					if (std::cmp_greater_equal(n, core_sensors.size())) n = 0;
					core_map[i] = n++;
				}
			}
		}

		//? Apply user set custom mapping if any
		const auto& custom_map = Config::getS("cpu_core_map");
		if (not custom_map.empty()) {
			try {
				for (const auto& split : ssplit(custom_map)) {
					const auto vals = ssplit(split, ':');
					if (vals.size() != 2) continue;
					int change_id = std::stoi(vals.at(0));
					int new_id = std::stoi(vals.at(1));
					if (not core_map.contains(change_id) or cmp_greater(new_id, core_sensors.size())) continue;
					core_map.at(change_id) = new_id;
				}
			}
			catch (...) {}
		}

		return core_map;
	}

	struct battery {
		fs::path base_dir, energy_now, charge_now, energy_full, charge_full, power_now, current_now, voltage_now, status, online;
		string device_type;
		bool use_energy_or_charge = true;
		bool use_power = true;
	};

	auto get_battery() -> tuple<int, float, long, string> {
		if (not has_battery) return {0, 0, 0, ""};
		static string auto_sel;
		static std::unordered_map<string, battery> batteries;

		//? Get paths to needed files and check for valid values on first run
		if (batteries.empty() and has_battery) {
			try {
				if (fs::exists("/sys/class/power_supply")) {
					for (const auto& d : fs::directory_iterator("/sys/class/power_supply")) {
						//? Only consider online power supplies of type Battery or UPS
						//? see kernel docs for details on the file structure and contents
						//? https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-power
						battery new_bat;
						fs::path bat_dir;
						try {
							if (not d.is_directory()
								or not fs::exists(d.path() / "type")
								or not fs::exists(d.path() / "present")
								or stoi(readfile(d.path() / "present")) != 1)
								continue;
							string dev_type = readfile(d.path() / "type");
							if (is_in(dev_type, "Battery", "UPS")) {
								bat_dir = d.path();
								new_bat.base_dir = d.path();
								new_bat.device_type = dev_type;
							}
						} catch (...) {
							//? skip power supplies not conforming to the kernel standard
							continue;
						}

						if (fs::exists(bat_dir / "energy_now")) new_bat.energy_now = bat_dir / "energy_now";
						else if (fs::exists(bat_dir / "charge_now")) new_bat.charge_now = bat_dir / "charge_now";
						else new_bat.use_energy_or_charge = false;

						if (fs::exists(bat_dir / "energy_full")) new_bat.energy_full = bat_dir / "energy_full";
						else if (fs::exists(bat_dir / "charge_full")) new_bat.charge_full = bat_dir / "charge_full";
						else new_bat.use_energy_or_charge = false;

						if (not new_bat.use_energy_or_charge and not fs::exists(bat_dir / "capacity")) {
							continue;
						}

						if (fs::exists(bat_dir / "power_now")) {
							new_bat.power_now = bat_dir / "power_now";
						}
						else if ((fs::exists(bat_dir / "current_now")) and (fs::exists(bat_dir / "current_now"))) { 
							 new_bat.current_now = bat_dir / "current_now";
							 new_bat.voltage_now = bat_dir / "voltage_now";
						} 
						else { 
							new_bat.use_power = false; 
						}

						if (fs::exists(bat_dir / "AC0/online")) new_bat.online = bat_dir / "AC0/online";
						else if (fs::exists(bat_dir / "AC/online")) new_bat.online = bat_dir / "AC/online";

						batteries[bat_dir.filename()] = new_bat;
						Config::available_batteries.push_back(bat_dir.filename());
					}
				}
			}
			catch (...) {
				batteries.clear();
			}
			if (batteries.empty()) {
				has_battery = false;
				return {0, 0, 0, ""};
			}
		}

		auto& battery_sel = Config::getS("selected_battery");

		if (auto_sel.empty()) {
			for (auto& [name, bat] : batteries) {
				if (bat.device_type == "Battery") {
					auto_sel = name;
					break;
				}
			}
			if (auto_sel.empty()) auto_sel = batteries.begin()->first;
		}

		auto& b = (battery_sel != "Auto" and batteries.contains(battery_sel) ? batteries.at(battery_sel) : batteries.at(auto_sel));

		int percent = -1;
		long seconds = -1;
		float watts = -1;

		//? Try to get battery percentage
		if (percent < 0) {
			try {
				percent = stoll(readfile(b.base_dir / "capacity", "-1"));
			}
			catch (const std::invalid_argument&) { }
			catch (const std::out_of_range&) { }
		}
		if (b.use_energy_or_charge and percent < 0) {
			try {
				percent = round(100.0 * stoll(readfile(b.energy_now, "-1")) / stoll(readfile(b.energy_full, "1")));
			}
			catch (const std::invalid_argument&) { }
			catch (const std::out_of_range&) { }
		}
		if (b.use_energy_or_charge and percent < 0) {
			try {
				percent = round(100.0 * stoll(readfile(b.charge_now, "-1")) / stoll(readfile(b.charge_full, "1")));
			}
			catch (const std::invalid_argument&) { }
			catch (const std::out_of_range&) { }
		}
		if (percent < 0) {
			has_battery = false;
			return {0, 0, 0, ""};
		}

		//? Get charging/discharging status
		string status = str_to_lower(readfile(b.base_dir / "status", "unknown"));
		if (status == "unknown" and not b.online.empty()) {
			const auto online = readfile(b.online, "0");
			if (online == "1" and percent < 100) status = "charging";
			else if (online == "1") status = "full";
			else status = "discharging";
		}

		//? Get seconds to empty
		if (not is_in(status, "charging", "full")) {
			if (b.use_energy_or_charge ) {
				if (not b.power_now.empty()) {
					try {
						seconds = round((double)stoll(readfile(b.energy_now, "0")) / stoll(readfile(b.power_now, "1")) * 3600);
					}
					catch (const std::invalid_argument&) { }
					catch (const std::out_of_range&) { }
				}
				else if (not b.current_now.empty()) {
					try {
						seconds = round((double)stoll(readfile(b.charge_now, "0")) / (double)stoll(readfile(b.current_now, "1")) * 3600);
					}
					catch (const std::invalid_argument&) { }
					catch (const std::out_of_range&) { }
				}
			}

			if (seconds < 0 and fs::exists(b.base_dir / "time_to_empty")) {
				try {
					seconds = stoll(readfile(b.base_dir / "time_to_empty", "0")) * 60;
				}
				catch (const std::invalid_argument&) { }
				catch (const std::out_of_range&) { }
			}
		}

		//? Get power draw
		if (b.use_power) {
			if (not b.power_now.empty()) {
				try {
					watts = (float)stoll(readfile(b.energy_now, "-1")) / 1000000.0;
				}
				catch (const std::invalid_argument&) { }
				catch (const std::out_of_range&) { }
			}
			else if (not b.voltage_now.empty() and not b.current_now.empty()) {
				try {
					watts = (float)stoll(readfile(b.current_now, "-1")) / 1000000.0 * stoll(readfile(b.voltage_now, "1")) / 1000000.0;
				}
				catch (const std::invalid_argument&) { }
				catch (const std::out_of_range&) { }
			}

		}

		return {percent, watts, seconds, status};
	}

	auto collect(bool no_update) -> cpu_info& {
		if (Runner::stopping or (no_update and not current_cpu.cpu_percent.at("total").empty())) return current_cpu;
		auto& cpu = current_cpu;

		if (Config::getB("show_cpu_freq"))
			cpuHz = get_cpuHz();

		if (getloadavg(cpu.load_avg.data(), cpu.load_avg.size()) < 0) {
			Logger::error("failed to get load averages");
		}

		ifstream cread;

		try {
			//? Get cpu total times for all cores from /proc/stat
			string cpu_name;
			cread.open(Shared::procPath / "stat");
			int i = 0;
			int target = Shared::coreCount;
			for (; i <= target or (cread.good() and cread.peek() == 'c'); i++) {
				//? Make sure to add zero value for missing core values if at end of file
				if ((not cread.good() or cread.peek() != 'c') and i <= target) {
					if (i == 0) throw std::runtime_error("Failed to parse /proc/stat");
					else {
						//? Fix container sizes if new cores are detected
						while (cmp_less(cpu.core_percent.size(), i)) {
							core_old_totals.push_back(0);
							core_old_idles.push_back(0);
							cpu.core_percent.emplace_back();
						}
						cpu.core_percent.at(i-1).push_back(0);
					}
				}
				else {
					if (i == 0) cread.ignore(SSmax, ' ');
					else {
						cread >> cpu_name;
						int cpuNum = std::stoi(cpu_name.substr(3));
						if (cpuNum >= target - 1) target = cpuNum + (cread.peek() == 'c' ? 2 : 1);

						//? Add zero value for core if core number is missing from /proc/stat
						while (i - 1 < cpuNum) {
							//? Fix container sizes if new cores are detected
							while (cmp_less(cpu.core_percent.size(), i)) {
								core_old_totals.push_back(0);
								core_old_idles.push_back(0);
								cpu.core_percent.emplace_back();
							}
							cpu.core_percent[i-1].push_back(0);
							if (cpu.core_percent.at(i-1).size() > 40) cpu.core_percent.at(i-1).pop_front();
							i++;
						}
					}

					//? Expected on kernel 2.6.3> : 0=user, 1=nice, 2=system, 3=idle, 4=iowait, 5=irq, 6=softirq, 7=steal, 8=guest, 9=guest_nice
					vector<long long> times;
					long long total_sum = 0;

					for (uint64_t val; cread >> val; total_sum += val) {
						times.push_back(val);
					}
					cread.clear();
					if (times.size() < 4) throw std::runtime_error("Malformed /proc/stat");

					//? Subtract fields 8-9 and any future unknown fields
					const long long totals = max(0ll, total_sum - (times.size() > 8 ? std::accumulate(times.begin() + 8, times.end(), 0ll) : 0));

					//? Add iowait field if present
					const long long idles = max(0ll, times.at(3) + (times.size() > 4 ? times.at(4) : 0));

					//? Calculate values for totals from first line of stat
					if (i == 0) {
						const long long calc_totals = max(1ll, totals - cpu_old.at("totals"));
						const long long calc_idles = max(1ll, idles - cpu_old.at("idles"));
						cpu_old.at("totals") = totals;
						cpu_old.at("idles") = idles;

						//? Total usage of cpu
						cpu.cpu_percent.at("total").push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll));

						//? Reduce size if there are more values than needed for graph
						while (cmp_greater(cpu.cpu_percent.at("total").size(), width * 2)) cpu.cpu_percent.at("total").pop_front();

						//? Populate cpu.cpu_percent with all fields from stat
						for (int ii = 0; const auto& val : times) {
							cpu.cpu_percent.at(time_names.at(ii)).push_back(clamp((long long)round((double)(val - cpu_old.at(time_names.at(ii))) * 100 / calc_totals), 0ll, 100ll));
							cpu_old.at(time_names.at(ii)) = val;

							//? Reduce size if there are more values than needed for graph
							while (cmp_greater(cpu.cpu_percent.at(time_names.at(ii)).size(), width * 2)) cpu.cpu_percent.at(time_names.at(ii)).pop_front();

							if (++ii == 10) break;
						}
						continue;
					}
					//? Calculate cpu total for each core
					else {
						//? Fix container sizes if new cores are detected
						while (cmp_less(cpu.core_percent.size(), i)) {
							core_old_totals.push_back(0);
							core_old_idles.push_back(0);
							cpu.core_percent.emplace_back();
						}
						const long long calc_totals = max(0ll, totals - core_old_totals.at(i-1));
						const long long calc_idles = max(0ll, idles - core_old_idles.at(i-1));
						core_old_totals.at(i-1) = totals;
						core_old_idles.at(i-1) = idles;

						cpu.core_percent.at(i-1).push_back(clamp((long long)round((double)(calc_totals - calc_idles) * 100 / calc_totals), 0ll, 100ll));
					}
				}

				//? Reduce size if there are more values than needed for graph
				if (cpu.core_percent.at(i-1).size() > 40) cpu.core_percent.at(i-1).pop_front();
			}

			//? Notify main thread to redraw screen if we found more cores than previously detected
			if (cmp_greater(cpu.core_percent.size(), Shared::coreCount)) {
				Logger::debug("Changing CPU max corecount from " + to_string(Shared::coreCount) + " to " + to_string(cpu.core_percent.size()) + ".");
				Runner::coreNum_reset = true;
				Shared::coreCount = cpu.core_percent.size();
				while (cmp_less(current_cpu.temp.size(), cpu.core_percent.size() + 1)) current_cpu.temp.push_back({0});
			}

		}
		catch (const std::exception& e) {
			Logger::debug("Cpu::collect() : " + string{e.what()});
			if (cread.bad()) throw std::runtime_error("Failed to read /proc/stat");
			else throw std::runtime_error("Cpu::collect() : " + string{e.what()});
		}

		if (Config::getB("check_temp") and got_sensors)
			update_sensors();

		if (Config::getB("show_battery") and has_battery)
			current_bat = get_battery();

		return cpu;
	}
}

#ifdef GPU_SUPPORT
namespace Gpu {
    //? NVIDIA
    namespace Nvml {
		bool init() {
			if (initialized) return false;

			//? Dynamic loading & linking
			//? Try possible library names for libnvidia-ml.so
			const array libNvAlts = {
				"libnvidia-ml.so",
				"libnvidia-ml.so.1",
			};

			for (const auto& l : libNvAlts) {
				nvml_dl_handle = dlopen(l, RTLD_LAZY);
				if (nvml_dl_handle != nullptr) {
					break;
				}
			}
 			if (!nvml_dl_handle) {
				Logger::info("Failed to load libnvidia-ml.so, NVIDIA GPUs will not be detected: "s + dlerror());
 				return false;
 			}

			auto load_nvml_sym = [&](const char sym_name[]) {
				auto sym = dlsym(nvml_dl_handle, sym_name);
				auto err = dlerror();
				if (err != nullptr) {
					Logger::error(string("NVML: Couldn't find function ") + sym_name + ": " + err);
					return (void*)nullptr;
				} else return sym;
			};

            #define LOAD_SYM(NAME)  if ((NAME = (decltype(NAME))load_nvml_sym(#NAME)) == nullptr) return false

		    LOAD_SYM(nvmlErrorString);
		    LOAD_SYM(nvmlInit);
		    LOAD_SYM(nvmlShutdown);
		    LOAD_SYM(nvmlDeviceGetCount);
		    LOAD_SYM(nvmlDeviceGetHandleByIndex);
		    LOAD_SYM(nvmlDeviceGetName);
		    LOAD_SYM(nvmlDeviceGetPowerManagementLimit);
		    LOAD_SYM(nvmlDeviceGetTemperatureThreshold);
		    LOAD_SYM(nvmlDeviceGetUtilizationRates);
		    LOAD_SYM(nvmlDeviceGetClockInfo);
		    LOAD_SYM(nvmlDeviceGetPowerUsage);
		    LOAD_SYM(nvmlDeviceGetPowerState);
		    LOAD_SYM(nvmlDeviceGetTemperature);
		    LOAD_SYM(nvmlDeviceGetMemoryInfo);
		    LOAD_SYM(nvmlDeviceGetPcieThroughput);

            #undef LOAD_SYM

			//? Function calls
			nvmlReturn_t result = nvmlInit();
    		if (result != NVML_SUCCESS) {
    			Logger::debug(std::string("Failed to initialize NVML, NVIDIA GPUs will not be detected: ") + nvmlErrorString(result));
    			return false;
    		}

			//? Device count
			result = nvmlDeviceGetCount(&device_count);
    		if (result != NVML_SUCCESS) {
    			Logger::warning(std::string("NVML: Failed to get device count: ") + nvmlErrorString(result));
    			return false;
    		}

			if (device_count > 0) {
				devices.resize(device_count);
				gpus.resize(device_count);
				gpu_names.resize(device_count);

				initialized = true;

				//? Check supported functions & get maximums
				Nvml::collect<1>(gpus.data());

				return true;
			} else {initialized = true; shutdown(); return false;}
		}

		bool shutdown() {
			if (!initialized) return false;
			nvmlReturn_t result = nvmlShutdown();
			if (NVML_SUCCESS == result) {
				initialized = false;
				dlclose(nvml_dl_handle);
			} else Logger::warning(std::string("Failed to shutdown NVML: ") + nvmlErrorString(result));

			return !initialized;
		}

		template <bool is_init> // collect<1> is called in Nvml::init(), and populates gpus.supported_functions
		bool collect(gpu_info* gpus_slice) { // raw pointer to vector data, size == device_count
			if (!initialized) return false;

			nvmlReturn_t result;
			std::thread pcie_tx_thread, pcie_rx_thread;
			// DebugTimer nvTotalTimer("Nvidia Total");
			for (unsigned int i = 0; i < device_count; ++i) {
				if constexpr(is_init) {
					//? Device Handle
    				result = nvmlDeviceGetHandleByIndex(i, devices.data() + i);
        			if (result != NVML_SUCCESS) {
    					Logger::warning(std::string("NVML: Failed to get device handle: ") + nvmlErrorString(result));
    					gpus[i].supported_functions = {false, false, false, false, false, false, false, false};
    					continue;
        			}

					//? Device name
					char name[NVML_DEVICE_NAME_BUFFER_SIZE];
    				result = nvmlDeviceGetName(devices[i], name, NVML_DEVICE_NAME_BUFFER_SIZE);
        			if (result != NVML_SUCCESS)
    					Logger::warning(std::string("NVML: Failed to get device name: ") + nvmlErrorString(result));
        			else {
        				gpu_names[i] = string(name);
        				for (const auto& brand : {"NVIDIA", "Nvidia", "(R)", "(TM)"}) {
							gpu_names[i] = s_replace(gpu_names[i], brand, "");
						}
						gpu_names[i] = trim(gpu_names[i]);
        			}

    				//? Power usage
    				unsigned int max_power;
    				result = nvmlDeviceGetPowerManagementLimit(devices[i], &max_power);
    				if (result != NVML_SUCCESS)
						Logger::warning(std::string("NVML: Failed to get maximum GPU power draw, defaulting to 225W: ") + nvmlErrorString(result));
					else {
						gpus[i].pwr_max_usage = max_power; // RSMI reports power in microWatts
						gpu_pwr_total_max += max_power;
					}

					//? Get temp_max
					unsigned int temp_max;
    				result = nvmlDeviceGetTemperatureThreshold(devices[i], NVML_TEMPERATURE_THRESHOLD_SHUTDOWN, &temp_max);
        			if (result != NVML_SUCCESS)
    					Logger::warning(std::string("NVML: Failed to get maximum GPU temperature, defaulting to 110°C: ") + nvmlErrorString(result));
    				else gpus[i].temp_max = (long long)temp_max;
				}

				//? PCIe link speeds, the data collection takes >=20ms each call so they run on separate threads
				if (gpus_slice[i].supported_functions.pcie_txrx and (Config::getB("nvml_measure_pcie_speeds") or is_init)) {
					pcie_tx_thread = std::thread([gpus_slice, i]() {
						unsigned int tx;
						nvmlReturn_t result = nvmlDeviceGetPcieThroughput(devices[i], NVML_PCIE_UTIL_TX_BYTES, &tx);
    					if (result != NVML_SUCCESS) {
							Logger::warning(std::string("NVML: Failed to get PCIe TX throughput: ") + nvmlErrorString(result));
							if constexpr(is_init) gpus_slice[i].supported_functions.pcie_txrx = false;
						} else gpus_slice[i].pcie_tx = (long long)tx;
					});

					pcie_rx_thread = std::thread([gpus_slice, i]() {
						unsigned int rx;
						nvmlReturn_t result = nvmlDeviceGetPcieThroughput(devices[i], NVML_PCIE_UTIL_RX_BYTES, &rx);
    					if (result != NVML_SUCCESS) {
							Logger::warning(std::string("NVML: Failed to get PCIe RX throughput: ") + nvmlErrorString(result));
						} else gpus_slice[i].pcie_rx = (long long)rx;
					});
				}

				// DebugTimer nvTimer("Nv utilization");
				//? GPU & memory utilization
				if (gpus_slice[i].supported_functions.gpu_utilization) {
					nvmlUtilization_t utilization;
					result = nvmlDeviceGetUtilizationRates(devices[i], &utilization);
    				if (result != NVML_SUCCESS) {
						Logger::warning(std::string("NVML: Failed to get GPU utilization: ") + nvmlErrorString(result));
						if constexpr(is_init) gpus_slice[i].supported_functions.gpu_utilization = false;
						if constexpr(is_init) gpus_slice[i].supported_functions.mem_utilization = false;
    				} else {
						gpus_slice[i].gpu_percent.at("gpu-totals").push_back((long long)utilization.gpu);
						gpus_slice[i].mem_utilization_percent.push_back((long long)utilization.memory);
    				}
				}

				// nvTimer.stop_rename_reset("Nv clock");
				//? Clock speeds
				if (gpus_slice[i].supported_functions.gpu_clock) {
					unsigned int gpu_clock;
					result = nvmlDeviceGetClockInfo(devices[i], NVML_CLOCK_GRAPHICS, &gpu_clock);
    				if (result != NVML_SUCCESS) {
						Logger::warning(std::string("NVML: Failed to get GPU clock speed: ") + nvmlErrorString(result));
						if constexpr(is_init) gpus_slice[i].supported_functions.gpu_clock = false;
					} else gpus_slice[i].gpu_clock_speed = (long long)gpu_clock;
				}

				if (gpus_slice[i].supported_functions.mem_clock) {
					unsigned int mem_clock;
					result = nvmlDeviceGetClockInfo(devices[i], NVML_CLOCK_MEM, &mem_clock);
    				if (result != NVML_SUCCESS) {
						Logger::warning(std::string("NVML: Failed to get VRAM clock speed: ") + nvmlErrorString(result));
						if constexpr(is_init) gpus_slice[i].supported_functions.mem_clock = false;
					} else gpus_slice[i].mem_clock_speed = (long long)mem_clock;
				}

				// nvTimer.stop_rename_reset("Nv power");
    			//? Power usage & state
				if (gpus_slice[i].supported_functions.pwr_usage) {
    				unsigned int power;
    				result = nvmlDeviceGetPowerUsage(devices[i], &power);
    				if (result != NVML_SUCCESS) {
						Logger::warning(std::string("NVML: Failed to get GPU power usage: ") + nvmlErrorString(result));
						if constexpr(is_init) gpus_slice[i].supported_functions.pwr_usage = false;
    				} else {
    					gpus_slice[i].pwr_usage = (long long)power;
    					gpus_slice[i].gpu_percent.at("gpu-pwr-totals").push_back(clamp((long long)round((double)gpus_slice[i].pwr_usage * 100.0 / (double)gpus_slice[i].pwr_max_usage), 0ll, 100ll));
    				}
    			}

				if (gpus_slice[i].supported_functions.pwr_state) {
					nvmlPstates_t pState;
    				result = nvmlDeviceGetPowerState(devices[i], &pState);
    				if (result != NVML_SUCCESS) {
						Logger::warning(std::string("NVML: Failed to get GPU power state: ") + nvmlErrorString(result));
						if constexpr(is_init) gpus_slice[i].supported_functions.pwr_state = false;
    				} else gpus_slice[i].pwr_state = static_cast<int>(pState);
    			}

				// nvTimer.stop_rename_reset("Nv temp");
    			//? GPU temperature
				if (gpus_slice[i].supported_functions.temp_info) {
    				if (Config::getB("check_temp")) {
						unsigned int temp;
						nvmlReturn_t result = nvmlDeviceGetTemperature(devices[i], NVML_TEMPERATURE_GPU, &temp);
    					if (result != NVML_SUCCESS) {
							Logger::warning(std::string("NVML: Failed to get GPU temperature: ") + nvmlErrorString(result));
							if constexpr(is_init) gpus_slice[i].supported_functions.temp_info = false;
    					} else gpus_slice[i].temp.push_back((long long)temp);
					}
				}

				// nvTimer.stop_rename_reset("Nv mem");
				//? Memory info
				if (gpus_slice[i].supported_functions.mem_total) {
					nvmlMemory_t memory;
					result = nvmlDeviceGetMemoryInfo(devices[i], &memory);
    				if (result != NVML_SUCCESS) {
						Logger::warning(std::string("NVML: Failed to get VRAM info: ") + nvmlErrorString(result));
						if constexpr(is_init) gpus_slice[i].supported_functions.mem_total = false;
						if constexpr(is_init) gpus_slice[i].supported_functions.mem_used = false;
					} else {
						gpus_slice[i].mem_total = memory.total;
						gpus_slice[i].mem_used = memory.used;
						//gpu.mem_free = memory.free;

						auto used_percent = (long long)round((double)memory.used * 100.0 / (double)memory.total);
						gpus_slice[i].gpu_percent.at("gpu-vram-totals").push_back(used_percent);
					}
				}

    			//? TODO: Processes using GPU
    				/*unsigned int proc_info_len;
    				nvmlProcessInfo_t* proc_info = 0;
    				result = nvmlDeviceGetComputeRunningProcesses_v3(device, &proc_info_len, proc_info);
    				if (result != NVML_SUCCESS) {
						Logger::warning(std::string("NVML: Failed to get compute processes: ") + nvmlErrorString(result));
    				} else {
    					for (unsigned int i = 0; i < proc_info_len; ++i)
    						gpus_slice[i].graphics_processes.push_back({proc_info[i].pid, proc_info[i].usedGpuMemory});
    				}*/

				// nvTimer.stop_rename_reset("Nv pcie thread join");
				//? Join PCIE TX/RX threads
				if constexpr(is_init) { // there doesn't seem to be a better way to do this, but this should be fine considering it's just 2 lines
					pcie_tx_thread.join();
					pcie_rx_thread.join();
				} else if (gpus_slice[i].supported_functions.pcie_txrx and Config::getB("nvml_measure_pcie_speeds")) {
					pcie_tx_thread.join();
					pcie_rx_thread.join();
				}
    		}

			return true;
		}
    }

	//? AMD
	namespace Rsmi {
		bool init() {
			if (initialized) return false;

			//? Dynamic loading & linking
		#if !defined(RSMI_STATIC)

			//? Try possible library paths and names for librocm_smi64.so
			const array libRocAlts = {
				"/opt/rocm/lib/librocm_smi64.so",
				"librocm_smi64.so",
				"librocm_smi64.so.5", // fedora
				"librocm_smi64.so.1.0", // debian
			};

			for (const auto& l : libRocAlts) {
				rsmi_dl_handle = dlopen(l, RTLD_LAZY);
				if (rsmi_dl_handle != nullptr) {
					break;
				}
 			}

			if (!rsmi_dl_handle) {
				Logger::info("Failed to load librocm_smi64.so, AMD GPUs will not be detected: "s + dlerror());
				return false;
			}

			auto load_rsmi_sym = [&](const char sym_name[]) {
				auto sym = dlsym(rsmi_dl_handle, sym_name);
				auto err = dlerror();
				if (err != nullptr) {
					Logger::error(string("ROCm SMI: Couldn't find function ") + sym_name + ": " + err);
					return (void*)nullptr;
				} else return sym;
			};

            #define LOAD_SYM(NAME)  if ((NAME = (decltype(NAME))load_rsmi_sym(#NAME)) == nullptr) return false

		    LOAD_SYM(rsmi_init);
		    LOAD_SYM(rsmi_shut_down);
			LOAD_SYM(rsmi_version_get);
		    LOAD_SYM(rsmi_num_monitor_devices);
		    LOAD_SYM(rsmi_dev_name_get);
		    LOAD_SYM(rsmi_dev_power_cap_get);
		    LOAD_SYM(rsmi_dev_temp_metric_get);
		    LOAD_SYM(rsmi_dev_busy_percent_get);
		    LOAD_SYM(rsmi_dev_memory_busy_percent_get);
		    LOAD_SYM(rsmi_dev_power_ave_get);
		    LOAD_SYM(rsmi_dev_memory_total_get);
		    LOAD_SYM(rsmi_dev_memory_usage_get);
		    LOAD_SYM(rsmi_dev_pci_throughput_get);

            #undef LOAD_SYM
        #endif

			//? Function calls
			rsmi_status_t result = rsmi_init(0);
			if (result != RSMI_STATUS_SUCCESS) {
				Logger::debug("Failed to initialize ROCm SMI, AMD GPUs will not be detected");
				return false;
			}

		#if !defined(RSMI_STATIC)
			//? Check version
			rsmi_version_t version;
			result = rsmi_version_get(&version);
			if (result != RSMI_STATUS_SUCCESS) {
				Logger::warning("ROCm SMI: Failed to get version");
				return false;
			} else if (version.major == 5) {
				if ((rsmi_dev_gpu_clk_freq_get_v5 = (decltype(rsmi_dev_gpu_clk_freq_get_v5))load_rsmi_sym("rsmi_dev_gpu_clk_freq_get")) == nullptr)
					return false;
			} else if (version.major == 6) {
				if ((rsmi_dev_gpu_clk_freq_get_v6 = (decltype(rsmi_dev_gpu_clk_freq_get_v6))load_rsmi_sym("rsmi_dev_gpu_clk_freq_get")) == nullptr)
					return false;
			} else {
				Logger::warning("ROCm SMI: Dynamic loading only supported for version 5 and 6");
				return false;
			}
			version_major = version.major;
		#endif

			//? Device count
			result = rsmi_num_monitor_devices(&device_count);
			if (result != RSMI_STATUS_SUCCESS) {
				Logger::warning("ROCm SMI: Failed to fetch number of devices");
				return false;
			}

			if (device_count > 0) {
				gpus.resize(gpus.size() + device_count);
				gpu_names.resize(gpus.size() + device_count);

				initialized = true;

				//? Check supported functions & get maximums
				Rsmi::collect<1>(gpus.data() + Nvml::device_count);

				return true;
			} else {initialized = true; shutdown(); return false;}
		}

		bool shutdown() {
			if (!initialized) return false;
    		if (rsmi_shut_down() == RSMI_STATUS_SUCCESS) {
				initialized = false;
			#if !defined(RSMI_STATIC)
				dlclose(rsmi_dl_handle);
			#endif
			} else Logger::warning("Failed to shutdown ROCm SMI");

			return true;
		}

		template <bool is_init>
		bool collect(gpu_info* gpus_slice) { // raw pointer to vector data, size == device_count, offset by Nvml::device_count elements
			if (!initialized) return false;
			rsmi_status_t result;

			for (uint32_t i = 0; i < device_count; ++i) {
				if constexpr(is_init) {
					//? Device name
					char name[NVML_DEVICE_NAME_BUFFER_SIZE]; // ROCm SMI does not provide a constant for this as far as I can tell, this should be good enough
    				result = rsmi_dev_name_get(i, name, NVML_DEVICE_NAME_BUFFER_SIZE);
        			if (result != RSMI_STATUS_SUCCESS)
    					Logger::warning("ROCm SMI: Failed to get device name");
        			else gpu_names[Nvml::device_count + i] = string(name);

    				//? Power usage
    				uint64_t max_power;
    				result = rsmi_dev_power_cap_get(i, 0, &max_power);
    				if (result != RSMI_STATUS_SUCCESS)
						Logger::warning("ROCm SMI: Failed to get maximum GPU power draw, defaulting to 225W");
					else {
						gpus_slice[i].pwr_max_usage = (long long)(max_power/1000); // RSMI reports power in microWatts
						gpu_pwr_total_max += gpus_slice[i].pwr_max_usage;
					}

					//? Get temp_max
					int64_t temp_max;
    				result = rsmi_dev_temp_metric_get(i, RSMI_TEMP_TYPE_EDGE, RSMI_TEMP_MAX, &temp_max);
        			if (result != RSMI_STATUS_SUCCESS)
    					Logger::warning("ROCm SMI: Failed to get maximum GPU temperature, defaulting to 110°C");
    				else gpus_slice[i].temp_max = (long long)temp_max;
    			}

				//? GPU utilization
				if (gpus_slice[i].supported_functions.gpu_utilization) {
					uint32_t utilization;
					result = rsmi_dev_busy_percent_get(i, &utilization);
    				if (result != RSMI_STATUS_SUCCESS) {
						Logger::warning("ROCm SMI: Failed to get GPU utilization");
						if constexpr(is_init) gpus_slice[i].supported_functions.gpu_utilization = false;
    				} else gpus_slice[i].gpu_percent.at("gpu-totals").push_back((long long)utilization);
				}

				//? Memory utilization
				if (gpus_slice[i].supported_functions.mem_utilization) {
					uint32_t utilization;
					result = rsmi_dev_memory_busy_percent_get(i, &utilization);
    				if (result != RSMI_STATUS_SUCCESS) {
						Logger::warning("ROCm SMI: Failed to get VRAM utilization");
						if constexpr(is_init) gpus_slice[i].supported_functions.mem_utilization = false;
    				} else gpus_slice[i].mem_utilization_percent.push_back((long long)utilization);
				}
			#if !defined(RSMI_STATIC)
				//? Clock speeds
				if (gpus_slice[i].supported_functions.gpu_clock) {
					if (version_major == 5) {
						rsmi_frequencies_t_v5 frequencies;
						result = rsmi_dev_gpu_clk_freq_get_v5(i, RSMI_CLK_TYPE_SYS, &frequencies);
						if (result != RSMI_STATUS_SUCCESS) {
							Logger::warning("ROCm SMI: Failed to get GPU clock speed: ");
							if constexpr(is_init) gpus_slice[i].supported_functions.gpu_clock = false;
						} else gpus_slice[i].gpu_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
					}
					else if (version_major == 6) {
						rsmi_frequencies_t_v6 frequencies;
						result = rsmi_dev_gpu_clk_freq_get_v6(i, RSMI_CLK_TYPE_SYS, &frequencies);
						if (result != RSMI_STATUS_SUCCESS) {
							Logger::warning("ROCm SMI: Failed to get GPU clock speed: ");
							if constexpr(is_init) gpus_slice[i].supported_functions.gpu_clock = false;
						} else gpus_slice[i].gpu_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
					}
				}

				if (gpus_slice[i].supported_functions.mem_clock) {
					if (version_major == 5) {
						rsmi_frequencies_t_v5 frequencies;
						result = rsmi_dev_gpu_clk_freq_get_v5(i, RSMI_CLK_TYPE_MEM, &frequencies);
						if (result != RSMI_STATUS_SUCCESS) {
							Logger::warning("ROCm SMI: Failed to get VRAM clock speed: ");
							if constexpr(is_init) gpus_slice[i].supported_functions.mem_clock = false;
						} else gpus_slice[i].mem_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
					}
					else if (version_major == 6) {
						rsmi_frequencies_t_v6 frequencies;
						result = rsmi_dev_gpu_clk_freq_get_v6(i, RSMI_CLK_TYPE_MEM, &frequencies);
						if (result != RSMI_STATUS_SUCCESS) {
							Logger::warning("ROCm SMI: Failed to get VRAM clock speed: ");
							if constexpr(is_init) gpus_slice[i].supported_functions.mem_clock = false;
						} else gpus_slice[i].mem_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
					}
				}
			#else
				//? Clock speeds
				if (gpus_slice[i].supported_functions.gpu_clock) {
					rsmi_frequencies_t frequencies;
					result = rsmi_dev_gpu_clk_freq_get(i, RSMI_CLK_TYPE_SYS, &frequencies);
    				if (result != RSMI_STATUS_SUCCESS) {
						Logger::warning("ROCm SMI: Failed to get GPU clock speed: ");
						if constexpr(is_init) gpus_slice[i].supported_functions.gpu_clock = false;
    				} else gpus_slice[i].gpu_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
				}

				if (gpus_slice[i].supported_functions.mem_clock) {
					rsmi_frequencies_t frequencies;
					result = rsmi_dev_gpu_clk_freq_get(i, RSMI_CLK_TYPE_MEM, &frequencies);
    				if (result != RSMI_STATUS_SUCCESS) {
						Logger::warning("ROCm SMI: Failed to get VRAM clock speed: ");
						if constexpr(is_init) gpus_slice[i].supported_functions.mem_clock = false;
    				} else gpus_slice[i].mem_clock_speed = (long long)frequencies.frequency[frequencies.current]/1000000; // Hz to MHz
				}
			#endif

    			//? Power usage & state
				if (gpus_slice[i].supported_functions.pwr_usage) {
    				uint64_t power;
    				result = rsmi_dev_power_ave_get(i, 0, &power);
    				if (result != RSMI_STATUS_SUCCESS) {
						Logger::warning("ROCm SMI: Failed to get GPU power usage");
						if constexpr(is_init) gpus_slice[i].supported_functions.pwr_usage = false;
    				} else gpus_slice[i].gpu_percent.at("gpu-pwr-totals").push_back(clamp((long long)round((double)gpus_slice[i].pwr_usage * 100.0 / (double)gpus_slice[i].pwr_max_usage), 0ll, 100ll));

					if constexpr(is_init) gpus_slice[i].supported_functions.pwr_state = false;
				}

    			//? GPU temperature
				if (gpus_slice[i].supported_functions.temp_info) {
    				if (Config::getB("check_temp") or is_init) {
						int64_t temp;
    					result = rsmi_dev_temp_metric_get(i, RSMI_TEMP_TYPE_EDGE, RSMI_TEMP_CURRENT, &temp);
        				if (result != RSMI_STATUS_SUCCESS) {
    						Logger::warning("ROCm SMI: Failed to get GPU temperature");
							if constexpr(is_init) gpus_slice[i].supported_functions.temp_info = false;
    					} else gpus_slice[i].temp.push_back((long long)temp/1000);
    				}
				}

				//? Memory info
				if (gpus_slice[i].supported_functions.mem_total) {
					uint64_t total;
					result = rsmi_dev_memory_total_get(i, RSMI_MEM_TYPE_VRAM, &total);
    				if (result != RSMI_STATUS_SUCCESS) {
						Logger::warning("ROCm SMI: Failed to get total VRAM");
						if constexpr(is_init) gpus_slice[i].supported_functions.mem_total = false;
					} else gpus_slice[i].mem_total = total;
				}

				if (gpus_slice[i].supported_functions.mem_used) {
					uint64_t used;
					result = rsmi_dev_memory_usage_get(i, RSMI_MEM_TYPE_VRAM, &used);
    				if (result != RSMI_STATUS_SUCCESS) {
						Logger::warning("ROCm SMI: Failed to get VRAM usage");
						if constexpr(is_init) gpus_slice[i].supported_functions.mem_used = false;
					} else {
						gpus_slice[i].mem_used = used;
						if (gpus_slice[i].supported_functions.mem_total)
							gpus_slice[i].gpu_percent.at("gpu-vram-totals").push_back((long long)round((double)used * 100.0 / (double)gpus_slice[i].mem_total));
					}
				}

				//? PCIe link speeds
				if (gpus_slice[i].supported_functions.pcie_txrx) {
					uint64_t tx, rx;
					result = rsmi_dev_pci_throughput_get(i, &tx, &rx, 0);
    				if (result != RSMI_STATUS_SUCCESS) {
						Logger::warning("ROCm SMI: Failed to get PCIe throughput");
						if constexpr(is_init) gpus_slice[i].supported_functions.pcie_txrx = false;
					} else {
						gpus_slice[i].pcie_tx = (long long)tx;
						gpus_slice[i].pcie_rx = (long long)rx;
					}
				}
    		}

			return true;
		}
	}

	// TODO: Intel

	//? Collect data from GPU-specific libraries
	auto collect(bool no_update) -> vector<gpu_info>& {
		if (Runner::stopping or (no_update and not gpus.empty())) return gpus;

		// DebugTimer gpu_timer("GPU Total");

		//* Collect data
		Nvml::collect<0>(gpus.data()); // raw pointer to vector data, size == Nvml::device_count
		Rsmi::collect<0>(gpus.data() + Nvml::device_count); // size = Rsmi::device_count

		//* Calculate average usage
		long long avg = 0;
		long long mem_usage_total = 0;
		long long mem_total = 0;
		long long pwr_total = 0;
		for (auto& gpu : gpus) {
			if (gpu.supported_functions.gpu_utilization)
				avg += gpu.gpu_percent.at("gpu-totals").back();
			if (gpu.supported_functions.mem_used)
				mem_usage_total += gpu.mem_used;
			if (gpu.supported_functions.mem_total)
				mem_total += gpu.mem_total;
			if (gpu.supported_functions.pwr_usage)
				mem_total += gpu.pwr_usage;

			//* Trim vectors if there are more values than needed for graphs
			if (width != 0) {
				//? GPU & memory utilization
				while (cmp_greater(gpu.gpu_percent.at("gpu-totals").size(), width * 2)) gpu.gpu_percent.at("gpu-totals").pop_front();
				while (cmp_greater(gpu.mem_utilization_percent.size(), width)) gpu.mem_utilization_percent.pop_front();
				//? Power usage
				while (cmp_greater(gpu.gpu_percent.at("gpu-pwr-totals").size(), width)) gpu.gpu_percent.at("gpu-pwr-totals").pop_front();
				//? Temperature
				while (cmp_greater(gpu.temp.size(), 18)) gpu.temp.pop_front();
				//? Memory usage
				while (cmp_greater(gpu.gpu_percent.at("gpu-vram-totals").size(), width/2)) gpu.gpu_percent.at("gpu-vram-totals").pop_front();
			}
		}

		shared_gpu_percent.at("gpu-average").push_back(avg / gpus.size());
		if (mem_total != 0)
			shared_gpu_percent.at("gpu-vram-total").push_back(mem_usage_total / mem_total);
		if (gpu_pwr_total_max != 0)
			shared_gpu_percent.at("gpu-pwr-total").push_back(pwr_total / gpu_pwr_total_max);

		if (width != 0) {
			while (cmp_greater(shared_gpu_percent.at("gpu-average").size(), width * 2)) shared_gpu_percent.at("gpu-average").pop_front();
			while (cmp_greater(shared_gpu_percent.at("gpu-pwr-total").size(), width * 2)) shared_gpu_percent.at("gpu-pwr-total").pop_front();
			while (cmp_greater(shared_gpu_percent.at("gpu-vram-total").size(), width * 2)) shared_gpu_percent.at("gpu-vram-total").pop_front();
		}

		return gpus;
	}
}
#endif

namespace Mem {
	bool has_swap{};
	vector<string> fstab;
	fs::file_time_type fstab_time;
	int disk_ios{};
	vector<string> last_found;

	//?* Find the filepath to the specified ZFS object's stat file
	fs::path get_zfs_stat_file(const string& device_name, size_t dataset_name_start, bool zfs_hide_datasets);

	//?* Collect total ZFS pool io stats
	bool zfs_collect_pool_total_stats(struct disk_info &disk);

	mem_info current_mem {};

	uint64_t get_totalMem() {
		ifstream meminfo(Shared::procPath / "meminfo");
		int64_t totalMem;
		if (meminfo.good()) {
			meminfo.ignore(SSmax, ':');
			meminfo >> totalMem;
			totalMem <<= 10;
		}
		if (not meminfo.good() or totalMem == 0)
			throw std::runtime_error("Could not get total memory size from /proc/meminfo");

		return totalMem;
	}

	auto collect(bool no_update) -> mem_info& {
		if (Runner::stopping or (no_update and not current_mem.percent.at("used").empty())) return current_mem;
		auto show_swap = Config::getB("show_swap");
		auto swap_disk = Config::getB("swap_disk");
		auto show_disks = Config::getB("show_disks");
		auto zfs_arc_cached = Config::getB("zfs_arc_cached");
		auto totalMem = get_totalMem();
		auto& mem = current_mem;

		mem.stats.at("swap_total") = 0;

		//? Read ZFS ARC info from /proc/spl/kstat/zfs/arcstats
		uint64_t arc_size = 0, arc_min_size = 0;
		if (zfs_arc_cached) {
			ifstream arcstats(Shared::procPath / "spl/kstat/zfs/arcstats");
			if (arcstats.good()) {
				for (string label; arcstats >> label;) {
					if (label == "c_min") {
						arcstats >> arc_min_size >> arc_min_size; // double read skips type column
					}
					else if (label == "size") {
						arcstats >> arc_size >> arc_size;
						break;
					}
				}
			}
			arcstats.close();
		}

		//? Read memory info from /proc/meminfo
		ifstream meminfo(Shared::procPath / "meminfo");
		if (meminfo.good()) {
			bool got_avail = false;
			for (string label; meminfo.peek() != 'D' and meminfo >> label;) {
				if (label == "MemFree:") {
					meminfo >> mem.stats.at("free");
					mem.stats.at("free") <<= 10;
				}
				else if (label == "MemAvailable:") {
					meminfo >> mem.stats.at("available");
					mem.stats.at("available") <<= 10;
					got_avail = true;
				}
				else if (label == "Cached:") {
					meminfo >> mem.stats.at("cached");
					mem.stats.at("cached") <<= 10;
					if (not show_swap and not swap_disk) break;
				}
				else if (label == "SwapTotal:") {
					meminfo >> mem.stats.at("swap_total");
					mem.stats.at("swap_total") <<= 10;
				}
				else if (label == "SwapFree:") {
					meminfo >> mem.stats.at("swap_free");
					mem.stats.at("swap_free") <<= 10;
					break;
				}
				meminfo.ignore(SSmax, '\n');
			}
			if (not got_avail) mem.stats.at("available") = mem.stats.at("free") + mem.stats.at("cached");
			if (zfs_arc_cached) {
				mem.stats.at("cached") += arc_size;
				// The ARC will not shrink below arc_min_size, so that memory is not available
				if (arc_size > arc_min_size)
					mem.stats.at("available") += arc_size - arc_min_size;
			}
			mem.stats.at("used") = totalMem - (mem.stats.at("available") <= totalMem ? mem.stats.at("available") : mem.stats.at("free"));

			if (mem.stats.at("swap_total") > 0) mem.stats.at("swap_used") = mem.stats.at("swap_total") - mem.stats.at("swap_free");
		}
		else
			throw std::runtime_error("Failed to read /proc/meminfo");

		meminfo.close();

		//? Calculate percentages
		for (const auto& name : mem_names) {
			mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / totalMem));
			while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front();
		}

		if (show_swap and mem.stats.at("swap_total") > 0) {
			for (const auto& name : swap_names) {
				mem.percent.at(name).push_back(round((double)mem.stats.at(name) * 100 / mem.stats.at("swap_total")));
				while (cmp_greater(mem.percent.at(name).size(), width * 2)) mem.percent.at(name).pop_front();
			}
			has_swap = true;
		}
		else
			has_swap = false;

		//? Get disks stats
		if (show_disks) {
			static vector<string> ignore_list;
			double uptime = system_uptime();
			auto free_priv = Config::getB("disk_free_priv");
			try {
				auto& disks_filter = Config::getS("disks_filter");
				bool filter_exclude = false;
				auto use_fstab = Config::getB("use_fstab");
				auto only_physical = Config::getB("only_physical");
				auto zfs_hide_datasets = Config::getB("zfs_hide_datasets");
				auto& disks = mem.disks;
				static std::unordered_map<string, future<pair<disk_info, int>>> disks_stats_promises;
				ifstream diskread;

				vector<string> filter;
				if (not disks_filter.empty()) {
					filter = ssplit(disks_filter);
					if (filter.at(0).starts_with("exclude=")) {
						filter_exclude = true;
						filter.at(0) = filter.at(0).substr(8);
					}
				}

				//? Get list of "real" filesystems from /proc/filesystems
				vector<string> fstypes;
				if (only_physical and not use_fstab) {
					fstypes = {"zfs", "wslfs", "drvfs"};
					diskread.open(Shared::procPath / "filesystems");
					if (diskread.good()) {
						for (string fstype; diskread >> fstype;) {
							if (not is_in(fstype, "nodev", "squashfs", "nullfs"))
								fstypes.push_back(fstype);
							diskread.ignore(SSmax, '\n');
						}
					}
					else
						throw std::runtime_error("Failed to read /proc/filesystems");
					diskread.close();
				}

				//? Get disk list to use from fstab if enabled
				if (use_fstab and fs::last_write_time("/etc/fstab") != fstab_time) {
					fstab.clear();
					fstab_time = fs::last_write_time("/etc/fstab");
					diskread.open("/etc/fstab");
					if (diskread.good()) {
						for (string instr; diskread >> instr;) {
							if (not instr.starts_with('#')) {
								diskread >> instr;
								#ifdef SNAPPED
									if (instr == "/") fstab.push_back("/mnt");
									else if (not is_in(instr, "none", "swap")) fstab.push_back(instr);
								#else
									if (not is_in(instr, "none", "swap")) fstab.push_back(instr);
								#endif
							}
							diskread.ignore(SSmax, '\n');
						}
					}
					else
						throw std::runtime_error("Failed to read /etc/fstab");
					diskread.close();
				}

				//? Get mounts from /etc/mtab or /proc/self/mounts
				diskread.open((fs::exists("/etc/mtab") ? fs::path("/etc/mtab") : Shared::procPath / "self/mounts"));
				if (diskread.good()) {
					vector<string> found;
					found.reserve(last_found.size());
					string dev, mountpoint, fstype;
					while (not diskread.eof()) {
						std::error_code ec;
						diskread >> dev >> mountpoint >> fstype;
						diskread.ignore(SSmax, '\n');

						if (v_contains(ignore_list, mountpoint) or v_contains(found, mountpoint)) continue;

						//? Match filter if not empty
						if (not filter.empty()) {
							bool match = v_contains(filter, mountpoint);
							if ((filter_exclude and match) or (not filter_exclude and not match))
								continue;
						}

						//? Skip ZFS datasets if zfs_hide_datasets option is enabled
						size_t zfs_dataset_name_start = 0;
						if (fstype == "zfs" && (zfs_dataset_name_start = dev.find('/')) != std::string::npos && zfs_hide_datasets) continue;

						if ((not use_fstab and not only_physical)
						or (use_fstab and v_contains(fstab, mountpoint))
						or (not use_fstab and only_physical and v_contains(fstypes, fstype))) {
							found.push_back(mountpoint);
							if (not v_contains(last_found, mountpoint)) redraw = true;

							//? Save mountpoint, name, fstype, dev path and path to /sys/block stat file
							if (not disks.contains(mountpoint)) {
								disks[mountpoint] = disk_info{fs::canonical(dev, ec), fs::path(mountpoint).filename(), fstype};
								if (disks.at(mountpoint).dev.empty()) disks.at(mountpoint).dev = dev;
								#ifdef SNAPPED
									if (mountpoint == "/mnt") disks.at(mountpoint).name = "root";
								#endif
								if (disks.at(mountpoint).name.empty()) disks.at(mountpoint).name = (mountpoint == "/" ? "root" : mountpoint);
								string devname = disks.at(mountpoint).dev.filename();
								int c = 0;
								while (devname.size() >= 2) {
									if (fs::exists("/sys/block/" + devname + "/stat", ec) and access(string("/sys/block/" + devname + "/stat").c_str(), R_OK) == 0) {
										if (c > 0 and fs::exists("/sys/block/" + devname + '/' + disks.at(mountpoint).dev.filename().string() + "/stat", ec))
											disks.at(mountpoint).stat = "/sys/block/" + devname + '/' + disks.at(mountpoint).dev.filename().string() + "/stat";
										else
											disks.at(mountpoint).stat = "/sys/block/" + devname + "/stat";
										break;
									//? Set ZFS stat filepath
									} else if (fstype == "zfs") {
										disks.at(mountpoint).stat = get_zfs_stat_file(dev, zfs_dataset_name_start, zfs_hide_datasets);
										if (disks.at(mountpoint).stat.empty()) {
											Logger::debug("Failed to get ZFS stat file for device " + dev);
										}
										break;
									}
									devname.resize(devname.size() - 1);
									c++;
								}
							}

							//? If zfs_hide_datasets option was switched, refresh stat filepath
							if (fstype == "zfs" && ((zfs_hide_datasets && !is_directory(disks.at(mountpoint).stat))
								|| (!zfs_hide_datasets && is_directory(disks.at(mountpoint).stat)))) {
								disks.at(mountpoint).stat = get_zfs_stat_file(dev, zfs_dataset_name_start, zfs_hide_datasets);
								if (disks.at(mountpoint).stat.empty()) {
									Logger::debug("Failed to get ZFS stat file for device " + dev);
								}
							}
						}
					}

					//? Remove disks no longer mounted or filtered out
					if (swap_disk and has_swap) found.push_back("swap");
					for (auto it = disks.begin(); it != disks.end();) {
						if (not v_contains(found, it->first))
							it = disks.erase(it);
						else
							it++;
					}
					if (found.size() != last_found.size()) redraw = true;
					last_found = std::move(found);
				}
				else
					throw std::runtime_error("Failed to get mounts from /etc/mtab and /proc/self/mounts");
				diskread.close();

				//? Get disk/partition stats
				for (auto it = disks.begin(); it != disks.end(); ) {
					auto &[mountpoint, disk] = *it;
					if (v_contains(ignore_list, mountpoint) or disk.name == "swap") {
						it = disks.erase(it);
						continue;
					}
					if(auto promises_it = disks_stats_promises.find(mountpoint); promises_it != disks_stats_promises.end()){
						auto& promise = promises_it->second;
						if(promise.valid() &&
						   promise.wait_for(0s) == std::future_status::timeout) {
							++it;
							continue;
						}
						auto promise_res = promises_it->second.get();
						if(promise_res.second != -1){
							ignore_list.push_back(mountpoint);
							Logger::warning("Failed to get disk/partition stats for mount \""+ mountpoint + "\" with statvfs error code: " + to_string(promise_res.second) + ". Ignoring...");
							it = disks.erase(it);
							continue;
						}
						auto &updated_stats = promise_res.first;
						disk.total = updated_stats.total;
						disk.free = updated_stats.free;
						disk.used = updated_stats.used;
						disk.used_percent = updated_stats.used_percent;
						disk.free_percent = updated_stats.free_percent;
					}
					disks_stats_promises[mountpoint] = async(std::launch::async, [mountpoint, &free_priv]() -> pair<disk_info, int> {
						struct statvfs vfs;
						disk_info disk;
						if (statvfs(mountpoint.c_str(), &vfs) < 0) {
							return pair{disk, errno};
						}
						disk.total = vfs.f_blocks * vfs.f_frsize;
						disk.free = (free_priv ? vfs.f_bfree : vfs.f_bavail) * vfs.f_frsize;
						disk.used = disk.total - disk.free;
						disk.used_percent = round((double)disk.used * 100 / disk.total);
						disk.free_percent = 100 - disk.used_percent;
						return pair{disk, -1};
					});
					++it;
				}

				//? Setup disks order in UI and add swap if enabled
				mem.disks_order.clear();
				#ifdef SNAPPED
					if (disks.contains("/mnt")) mem.disks_order.push_back("/mnt");
				#else
					if (disks.contains("/")) mem.disks_order.push_back("/");
				#endif
				if (swap_disk and has_swap) {
					mem.disks_order.push_back("swap");
					if (not disks.contains("swap")) disks["swap"] = {"", "swap", "swap"};
					disks.at("swap").total = mem.stats.at("swap_total");
					disks.at("swap").used = mem.stats.at("swap_used");
					disks.at("swap").free = mem.stats.at("swap_free");
					disks.at("swap").used_percent = mem.percent.at("swap_used").back();
					disks.at("swap").free_percent = mem.percent.at("swap_free").back();
				}
				for (const auto& name : last_found)
					#ifdef SNAPPED
						if (not is_in(name, "/mnt", "swap")) mem.disks_order.push_back(name);
					#else
						if (not is_in(name, "/", "swap")) mem.disks_order.push_back(name);
					#endif

				//? Get disks IO
				int64_t sectors_read, sectors_write, io_ticks, io_ticks_temp;
				disk_ios = 0;
				for (auto& [ignored, disk] : disks) {
					if (disk.stat.empty() or access(disk.stat.c_str(), R_OK) != 0) continue;
					if (disk.fstype == "zfs" && zfs_hide_datasets && zfs_collect_pool_total_stats(disk)) {
						disk_ios++;
						continue;
					}
					diskread.open(disk.stat);
					if (diskread.good()) {
						disk_ios++;
						//? ZFS Pool Support
						if (disk.fstype == "zfs") {
							// skip first three lines
							for (int i = 0; i < 3; i++) diskread.ignore(numeric_limits<streamsize>::max(), '\n');
							// skip characters until '4' is reached, indicating data type 4, next value will be out target
							diskread.ignore(numeric_limits<streamsize>::max(), '4');
							diskread >> io_ticks;

							// skip characters until '4' is reached, indicating data type 4, next value will be out target
							diskread.ignore(numeric_limits<streamsize>::max(), '4');
							diskread >> sectors_write; // nbytes written
							if (disk.io_write.empty())
								disk.io_write.push_back(0);
							else
								disk.io_write.push_back(max((int64_t)0, (sectors_write - disk.old_io.at(1))));
							disk.old_io.at(1) = sectors_write;
							while (cmp_greater(disk.io_write.size(), width * 2)) disk.io_write.pop_front();

							// skip characters until '4' is reached, indicating data type 4, next value will be out target
							diskread.ignore(numeric_limits<streamsize>::max(), '4');
							diskread >> io_ticks_temp;
							io_ticks += io_ticks_temp;

							// skip characters until '4' is reached, indicating data type 4, next value will be out target
							diskread.ignore(numeric_limits<streamsize>::max(), '4');
							diskread >> sectors_read; // nbytes read
							if (disk.io_read.empty())
								disk.io_read.push_back(0);
							else
								disk.io_read.push_back(max((int64_t)0, (sectors_read - disk.old_io.at(0))));
							disk.old_io.at(0) = sectors_read;
							while (cmp_greater(disk.io_read.size(), width * 2)) disk.io_read.pop_front();

							if (disk.io_activity.empty())
								disk.io_activity.push_back(0);
							else
								disk.io_activity.push_back(max((int64_t)0, (io_ticks - disk.old_io.at(2))));
							disk.old_io.at(2) = io_ticks;
							while (cmp_greater(disk.io_activity.size(), width * 2)) disk.io_activity.pop_front();
						} else {
							for (int i = 0; i < 2; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); }
							diskread >> sectors_read;
							if (disk.io_read.empty())
								disk.io_read.push_back(0);
							else
								disk.io_read.push_back(max((int64_t)0, (sectors_read - disk.old_io.at(0)) * 512));
							disk.old_io.at(0) = sectors_read;
							while (cmp_greater(disk.io_read.size(), width * 2)) disk.io_read.pop_front();

							for (int i = 0; i < 3; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); }
							diskread >> sectors_write;
							if (disk.io_write.empty())
								disk.io_write.push_back(0);
							else
								disk.io_write.push_back(max((int64_t)0, (sectors_write - disk.old_io.at(1)) * 512));
							disk.old_io.at(1) = sectors_write;
							while (cmp_greater(disk.io_write.size(), width * 2)) disk.io_write.pop_front();

							for (int i = 0; i < 2; i++) { diskread >> std::ws; diskread.ignore(SSmax, ' '); }
							diskread >> io_ticks;
							if (disk.io_activity.empty())
								disk.io_activity.push_back(0);
							else
								disk.io_activity.push_back(clamp((long)round((double)(io_ticks - disk.old_io.at(2)) / (uptime - old_uptime) / 10), 0l, 100l));
							disk.old_io.at(2) = io_ticks;
							while (cmp_greater(disk.io_activity.size(), width * 2)) disk.io_activity.pop_front();
						}
					} else {
						Logger::debug("Error in Mem::collect() : when opening " + string{disk.stat});
					}
					diskread.close();
				}
				old_uptime = uptime;
			}
			catch (const std::exception& e) {
				Logger::warning("Error in Mem::collect() : " + string{e.what()});
			}
		}

		return mem;
	}

	fs::path get_zfs_stat_file(const string& device_name, size_t dataset_name_start, bool zfs_hide_datasets) {
		fs::path zfs_pool_stat_path;
		if (zfs_hide_datasets) {
			zfs_pool_stat_path = Shared::procPath / "spl/kstat/zfs" / device_name;
			if (access(zfs_pool_stat_path.c_str(), R_OK) == 0) {
				return zfs_pool_stat_path;
			} else {
				Logger::debug("Cant access folder: " + zfs_pool_stat_path.string());
				return "";
			}
		}

		ifstream filestream;
		string filename;
		string name_compare;

		if (dataset_name_start != std::string::npos) { // device is a dataset
			zfs_pool_stat_path = Shared::procPath / "spl/kstat/zfs" / device_name.substr(0, dataset_name_start);
		} else { // device is a pool
			zfs_pool_stat_path = Shared::procPath / "spl/kstat/zfs" / device_name;
		}

		// looking through all files that start with 'objset' to find the one containing `device_name` object stats
		try {
			for (const auto& file: fs::directory_iterator(zfs_pool_stat_path)) {
				filename = file.path().filename();
				if (filename.starts_with("objset")) {
					filestream.open(file.path());
					if (filestream.good()) {
						// skip first two lines
						for (int i = 0; i < 2; i++) filestream.ignore(numeric_limits<streamsize>::max(), '\n');
						// skip characters until '7' is reached, indicating data type 7, next value will be object name
						filestream.ignore(numeric_limits<streamsize>::max(), '7');
						filestream >> name_compare;
						if (name_compare == device_name) {
							filestream.close();
							if (access(file.path().c_str(), R_OK) == 0) {
								return file.path();
							} else {
								Logger::debug("Can't access file: " + file.path().string());
								return "";
							}
						}
					}
					filestream.close();
				}
			}
		}
		catch (fs::filesystem_error& e) {}

		Logger::debug("Could not read directory: " + zfs_pool_stat_path.string());
		return "";
	}

	bool zfs_collect_pool_total_stats(struct disk_info &disk) {
		ifstream diskread;

		int64_t bytes_read;
		int64_t bytes_write;
		int64_t io_ticks;
		int64_t bytes_read_total{};
		int64_t bytes_write_total{};
		int64_t io_ticks_total{};
		int64_t objects_read{};

		// looking through all files that start with 'objset'
		for (const auto& file: fs::directory_iterator(disk.stat)) {
			if ((file.path().filename()).string().starts_with("objset")) {
				diskread.open(file.path());
				if (diskread.good()) {
					try {
						// skip first three lines
						for (int i = 0; i < 3; i++) diskread.ignore(numeric_limits<streamsize>::max(), '\n');
						// skip characters until '4' is reached, indicating data type 4, next value will be out target
						diskread.ignore(numeric_limits<streamsize>::max(), '4');
						diskread >> io_ticks;
						io_ticks_total += io_ticks;

						// skip characters until '4' is reached, indicating data type 4, next value will be out target
						diskread.ignore(numeric_limits<streamsize>::max(), '4');
						diskread >> bytes_write;
						bytes_write_total += bytes_write;

						// skip characters until '4' is reached, indicating data type 4, next value will be out target
						diskread.ignore(numeric_limits<streamsize>::max(), '4');
						diskread >> io_ticks;
						io_ticks_total += io_ticks;

						// skip characters until '4' is reached, indicating data type 4, next value will be out target
						diskread.ignore(numeric_limits<streamsize>::max(), '4');
						diskread >> bytes_read;
						bytes_read_total += bytes_read;
					} catch (const std::exception& e) {
						continue;
					}

					// increment read objects counter if no errors were encountered
					objects_read++;
				} else {
					Logger::debug("Could not read file: " + file.path().string());
				}
				diskread.close();
			}
		}

		// if for some reason no objects were read
		if (objects_read == 0) return false;

		if (disk.io_write.empty())
			disk.io_write.push_back(0);
		else
			disk.io_write.push_back(max((int64_t)0, (bytes_write_total - disk.old_io.at(1))));
		disk.old_io.at(1) = bytes_write_total;
		while (cmp_greater(disk.io_write.size(), width * 2)) disk.io_write.pop_front();

		if (disk.io_read.empty())
			disk.io_read.push_back(0);
		else
			disk.io_read.push_back(max((int64_t)0, (bytes_read_total - disk.old_io.at(0))));
		disk.old_io.at(0) = bytes_read_total;
		while (cmp_greater(disk.io_read.size(), width * 2)) disk.io_read.pop_front();

		if (disk.io_activity.empty())
			disk.io_activity.push_back(0);
		else
			disk.io_activity.push_back(max((int64_t)0, (io_ticks_total - disk.old_io.at(2))));
		disk.old_io.at(2) = io_ticks_total;
		while (cmp_greater(disk.io_activity.size(), width * 2)) disk.io_activity.pop_front();

		return true;
	}

}

namespace Net {
	std::unordered_map<string, net_info> current_net;
	net_info empty_net = {};
	vector<string> interfaces;
	string selected_iface;
	int errors{};
	std::unordered_map<string, uint64_t> graph_max = { {"download", {}}, {"upload", {}} };
	std::unordered_map<string, array<int, 2>> max_count = { {"download", {}}, {"upload", {}} };
	bool rescale{true};
	uint64_t timestamp{};

	//* RAII wrapper for getifaddrs
	class getifaddr_wrapper {
		struct ifaddrs* ifaddr;
	public:
		int status;
		getifaddr_wrapper() { status = getifaddrs(&ifaddr); }
		~getifaddr_wrapper() { freeifaddrs(ifaddr); }
		auto operator()() -> struct ifaddrs* { return ifaddr; }
	};

	auto collect(bool no_update) -> net_info& {
		if (Runner::stopping) return empty_net;
		auto& net = current_net;
		auto& config_iface = Config::getS("net_iface");
		auto net_sync = Config::getB("net_sync");
		auto net_auto = Config::getB("net_auto");
		auto new_timestamp = time_ms();

		if (not no_update and errors < 3) {
			//? Get interface list using getifaddrs() wrapper
			getifaddr_wrapper if_wrap {};
			if (if_wrap.status != 0) {
				errors++;
				Logger::error("Net::collect() -> getifaddrs() failed with id " + to_string(if_wrap.status));
				redraw = true;
				return empty_net;
			}
			int family = 0;
			static_assert(INET6_ADDRSTRLEN >= INET_ADDRSTRLEN); // 46 >= 16, compile-time assurance.
			enum { IPBUFFER_MAXSIZE = INET6_ADDRSTRLEN }; // manually using the known biggest value, guarded by the above static_assert
			char ip[IPBUFFER_MAXSIZE];
			interfaces.clear();
			string ipv4, ipv6;

			//? Iteration over all items in getifaddrs() list
			for (auto* ifa = if_wrap(); ifa != nullptr; ifa = ifa->ifa_next) {
				if (ifa->ifa_addr == nullptr) continue;
				family = ifa->ifa_addr->sa_family;
				const auto& iface = ifa->ifa_name;

				//? Update available interfaces vector and get status of interface
				if (not v_contains(interfaces, iface)) {
					interfaces.push_back(iface);
					net[iface].connected = (ifa->ifa_flags & IFF_RUNNING);

					// An interface can have more than one IP of the same family associated with it,
					// but we pick only the first one to show in the NET box.
					// Note: Interfaces without any IPv4 and IPv6 set are still valid and monitorable!
					net[iface].ipv4.clear();
					net[iface].ipv6.clear();
				}


				//? Get IPv4 address
				if (family == AF_INET) {
					if (net[iface].ipv4.empty()) {
						if (nullptr != inet_ntop(family, &(reinterpret_cast<struct sockaddr_in*>(ifa->ifa_addr)->sin_addr), ip, IPBUFFER_MAXSIZE)) {
							net[iface].ipv4 = ip;
						} else {
							int errsv = errno;
							Logger::error("Net::collect() -> Failed to convert IPv4 to string for iface " + string(iface) + ", errno: " + strerror(errsv));
						}
					}
				}
				//? Get IPv6 address
				else if (family == AF_INET6) {
					if (net[iface].ipv6.empty()) {
						if (nullptr != inet_ntop(family, &(reinterpret_cast<struct sockaddr_in6*>(ifa->ifa_addr)->sin6_addr), ip, IPBUFFER_MAXSIZE)) {
							net[iface].ipv6 = ip;
						} else {
							int errsv = errno;
							Logger::error("Net::collect() -> Failed to convert IPv6 to string for iface " + string(iface) + ", errno: " + strerror(errsv));
						}
					}
				} //else, ignoring family==AF_PACKET (see man 3 getifaddrs) which is the first one in the `for` loop.
			}

			//? Get total recieved and transmitted bytes + device address if no ip was found
			for (const auto& iface : interfaces) {
				if (net.at(iface).ipv4.empty() and net.at(iface).ipv6.empty())
					net.at(iface).ipv4 = readfile("/sys/class/net/" + iface + "/address");

				for (const string dir : {"download", "upload"}) {
					const fs::path sys_file = "/sys/class/net/" + iface + "/statistics/" + (dir == "download" ? "rx_bytes" : "tx_bytes");
					auto& saved_stat = net.at(iface).stat.at(dir);
					auto& bandwidth = net.at(iface).bandwidth.at(dir);

					uint64_t val{};
					try { val = (uint64_t)stoull(readfile(sys_file, "0")); }
					catch (const std::invalid_argument&) {}
					catch (const std::out_of_range&) {}

					//? Update speed, total and top values
					if (val < saved_stat.last) {
						saved_stat.rollover += saved_stat.last;
						saved_stat.last = 0;
					}
					if (cmp_greater((unsigned long long)saved_stat.rollover + (unsigned long long)val, numeric_limits<uint64_t>::max())) {
						saved_stat.rollover = 0;
						saved_stat.last = 0;
					}
					saved_stat.speed = round((double)(val - saved_stat.last) / ((double)(new_timestamp - timestamp) / 1000));
					if (saved_stat.speed > saved_stat.top) saved_stat.top = saved_stat.speed;
					if (saved_stat.offset > val + saved_stat.rollover) saved_stat.offset = 0;
					saved_stat.total = (val + saved_stat.rollover) - saved_stat.offset;
					saved_stat.last = val;

					//? Add values to graph
					bandwidth.push_back(saved_stat.speed);
					while (cmp_greater(bandwidth.size(), width * 2)) bandwidth.pop_front();

					//? Set counters for auto scaling
					if (net_auto and selected_iface == iface) {
						if (net_sync and saved_stat.speed < net.at(iface).stat.at(dir == "download" ? "upload" : "download").speed) continue;
						if (saved_stat.speed > graph_max[dir]) {
							++max_count[dir][0];
							if (max_count[dir][1] > 0) --max_count[dir][1];
						}
						else if (graph_max[dir] > 10 << 10 and saved_stat.speed < graph_max[dir] / 10) {
							++max_count[dir][1];
							if (max_count[dir][0] > 0) --max_count[dir][0];
						}

					}
				}
			}

			//? Clean up net map if needed
			if (net.size() > interfaces.size()) {
				for (auto it = net.begin(); it != net.end();) {
					if (not v_contains(interfaces, it->first))
						it = net.erase(it);
					else
						it++;
				}
			}

			timestamp = new_timestamp;
		}

		//? Return empty net_info struct if no interfaces was found
		if (net.empty())
			return empty_net;

		//? Find an interface to display if selected isn't set or valid
		if (selected_iface.empty() or not v_contains(interfaces, selected_iface)) {
			max_count["download"][0] = max_count["download"][1] = max_count["upload"][0] = max_count["upload"][1] = 0;
			redraw = true;
			if (net_auto) rescale = true;
			if (not config_iface.empty() and v_contains(interfaces, config_iface)) selected_iface = config_iface;
			else {
				//? Sort interfaces by total upload + download bytes
				auto sorted_interfaces = interfaces;
				rng::sort(sorted_interfaces, [&](const auto& a, const auto& b){
					return 	cmp_greater(net.at(a).stat["download"].total + net.at(a).stat["upload"].total,
										net.at(b).stat["download"].total + net.at(b).stat["upload"].total);
				});
				selected_iface.clear();
				//? Try to set to a connected interface
				for (const auto& iface : sorted_interfaces) {
					if (net.at(iface).connected) selected_iface = iface;
					break;
				}
				//? If no interface is connected set to first available
				if (selected_iface.empty() and not sorted_interfaces.empty()) selected_iface = sorted_interfaces.at(0);
				else if (sorted_interfaces.empty()) return empty_net;

			}
		}

		//? Calculate max scale for graphs if needed
		if (net_auto) {
			bool sync = false;
			for (const auto& dir: {"download", "upload"}) {
				for (const auto& sel : {0, 1}) {
					if (rescale or max_count[dir][sel] >= 5) {
						const long long avg_speed = (net[selected_iface].bandwidth[dir].size() > 5
							? std::accumulate(net.at(selected_iface).bandwidth.at(dir).rbegin(), net.at(selected_iface).bandwidth.at(dir).rbegin() + 5, 0ll) / 5
							: net[selected_iface].stat[dir].speed);
						graph_max[dir] = max(uint64_t(avg_speed * (sel == 0 ? 1.3 : 3.0)), (uint64_t)10 << 10);
						max_count[dir][0] = max_count[dir][1] = 0;
						redraw = true;
						if (net_sync) sync = true;
						break;
					}
				}
				//? Sync download/upload graphs if enabled
				if (sync) {
					const auto other = (string(dir) == "upload" ? "download" : "upload");
					graph_max[other] = graph_max[dir];
					max_count[other][0] = max_count[other][1] = 0;
					break;
				}
			}
		}

		rescale = false;
		return net.at(selected_iface);
	}
}

namespace Proc {

	vector<proc_info> current_procs;
	std::unordered_map<string, string> uid_user;
	string current_sort;
	string current_filter;
	bool current_rev{};

	fs::file_time_type passwd_time;

	uint64_t cputimes;
	int collapse = -1, expand = -1;
	uint64_t old_cputimes{};
	atomic<int> numpids{};
	int filter_found{};

	detail_container detailed;
	constexpr size_t KTHREADD = 2;
	static std::unordered_set<size_t> kernels_procs = {KTHREADD};

	//* Get detailed info for selected process
	void _collect_details(const size_t pid, const uint64_t uptime, vector<proc_info>& procs) {
		fs::path pid_path = Shared::procPath / std::to_string(pid);

		if (pid != detailed.last_pid) {
			detailed = {};
			detailed.last_pid = pid;
			detailed.skip_smaps = not Config::getB("proc_info_smaps");
		}

		//? Copy proc_info for process from proc vector
		auto p_info = rng::find(procs, pid, &proc_info::pid);
		detailed.entry = *p_info;

		//? Update cpu percent deque for process cpu graph
		if (not Config::getB("proc_per_core")) detailed.entry.cpu_p *= Shared::coreCount;
		detailed.cpu_percent.push_back(clamp((long long)round(detailed.entry.cpu_p), 0ll, 100ll));
		while (cmp_greater(detailed.cpu_percent.size(), width)) detailed.cpu_percent.pop_front();

		//? Process runtime
		detailed.elapsed = sec_to_dhms(uptime - (detailed.entry.cpu_s / Shared::clkTck));
		if (detailed.elapsed.size() > 8) detailed.elapsed.resize(detailed.elapsed.size() - 3);

		//? Get parent process name
		if (detailed.parent.empty()) {
			auto p_entry = rng::find(procs, detailed.entry.ppid, &proc_info::pid);
			if (p_entry != procs.end()) detailed.parent = p_entry->name;
		}

		//? Expand process status from single char to explanative string
		detailed.status = (proc_states.contains(detailed.entry.state)) ? proc_states.at(detailed.entry.state) : "Unknown";

		ifstream d_read;
		string short_str;

		//? Try to get RSS mem from proc/[pid]/smaps
		detailed.memory.clear();
		if (not detailed.skip_smaps and fs::exists(pid_path / "smaps")) {
			d_read.open(pid_path / "smaps");
			uint64_t rss = 0;
			try {
				while (d_read.good()) {
					d_read.ignore(SSmax, 'R');
					if (d_read.peek() == 's') {
						d_read.ignore(SSmax, ':');
						getline(d_read, short_str, 'k');
						rss += stoull(short_str);
					}
				}
				if (rss == detailed.entry.mem >> 10)
					detailed.skip_smaps = true;
				else {
					detailed.mem_bytes.push_back(rss << 10);
					detailed.memory = floating_humanizer(rss, false, 1);
				}
			}
			catch (const std::invalid_argument&) {}
			catch (const std::out_of_range&) {}
			d_read.close();
		}
		if (detailed.memory.empty()) {
			detailed.mem_bytes.push_back(detailed.entry.mem);
			detailed.memory = floating_humanizer(detailed.entry.mem);
		}
		if (detailed.first_mem == -1 or detailed.first_mem < detailed.mem_bytes.back() / 2 or detailed.first_mem > detailed.mem_bytes.back() * 4) {
			detailed.first_mem = min((uint64_t)detailed.mem_bytes.back() * 2, Mem::get_totalMem());
			redraw = true;
		}

		while (cmp_greater(detailed.mem_bytes.size(), width)) detailed.mem_bytes.pop_front();

		//? Get bytes read and written from proc/[pid]/io
		if (fs::exists(pid_path / "io")) {
			d_read.open(pid_path / "io");
			try {
				string name;
				while (d_read.good()) {
					getline(d_read, name, ':');
					if (name.ends_with("read_bytes")) {
						getline(d_read, short_str);
						detailed.io_read = floating_humanizer(stoull(short_str));
					}
					else if (name.ends_with("write_bytes")) {
						getline(d_read, short_str);
						detailed.io_write = floating_humanizer(stoull(short_str));
						break;
					}
					else
						d_read.ignore(SSmax, '\n');
				}
			}
			catch (const std::invalid_argument&) {}
			catch (const std::out_of_range&) {}
			d_read.close();
		}
	}

	//* Collects and sorts process information from /proc
	auto collect(bool no_update) -> vector<proc_info>& {
		if (Runner::stopping) return current_procs;
		const auto& sorting = Config::getS("proc_sorting");
		auto reverse = Config::getB("proc_reversed");
		const auto& filter = Config::getS("proc_filter");
		auto per_core = Config::getB("proc_per_core");
		auto should_filter_kernel = Config::getB("proc_filter_kernel");
		auto tree = Config::getB("proc_tree");
		auto show_detailed = Config::getB("show_detailed");
		const size_t detailed_pid = Config::getI("detailed_pid");
		bool should_filter = current_filter != filter;
		if (should_filter) current_filter = filter;
		bool sorted_change = (sorting != current_sort or reverse != current_rev or should_filter);
		if (sorted_change) {
			current_sort = sorting;
			current_rev = reverse;
		}
		ifstream pread;
		string long_string;
		string short_str;

		static vector<size_t> found;

		const double uptime = system_uptime();

		const int cmult = (per_core) ? Shared::coreCount : 1;
		bool got_detailed = false;

		static size_t proc_clear_count{};

		//* Use pids from last update if only changing filter, sorting or tree options
		if (no_update and not current_procs.empty()) {
			if (show_detailed and detailed_pid != detailed.last_pid) _collect_details(detailed_pid, round(uptime), current_procs);
		}
		//* ---------------------------------------------Collection start----------------------------------------------
		else {
			should_filter = true;
			found.clear();

			//? First make sure kernel proc cache is cleared.
			if (should_filter_kernel and ++proc_clear_count >= 256) {
				//? Clearing the cache is used in the event of a pid wrap around.
				//? In that event processes that acquire old kernel pids would also be filtered out so we need to manually clean the cache every now and then.
				kernels_procs.clear();
				kernels_procs.emplace(KTHREADD);
				proc_clear_count = 0;
			}

			auto totalMem = Mem::get_totalMem();
			int totalMem_len = to_string(totalMem >> 10).size();

			//? Update uid_user map if /etc/passwd changed since last run
			if (not Shared::passwd_path.empty() and fs::last_write_time(Shared::passwd_path) != passwd_time) {
				string r_uid, r_user;
				passwd_time = fs::last_write_time(Shared::passwd_path);
				uid_user.clear();
				pread.open(Shared::passwd_path);
				if (pread.good()) {
					while (pread.good()) {
						getline(pread, r_user, ':');
						pread.ignore(SSmax, ':');
						getline(pread, r_uid, ':');
						if (uid_user.contains(r_uid)) break;
						uid_user[r_uid] = r_user;
						pread.ignore(SSmax, '\n');
					}
				}
				else {
					Shared::passwd_path.clear();
				}
				pread.close();
			}

			//? Get cpu total times from /proc/stat
			cputimes = 0;
			pread.open(Shared::procPath / "stat");
			if (pread.good()) {
				pread.ignore(SSmax, ' ');
				for (uint64_t times; pread >> times; cputimes += times);
			}
			else throw std::runtime_error("Failure to read /proc/stat");
			pread.close();

			//? Iterate over all pids in /proc
			for (const auto& d: fs::directory_iterator(Shared::procPath)) {
				if (Runner::stopping)
					return current_procs;

				if (pread.is_open()) pread.close();

				const string pid_str = d.path().filename();
				if (not isdigit(pid_str[0])) continue;

				const size_t pid = stoul(pid_str);

				if (should_filter_kernel and kernels_procs.contains(pid)) {
					continue;
				}

				found.push_back(pid);

				//? Check if pid already exists in current_procs
				auto find_old = rng::find(current_procs, pid, &proc_info::pid);
				bool no_cache{};
				if (find_old == current_procs.end()) {
					current_procs.push_back({pid});
					find_old = current_procs.end() - 1;
					no_cache = true;
				}

				auto& new_proc = *find_old;

				//? Get program name, command and username
				if (no_cache) {
					pread.open(d.path() / "comm");
					if (not pread.good()) continue;
					getline(pread, new_proc.name);
					pread.close();
					//? Check for whitespace characters in name and set offset to get correct fields from stat file
					new_proc.name_offset = rng::count(new_proc.name, ' ');

					pread.open(d.path() / "cmdline");
					if (not pread.good()) continue;
					long_string.clear();
					while(getline(pread, long_string, '\0')) {
						new_proc.cmd += long_string + ' ';
						if (new_proc.cmd.size() > 1000) {
							new_proc.cmd.resize(1000);
							break;
						}
					}
					pread.close();
					if (not new_proc.cmd.empty()) new_proc.cmd.pop_back();

					pread.open(d.path() / "status");
					if (not pread.good()) continue;
					string uid;
					string line;
					while (pread.good()) {
						getline(pread, line, ':');
						if (line == "Uid") {
							pread.ignore();
							getline(pread, uid, '\t');
							break;
						} else {
							pread.ignore(SSmax, '\n');
						}
					}
					pread.close();
					if (uid_user.contains(uid)) {
						new_proc.user = uid_user.at(uid);
					}
					else {
					#if !(defined(STATIC_BUILD) && defined(__GLIBC__))
						try {
							struct passwd* udet;
							udet = getpwuid(stoi(uid));
							if (udet != nullptr and udet->pw_name != nullptr) {
								new_proc.user = string(udet->pw_name);
							}
							else {
								new_proc.user = uid;
							}
						}
						catch (...) { new_proc.user = uid; }
					#else
						new_proc.user = uid;
					#endif
					}
				}

				//? Parse /proc/[pid]/stat
				pread.open(d.path() / "stat");
				if (not pread.good()) continue;

				const auto& offset = new_proc.name_offset;
				short_str.clear();
				int x = 0, next_x = 3;
				uint64_t cpu_t = 0;
				try {
					for (;;) {
						while (pread.good() and ++x < next_x + offset) pread.ignore(SSmax, ' ');
						if (not pread.good()) break;
						else getline(pread, short_str, ' ');

						switch (x-offset) {
							case 3: //? Process state
								new_proc.state = short_str.at(0);
								if (new_proc.ppid != 0) next_x = 14;
								continue;
							case 4: //? Parent pid
								new_proc.ppid = stoull(short_str);
								next_x = 14;
								continue;
							case 14: //? Process utime
								cpu_t = stoull(short_str);
								continue;
							case 15: //? Process stime
								cpu_t += stoull(short_str);
								next_x = 19;
								continue;
							case 19: //? Nice value
								new_proc.p_nice = stoll(short_str);
								continue;
							case 20: //? Number of threads
								new_proc.threads = stoull(short_str);
								if (new_proc.cpu_s == 0) {
									next_x = 22;
									new_proc.cpu_t = cpu_t;
								}
								else
									next_x = 24;
								continue;
							case 22: //? Get cpu seconds if missing
								new_proc.cpu_s = stoull(short_str);
								next_x = 24;
								continue;
							case 24: //? RSS memory (can be inaccurate, but parsing smaps increases total cpu usage by ~20x)
								if (cmp_greater(short_str.size(), totalMem_len))
									new_proc.mem = totalMem;
								else
									new_proc.mem = stoull(short_str) * Shared::pageSize;
						}
						break;
					}

				}
				catch (const std::invalid_argument&) { continue; }
				catch (const std::out_of_range&) { continue; }

				pread.close();

				if (should_filter_kernel and new_proc.ppid == KTHREADD) {
					kernels_procs.emplace(new_proc.pid);
					found.pop_back();
				}

				if (x-offset < 24) continue;

				//? Get RSS memory from /proc/[pid]/statm if value from /proc/[pid]/stat looks wrong
				if (new_proc.mem >= totalMem) {
					pread.open(d.path() / "statm");
					if (not pread.good()) continue;
					pread.ignore(SSmax, ' ');
					pread >> new_proc.mem;
					new_proc.mem *= Shared::pageSize;
					pread.close();
				}

				//? Process cpu usage since last update
				new_proc.cpu_p = clamp(round(cmult * 1000 * (cpu_t - new_proc.cpu_t) / max((uint64_t)1, cputimes - old_cputimes)) / 10.0, 0.0, 100.0 * Shared::coreCount);

				//? Process cumulative cpu usage since process start
				new_proc.cpu_c = (double)cpu_t / max(1.0, (uptime * Shared::clkTck) - new_proc.cpu_s);

				//? Update cached value with latest cpu times
				new_proc.cpu_t = cpu_t;

				if (show_detailed and not got_detailed and new_proc.pid == detailed_pid) {
					got_detailed = true;
				}
			}

			//? Clear dead processes from current_procs and remove kernel processes if enabled
			auto eraser = rng::remove_if(current_procs, [&](const auto& element){ return not v_contains(found, element.pid); });
			current_procs.erase(eraser.begin(), eraser.end());

			//? Update the details info box for process if active
			if (show_detailed and got_detailed) {
				_collect_details(detailed_pid, round(uptime), current_procs);
			}
			else if (show_detailed and not got_detailed and detailed.status != "Dead") {
				detailed.status = "Dead";
				redraw = true;
			}

			old_cputimes = cputimes;
		}
		//* ---------------------------------------------Collection done-----------------------------------------------

		//* Match filter if defined
		if (should_filter) {
			filter_found = 0;
			for (auto& p : current_procs) {
				if (not tree and not filter.empty()) {
						if (not s_contains_ic(to_string(p.pid), filter)
						and not s_contains_ic(p.name, filter)
						and not s_contains_ic(p.cmd, filter)
						and not s_contains_ic(p.user, filter)) {
							p.filtered = true;
							filter_found++;
							}
						else {
							p.filtered = false;
						}
					}
				else {
					p.filtered = false;
				}
			}
		}

		//* Sort processes
		if (sorted_change or not no_update) {
			proc_sorter(current_procs, sorting, reverse, tree);
		}

		//* Generate tree view if enabled
		if (tree and (not no_update or should_filter or sorted_change)) {
			bool locate_selection = false;
			if (auto find_pid = (collapse != -1 ? collapse : expand); find_pid != -1) {
				auto collapser = rng::find(current_procs, find_pid, &proc_info::pid);
				if (collapser != current_procs.end()) {
					if (collapse == expand) {
						collapser->collapsed = not collapser->collapsed;
					}
					else if (collapse > -1) {
						collapser->collapsed = true;
					}
					else if (expand > -1) {
						collapser->collapsed = false;
					}
					if (Config::ints.at("proc_selected") > 0) locate_selection = true;
				}
				collapse = expand = -1;
			}
			if (should_filter or not filter.empty()) filter_found = 0;

			vector<tree_proc> tree_procs;
			tree_procs.reserve(current_procs.size());

			for (auto& p : current_procs) {
				if (not v_contains(found, p.ppid)) p.ppid = 0;
			}

			//? Stable sort to retain selected sorting among processes with the same parent
			rng::stable_sort(current_procs, rng::less{}, & proc_info::ppid);

			//? Start recursive iteration over processes with the lowest shared parent pids
			for (auto& p : rng::equal_range(current_procs, current_procs.at(0).ppid, rng::less{}, &proc_info::ppid)) {
				_tree_gen(p, current_procs, tree_procs, 0, false, filter, false, no_update, should_filter);
			}

			//? Recursive sort over tree structure to account for collapsed processes in the tree
			int index = 0;
			tree_sort(tree_procs, sorting, reverse, index, current_procs.size());

			//? Add tree begin symbol to first item if childless
			if (tree_procs.size() > 0 and tree_procs.front().children.empty() and tree_procs.front().entry.get().prefix.size() >= 8)
				tree_procs.front().entry.get().prefix.replace(tree_procs.front().entry.get().prefix.size() - 8, 8, " ┌─ ");

			//? Add tree terminator symbol to last item if childless
			if (tree_procs.size() > 0 and tree_procs.back().children.empty() and tree_procs.back().entry.get().prefix.size() >= 8)
				tree_procs.back().entry.get().prefix.replace(tree_procs.back().entry.get().prefix.size() - 8, 8, " └─ ");

			//? Final sort based on tree index
			rng::sort(current_procs, rng::less{}, & proc_info::tree_index);

			//? Move current selection/view to the selected process when collapsing/expanding in the tree
			if (locate_selection) {
				int loc = rng::find(current_procs, Proc::selected_pid, &proc_info::pid)->tree_index;
				if (Config::ints.at("proc_start") >= loc or Config::ints.at("proc_start") <= loc - Proc::select_max)
					Config::ints.at("proc_start") = max(0, loc - 1);
				Config::ints.at("proc_selected") = loc - Config::ints.at("proc_start") + 1;
			}
		}

		numpids = (int)current_procs.size() - filter_found;

		return current_procs;
	}
}

namespace Tools {
	double system_uptime() {
		string upstr;
		ifstream pread(Shared::procPath / "uptime");
		if (pread.good()) {
			try {
				getline(pread, upstr, ' ');
				pread.close();
				return stod(upstr);
			}
			catch (const std::invalid_argument&) {}
			catch (const std::out_of_range&) {}
		}
        throw std::runtime_error("Failed to get uptime from " + string{Shared::procPath} + "/uptime");
	}
}