/* $OpenBSD$ */ /* * Copyright (c) 2008 Nicholas Marriott * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "tmux.h" /* * Grid data. This is the basic data structure that represents what is shown on * screen. * * A grid is a grid of cells (struct grid_cell). Lines are not allocated until * cells in that line are written to. The grid is split into history and * viewable data with the history starting at row (line) 0 and extending to * (hsize - 1); from hsize to hsize + (sy - 1) is the viewable data. All * functions in this file work on absolute coordinates, grid-view.c has * functions which work on the screen data. */ /* Default grid cell data. */ const struct grid_cell grid_default_cell = { 0, 0, 8, 8, (1 << 4) | 1, " " }; #define grid_put_cell(gd, px, py, gc) do { \ memcpy(&gd->linedata[py].celldata[px], \ gc, sizeof gd->linedata[py].celldata[px]); \ } while (0) #define grid_put_utf8(gd, px, py, gc) do { \ memcpy(&gd->linedata[py].utf8data[px], \ gc, sizeof gd->linedata[py].utf8data[px]); \ } while (0) int grid_check_y(struct grid *, u_int); #ifdef DEBUG int grid_check_y(struct grid *gd, u_int py) { if ((py) >= (gd)->hsize + (gd)->sy) log_fatalx("y out of range: %u", py); return (0); } #else int grid_check_y(struct grid *gd, u_int py) { if ((py) >= (gd)->hsize + (gd)->sy) { log_debug("y out of range: %u", py); return (-1); } return (0); } #endif void grid_reflow_join(struct grid *, u_int *, struct grid_line *, u_int); void grid_reflow_split(struct grid *, u_int *, struct grid_line *, u_int, u_int); void grid_reflow_move(struct grid *, u_int *, struct grid_line *); size_t grid_string_cells_fg(const struct grid_cell *, int *); size_t grid_string_cells_bg(const struct grid_cell *, int *); void grid_string_cells_code(const struct grid_cell *, const struct grid_cell *, char *, size_t, int); /* Create a new grid. */ struct grid * grid_create(u_int sx, u_int sy, u_int hlimit) { struct grid *gd; gd = xmalloc(sizeof *gd); gd->sx = sx; gd->sy = sy; gd->flags = GRID_HISTORY; gd->hsize = 0; gd->hlimit = hlimit; gd->linedata = xcalloc(gd->sy, sizeof *gd->linedata); return (gd); } /* Destroy grid. */ void grid_destroy(struct grid *gd) { struct grid_line *gl; u_int yy; for (yy = 0; yy < gd->hsize + gd->sy; yy++) { gl = &gd->linedata[yy]; free(gl->celldata); } free(gd->linedata); free(gd); } /* Compare grids. */ int grid_compare(struct grid *ga, struct grid *gb) { struct grid_line *gla, *glb; struct grid_cell *gca, *gcb; u_int xx, yy; if (ga->sx != gb->sx || ga->sy != gb->sy) return (1); for (yy = 0; yy < ga->sy; yy++) { gla = &ga->linedata[yy]; glb = &gb->linedata[yy]; if (gla->cellsize != glb->cellsize) return (1); for (xx = 0; xx < ga->sx; xx++) { gca = &gla->celldata[xx]; gcb = &glb->celldata[xx]; if (memcmp(gca, gcb, sizeof (struct grid_cell)) != 0) return (1); } } return (0); } /* * Collect lines from the history if at the limit. Free the top (oldest) 10% * and shift up. */ void grid_collect_history(struct grid *gd) { u_int yy; if (gd->hsize < gd->hlimit) return; yy = gd->hlimit / 10; if (yy < 1) yy = 1; grid_move_lines(gd, 0, yy, gd->hsize + gd->sy - yy); gd->hsize -= yy; } /* * Scroll the entire visible screen, moving one line into the history. Just * allocate a new line at the bottom and move the history size indicator. */ void grid_scroll_history(struct grid *gd) { u_int yy; yy = gd->hsize + gd->sy; gd->linedata = xreallocarray(gd->linedata, yy + 1, sizeof *gd->linedata); memset(&gd->linedata[yy], 0, sizeof gd->linedata[yy]); gd->hsize++; } /* Scroll a region up, moving the top line into the history. */ void grid_scroll_history_region(struct grid *gd, u_int upper, u_int lower) { struct grid_line *gl_history, *gl_upper, *gl_lower; u_int yy; /* Create a space for a new line. */ yy = gd->hsize + gd->sy; gd->linedata = xreallocarray(gd->linedata, yy + 1, sizeof *gd->linedata); /* Move the entire screen down to free a space for this line. */ gl_history = &gd->linedata[gd->hsize]; memmove(gl_history + 1, gl_history, gd->sy * sizeof *gl_history); /* Adjust the region and find its start and end. */ upper++; gl_upper = &gd->linedata[upper]; lower++; gl_lower = &gd->linedata[lower]; /* Move the line into the history. */ memcpy(gl_history, gl_upper, sizeof *gl_history); /* Then move the region up and clear the bottom line. */ memmove(gl_upper, gl_upper + 1, (lower - upper) * sizeof *gl_upper); memset(gl_lower, 0, sizeof *gl_lower); /* Move the history offset down over the line. */ gd->hsize++; } /* Expand line to fit to cell. */ void grid_expand_line(struct grid *gd, u_int py, u_int sx) { struct grid_line *gl; u_int xx; gl = &gd->linedata[py]; if (sx <= gl->cellsize) return; gl->celldata = xreallocarray(gl->celldata, sx, sizeof *gl->celldata); for (xx = gl->cellsize; xx < sx; xx++) grid_put_cell(gd, xx, py, &grid_default_cell); gl->cellsize = sx; } /* Peek at grid line. */ const struct grid_line * grid_peek_line(struct grid *gd, u_int py) { if (grid_check_y(gd, py) != 0) return (NULL); return (&gd->linedata[py]); } /* Get cell for reading. */ const struct grid_cell * grid_peek_cell(struct grid *gd, u_int px, u_int py) { if (grid_check_y(gd, py) != 0) return (&grid_default_cell); if (px >= gd->linedata[py].cellsize) return (&grid_default_cell); return (&gd->linedata[py].celldata[px]); } /* Get cell at relative position (for writing). */ struct grid_cell * grid_get_cell(struct grid *gd, u_int px, u_int py) { if (grid_check_y(gd, py) != 0) return (NULL); grid_expand_line(gd, py, px + 1); return (&gd->linedata[py].celldata[px]); } /* Set cell at relative position. */ void grid_set_cell(struct grid *gd, u_int px, u_int py, const struct grid_cell *gc) { if (grid_check_y(gd, py) != 0) return; grid_expand_line(gd, py, px + 1); grid_put_cell(gd, px, py, gc); } /* Clear area. */ void grid_clear(struct grid *gd, u_int px, u_int py, u_int nx, u_int ny) { u_int xx, yy; if (nx == 0 || ny == 0) return; if (px == 0 && nx == gd->sx) { grid_clear_lines(gd, py, ny); return; } if (grid_check_y(gd, py) != 0) return; if (grid_check_y(gd, py + ny - 1) != 0) return; for (yy = py; yy < py + ny; yy++) { if (px >= gd->linedata[yy].cellsize) continue; if (px + nx >= gd->linedata[yy].cellsize) { gd->linedata[yy].cellsize = px; continue; } for (xx = px; xx < px + nx; xx++) { if (xx >= gd->linedata[yy].cellsize) break; grid_put_cell(gd, xx, yy, &grid_default_cell); } } } /* Clear lines. This just frees and truncates the lines. */ void grid_clear_lines(struct grid *gd, u_int py, u_int ny) { struct grid_line *gl; u_int yy; if (ny == 0) return; if (grid_check_y(gd, py) != 0) return; if (grid_check_y(gd, py + ny - 1) != 0) return; for (yy = py; yy < py + ny; yy++) { gl = &gd->linedata[yy]; free(gl->celldata); memset(gl, 0, sizeof *gl); } } /* Move a group of lines. */ void grid_move_lines(struct grid *gd, u_int dy, u_int py, u_int ny) { u_int yy; if (ny == 0 || py == dy) return; if (grid_check_y(gd, py) != 0) return; if (grid_check_y(gd, py + ny - 1) != 0) return; if (grid_check_y(gd, dy) != 0) return; if (grid_check_y(gd, dy + ny - 1) != 0) return; /* Free any lines which are being replaced. */ for (yy = dy; yy < dy + ny; yy++) { if (yy >= py && yy < py + ny) continue; grid_clear_lines(gd, yy, 1); } memmove( &gd->linedata[dy], &gd->linedata[py], ny * (sizeof *gd->linedata)); /* Wipe any lines that have been moved (without freeing them). */ for (yy = py; yy < py + ny; yy++) { if (yy >= dy && yy < dy + ny) continue; memset(&gd->linedata[yy], 0, sizeof gd->linedata[yy]); } } /* Move a group of cells. */ void grid_move_cells(struct grid *gd, u_int dx, u_int px, u_int py, u_int nx) { struct grid_line *gl; u_int xx; if (nx == 0 || px == dx) return; if (grid_check_y(gd, py) != 0) return; gl = &gd->linedata[py]; grid_expand_line(gd, py, px + nx); grid_expand_line(gd, py, dx + nx); memmove( &gl->celldata[dx], &gl->celldata[px], nx * sizeof *gl->celldata); /* Wipe any cells that have been moved. */ for (xx = px; xx < px + nx; xx++) { if (xx >= dx && xx < dx + nx) continue; grid_put_cell(gd, xx, py, &grid_default_cell); } } /* Get ANSI foreground sequence. */ size_t grid_string_cells_fg(const struct grid_cell *gc, int *values) { size_t n; n = 0; if (gc->flags & GRID_FLAG_FG256) { values[n++] = 38; values[n++] = 5; values[n++] = gc->fg; } else { switch (gc->fg) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: values[n++] = gc->fg + 30; break; case 8: values[n++] = 39; break; case 90: case 91: case 92: case 93: case 94: case 95: case 96: case 97: values[n++] = gc->fg; break; } } return (n); } /* Get ANSI background sequence. */ size_t grid_string_cells_bg(const struct grid_cell *gc, int *values) { size_t n; n = 0; if (gc->flags & GRID_FLAG_BG256) { values[n++] = 48; values[n++] = 5; values[n++] = gc->bg; } else { switch (gc->bg) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: values[n++] = gc->bg + 40; break; case 8: values[n++] = 49; break; case 100: case 101: case 102: case 103: case 104: case 105: case 106: case 107: values[n++] = gc->bg - 10; break; } } return (n); } /* * Returns ANSI code to set particular attributes (colour, bold and so on) * given a current state. The output buffer must be able to hold at least 57 * bytes. */ void grid_string_cells_code(const struct grid_cell *lastgc, const struct grid_cell *gc, char *buf, size_t len, int escape_c0) { int oldc[16], newc[16], s[32]; size_t noldc, nnewc, n, i; u_int attr = gc->attr; u_int lastattr = lastgc->attr; char tmp[64]; struct { u_int mask; u_int code; } attrs[] = { { GRID_ATTR_BRIGHT, 1 }, { GRID_ATTR_DIM, 2 }, { GRID_ATTR_ITALICS, 3 }, { GRID_ATTR_UNDERSCORE, 4 }, { GRID_ATTR_BLINK, 5 }, { GRID_ATTR_REVERSE, 7 }, { GRID_ATTR_HIDDEN, 8 } }; n = 0; /* If any attribute is removed, begin with 0. */ for (i = 0; i < nitems(attrs); i++) { if (!(attr & attrs[i].mask) && (lastattr & attrs[i].mask)) { s[n++] = 0; lastattr &= GRID_ATTR_CHARSET; break; } } /* For each attribute that is newly set, add its code. */ for (i = 0; i < nitems(attrs); i++) { if ((attr & attrs[i].mask) && !(lastattr & attrs[i].mask)) s[n++] = attrs[i].code; } /* If the foreground colour changed, append its parameters. */ nnewc = grid_string_cells_fg(gc, newc); noldc = grid_string_cells_fg(lastgc, oldc); if (nnewc != noldc || memcmp(newc, oldc, nnewc * sizeof newc[0]) != 0) { for (i = 0; i < nnewc; i++) s[n++] = newc[i]; } /* If the background colour changed, append its parameters. */ nnewc = grid_string_cells_bg(gc, newc); noldc = grid_string_cells_bg(lastgc, oldc); if (nnewc != noldc || memcmp(newc, oldc, nnewc * sizeof newc[0]) != 0) { for (i = 0; i < nnewc; i++) s[n++] = newc[i]; } /* If there are any parameters, append an SGR code. */ *buf = '\0'; if (n > 0) { if (escape_c0) strlcat(buf, "\\033[", len); else strlcat(buf, "\033[", len); for (i = 0; i < n; i++) { if (i + 1 < n) xsnprintf(tmp, sizeof tmp, "%d;", s[i]); else xsnprintf(tmp, sizeof tmp, "%d", s[i]); strlcat(buf, tmp, len); } strlcat(buf, "m", len); } /* Append shift in/shift out if needed. */ if ((attr & GRID_ATTR_CHARSET) && !(lastattr & GRID_ATTR_CHARSET)) { if (escape_c0) strlcat(buf, "\\016", len); /* SO */ else strlcat(buf, "\016", len); /* SO */ } if (!(attr & GRID_ATTR_CHARSET) && (lastattr & GRID_ATTR_CHARSET)) { if (escape_c0) strlcat(buf, "\\017", len); /* SI */ else strlcat(buf, "\017", len); /* SI */ } } /* Convert cells into a string. */ char * grid_string_cells(struct grid *gd, u_int px, u_int py, u_int nx, struct grid_cell **lastgc, int with_codes, int escape_c0, int trim) { const struct grid_cell *gc; static struct grid_cell lastgc1; struct utf8_data ud; const char *data; char *buf, code[128]; size_t len, off, size, codelen; u_int xx; const struct grid_line *gl; if (lastgc != NULL && *lastgc == NULL) { memcpy(&lastgc1, &grid_default_cell, sizeof lastgc1); *lastgc = &lastgc1; } len = 128; buf = xmalloc(len); off = 0; gl = grid_peek_line(gd, py); for (xx = px; xx < px + nx; xx++) { if (gl == NULL || xx >= gl->cellsize) break; gc = &gl->celldata[xx]; if (gc->flags & GRID_FLAG_PADDING) continue; grid_cell_get(gc, &ud); if (with_codes) { grid_string_cells_code(*lastgc, gc, code, sizeof code, escape_c0); codelen = strlen(code); memcpy(*lastgc, gc, sizeof *gc); } else codelen = 0; data = ud.data; size = ud.size; if (escape_c0 && size == 1 && *data == '\\') { data = "\\\\"; size = 2; } while (len < off + size + codelen + 1) { buf = xreallocarray(buf, 2, len); len *= 2; } if (codelen != 0) { memcpy(buf + off, code, codelen); off += codelen; } memcpy(buf + off, data, size); off += size; } if (trim) { while (off > 0 && buf[off - 1] == ' ') off--; } buf[off] = '\0'; return (buf); } /* * Duplicate a set of lines between two grids. If there aren't enough lines in * either source or destination, the number of lines is limited to the number * available. */ void grid_duplicate_lines(struct grid *dst, u_int dy, struct grid *src, u_int sy, u_int ny) { struct grid_line *dstl, *srcl; u_int yy; if (dy + ny > dst->hsize + dst->sy) ny = dst->hsize + dst->sy - dy; if (sy + ny > src->hsize + src->sy) ny = src->hsize + src->sy - sy; grid_clear_lines(dst, dy, ny); for (yy = 0; yy < ny; yy++) { srcl = &src->linedata[sy]; dstl = &dst->linedata[dy]; memcpy(dstl, srcl, sizeof *dstl); if (srcl->cellsize != 0) { dstl->celldata = xcalloc( srcl->cellsize, sizeof *dstl->celldata); memcpy(dstl->celldata, srcl->celldata, srcl->cellsize * sizeof *dstl->celldata); } sy++; dy++; } } /* Join line data. */ void grid_reflow_join(struct grid *dst, u_int *py, struct grid_line *src_gl, u_int new_x) { struct grid_line *dst_gl = &dst->linedata[(*py) - 1]; u_int left, to_copy, ox, nx; /* How much is left on the old line? */ left = new_x - dst_gl->cellsize; /* Work out how much to append. */ to_copy = src_gl->cellsize; if (to_copy > left) to_copy = left; ox = dst_gl->cellsize; nx = ox + to_copy; /* Resize the destination line. */ dst_gl->celldata = xreallocarray(dst_gl->celldata, nx, sizeof *dst_gl->celldata); dst_gl->cellsize = nx; /* Append as much as possible. */ memcpy(&dst_gl->celldata[ox], &src_gl->celldata[0], to_copy * sizeof src_gl->celldata[0]); /* If there is any left in the source, split it. */ if (src_gl->cellsize > to_copy) { dst_gl->flags |= GRID_LINE_WRAPPED; src_gl->cellsize -= to_copy; grid_reflow_split(dst, py, src_gl, new_x, to_copy); } } /* Split line data. */ void grid_reflow_split(struct grid *dst, u_int *py, struct grid_line *src_gl, u_int new_x, u_int offset) { struct grid_line *dst_gl = NULL; u_int to_copy; /* Loop and copy sections of the source line. */ while (src_gl->cellsize > 0) { /* Create new line. */ if (*py >= dst->hsize + dst->sy) grid_scroll_history(dst); dst_gl = &dst->linedata[*py]; (*py)++; /* How much should we copy? */ to_copy = new_x; if (to_copy > src_gl->cellsize) to_copy = src_gl->cellsize; /* Expand destination line. */ dst_gl->celldata = xreallocarray(NULL, to_copy, sizeof *dst_gl->celldata); dst_gl->cellsize = to_copy; dst_gl->flags |= GRID_LINE_WRAPPED; /* Copy the data. */ memcpy(&dst_gl->celldata[0], &src_gl->celldata[offset], to_copy * sizeof dst_gl->celldata[0]); /* Move offset and reduce old line size. */ offset += to_copy; src_gl->cellsize -= to_copy; } /* Last line is not wrapped. */ if (dst_gl != NULL) dst_gl->flags &= ~GRID_LINE_WRAPPED; } /* Move line data. */ void grid_reflow_move(struct grid *dst, u_int *py, struct grid_line *src_gl) { struct grid_line *dst_gl; /* Create new line. */ if (*py >= dst->hsize + dst->sy) grid_scroll_history(dst); dst_gl = &dst->linedata[*py]; (*py)++; /* Copy the old line. */ memcpy(dst_gl, src_gl, sizeof *dst_gl); dst_gl->flags &= ~GRID_LINE_WRAPPED; /* Clear old line. */ src_gl->celldata = NULL; } /* * Reflow lines from src grid into dst grid of width new_x. Returns number of * lines fewer in the visible area. The source grid is destroyed. */ u_int grid_reflow(struct grid *dst, struct grid *src, u_int new_x) { u_int py, sy, line; int previous_wrapped; struct grid_line *src_gl; py = 0; sy = src->sy; previous_wrapped = 0; for (line = 0; line < sy + src->hsize; line++) { src_gl = src->linedata + line; if (!previous_wrapped) { /* Wasn't wrapped. If smaller, move to destination. */ if (src_gl->cellsize <= new_x) grid_reflow_move(dst, &py, src_gl); else grid_reflow_split(dst, &py, src_gl, new_x, 0); } else { /* Previous was wrapped. Try to join. */ grid_reflow_join(dst, &py, src_gl, new_x); } previous_wrapped = src_gl->flags & GRID_LINE_WRAPPED; } grid_destroy(src); if (py > sy) return (0); return (sy - py); }