summaryrefslogtreecommitdiffstats
path: root/openpgp/src/crypto/asymmetric.rs
blob: 7bc293d30219c00d7b5b956ff2313d7a0d8c9bab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//! Asymmetric crypt operations.

use nettle::{dsa, ecc, ecdsa, ed25519, rsa, Yarrow};

use packet::Key;
use crypto::SessionKey;
use crypto::mpis::{self, MPI};
use constants::{Curve, HashAlgorithm};

use Error;
use Result;

/// Creates a signature.
///
/// This is a low-level mechanism to produce an arbitrary OpenPGP
/// signature.  Using this trait allows Sequoia to perform all
/// operations involving signing to use a variety of secret key
/// storage mechanisms (e.g. smart cards).
pub trait Signer {
    /// Returns a reference to the public key.
    fn public(&self) -> &Key;

    /// Creates a signature over the `digest` produced by `hash_algo`.
    fn sign(&mut self, hash_algo: HashAlgorithm, digest: &[u8])
            -> Result<mpis::Signature>;
}

/// Decrypts a message.
///
/// This is a low-level mechanism to decrypt an arbitrary OpenPGP
/// ciphertext.  Using this trait allows Sequoia to perform all
/// operations involving decryption to use a variety of secret key
/// storage mechanisms (e.g. smart cards).
pub trait Decryptor {
    /// Returns a reference to the public key.
    fn public(&self) -> &Key;

    /// Creates a signature over the `digest` produced by `hash_algo`.
    fn decrypt(&mut self, ciphertext: &mpis::Ciphertext)
               -> Result<SessionKey>;
}

/// A cryptographic key pair.
///
/// A `KeyPair` is a combination of public and secret key.  If both
/// are available in memory, a `KeyPair` is a convenient
/// implementation of [`Signer`].
///
/// [`Signer`]: trait.Signer.html
pub struct KeyPair {
    public: Key,
    secret: mpis::SecretKey,
}

impl KeyPair {
    /// Creates a new key pair.
    pub fn new(public: Key, secret: mpis::SecretKey) -> Result<Self> {
        Ok(Self {
            public: public,
            secret: secret,
        })
    }

    /// Returns a reference to the public key.
    pub fn public(&self) -> &Key {
        &self.public
    }

    /// Returns a reference to the secret key.
    pub fn secret(&self) -> &mpis::SecretKey {
        &self.secret
    }
}

impl Signer for KeyPair {
    fn public(&self) -> &Key {
        &self.public
    }

    fn sign(&mut self, hash_algo: HashAlgorithm, digest: &[u8])
            -> Result<mpis::Signature>
    {
        use PublicKeyAlgorithm::*;
        use crypto::mpis::PublicKey;
        use memsec;

        let mut rng = Yarrow::default();

        #[allow(deprecated)]
        match (self.public.pk_algo(), self.public.mpis(), &self.secret)
        {
            (RSASign,
             &PublicKey::RSA { ref e, ref n },
             &mpis::SecretKey::RSA { ref p, ref q, ref d, .. }) |
            (RSAEncryptSign,
             &PublicKey::RSA { ref e, ref n },
             &mpis::SecretKey::RSA { ref p, ref q, ref d, .. }) => {
                let public = rsa::PublicKey::new(&n.value, &e.value)?;
                let secret = rsa::PrivateKey::new(&d.value, &p.value,
                                                  &q.value, Option::None)?;

                // The signature has the length of the modulus.
                let mut sig = vec![0u8; n.value.len()];

                // As described in [Section 5.2.2 and 5.2.3 of RFC 4880],
                // to verify the signature, we need to encode the
                // signature data in a PKCS1-v1.5 packet.
                //
                //   [Section 5.2.2 and 5.2.3 of RFC 4880]:
                //   https://tools.ietf.org/html/rfc4880#section-5.2.2
                rsa::sign_digest_pkcs1(&public, &secret, digest,
                                       hash_algo.oid()?,
                                       &mut rng, &mut sig)?;

                Ok(mpis::Signature::RSA {
                    s: MPI::new(&sig),
                })
            },

            (DSA,
             &PublicKey::DSA { ref p, ref q, ref g, .. },
             &mpis::SecretKey::DSA { ref x }) => {
                let params = dsa::Params::new(&p.value, &q.value, &g.value);
                let secret = dsa::PrivateKey::new(&x.value);

                let sig = dsa::sign(&params, &secret, digest, &mut rng)?;

                Ok(mpis::Signature::DSA {
                    r: MPI::new(&sig.r()),
                    s: MPI::new(&sig.s()),
                })
            },

            (EdDSA,
             &PublicKey::EdDSA { ref curve, ref q },
             &mpis::SecretKey::EdDSA { ref scalar }) => match curve {
                Curve::Ed25519 => {
                    let public = q.decode_point(&Curve::Ed25519)?.0;

                    let mut sig = vec![0; ed25519::ED25519_SIGNATURE_SIZE];

                    // Nettle expects the private key to be exactly
                    // ED25519_KEY_SIZE bytes long but OpenPGP allows leading
                    // zeros to be stripped.
                    // Padding has to be unconditionaly, otherwise we have a
                    // secret-dependant branch.
                    let missing = ed25519::ED25519_KEY_SIZE
                        .saturating_sub(scalar.value.len());
                    let mut sec = [0u8; ed25519::ED25519_KEY_SIZE];
                    sec[missing..].copy_from_slice(&scalar.value[..]);

                    let res = ed25519::sign(public, &sec[..], digest, &mut sig);
                    unsafe {
                        memsec::memzero(sec.as_mut_ptr(),
                                        ed25519::ED25519_KEY_SIZE);
                    }
                    res?;

                    Ok(mpis::Signature::EdDSA {
                        r: MPI::new(&sig[..32]),
                        s: MPI::new(&sig[32..]),
                    })
                },
                _ => Err(
                    Error::UnsupportedEllipticCurve(curve.clone()).into()),
            },

            (ECDSA,
             &PublicKey::ECDSA { ref curve, .. },
             &mpis::SecretKey::ECDSA { ref scalar }) => {
                let secret = match curve {
                    Curve::NistP256 =>
                        ecc::Scalar::new::<ecc::Secp256r1>(
                            &scalar.value)?,
                    Curve::NistP384 =>
                        ecc::Scalar::new::<ecc::Secp384r1>(
                            &scalar.value)?,
                    Curve::NistP521 =>
                        ecc::Scalar::new::<ecc::Secp521r1>(
                            &scalar.value)?,
                    _ =>
                        return Err(
                            Error::UnsupportedEllipticCurve(curve.clone())
                                .into()),
                };

                let sig = ecdsa::sign(&secret, digest, &mut rng);

                Ok(mpis::Signature::ECDSA {
                    r: MPI::new(&sig.r()),
                    s: MPI::new(&sig.s()),
                })
            },

            (pk_algo, _, _) => Err(Error::InvalidArgument(format!(
                "unsupported combination of algorithm {:?}, key {:?}, \
                 and secret key {:?}",
                pk_algo, self.public, self.secret)).into