summaryrefslogtreecommitdiffstats
path: root/grep-regex/src/literal.rs
blob: b8a0c1d587a4d9306e6b8ef6f8c407504f11ae0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
This module is responsible for extracting *inner* literals out of the AST of a
regular expression. Normally this is the job of the regex engine itself, but
the regex engine doesn't look for inner literals. Since we're doing line based
searching, we can use them, so we need to do it ourselves.
*/

use std::cmp;

use regex_syntax::hir::{self, Hir, HirKind};
use regex_syntax::hir::literal::{Literal, Literals};

use util;

/// Represents prefix, suffix and inner "required" literals for a regular
/// expression.
///
/// Prefixes and suffixes are detected using regex-syntax. The inner required
/// literals are detected using something custom (but based on the code in
/// regex-syntax).
#[derive(Clone, Debug)]
pub struct LiteralSets {
    /// A set of prefix literals.
    prefixes: Literals,
    /// A set of suffix literals.
    suffixes: Literals,
    /// A set of literals such that at least one of them must appear in every
    /// match. A literal in this set may be neither a prefix nor a suffix.
    required: Literals,
}

impl LiteralSets {
    /// Create a set of literals from the given HIR expression.
    pub fn new(expr: &Hir) -> LiteralSets {
        let mut required = Literals::empty();
        union_required(expr, &mut required);
        LiteralSets {
            prefixes: Literals::prefixes(expr),
            suffixes: Literals::suffixes(expr),
            required: required,
        }
    }

    /// If it is deemed advantageuous to do so (via various suspicious
    /// heuristics), this will return a single regular expression pattern that
    /// matches a subset of the language matched by the regular expression that
    /// generated these literal sets. The idea here is that the pattern
    /// returned by this method is much cheaper to search for. i.e., It is
    /// usually a single literal or an alternation of literals.
    pub fn one_regex(&self) -> Option<String> {
        // TODO: The logic in this function is basically inscrutable. It grew
        // organically in the old grep 0.1 crate. Ideally, it would be
        // re-worked. In fact, the entire inner literal extraction should be
        // re-worked. Actually, most of regex-syntax's literal extraction
        // should also be re-worked. Alas... only so much time in the day.

        if self.prefixes.all_complete() && !self.prefixes.is_empty() {
            debug!("literal prefixes detected: {:?}", self.prefixes);
            // When this is true, the regex engine will do a literal scan,
            // so we don't need to return anything.
            return None;
        }

        // Out of inner required literals, prefixes and suffixes, which one
        // is the longest? We pick the longest to do fast literal scan under
        // the assumption that a longer literal will have a lower false
        // positive rate.
        let pre_lcp = self.prefixes.longest_common_prefix();
        let pre_lcs = self.prefixes.longest_common_suffix();
        let suf_lcp = self.suffixes.longest_common_prefix();
        let suf_lcs = self.suffixes.longest_common_suffix();

        let req_lits = self.required.literals();
        let req = match req_lits.iter().max_by_key(|lit| lit.len()) {
            None => &[],
            Some(req) => &***req,
        };

        let mut lit = pre_lcp;
        if pre_lcs.len() > lit.len() {
            lit = pre_lcs;
        }
        if suf_lcp.len() > lit.len() {
            lit = suf_lcp;
        }
        if suf_lcs.len() > lit.len() {
            lit = suf_lcs;
        }
        if req_lits.len() == 1 && req.len() > lit.len() {
            lit = req;
        }

        // Special case: if we detected an alternation of inner required
        // literals and its longest literal is bigger than the longest
        // prefix/suffix, then choose the alternation. In practice, this
        // helps with case insensitive matching, which can generate lots of
        // inner required literals.
        let any_empty = req_lits.iter().any(|lit| lit.is_empty());
        if req.len() > lit.len() && req_lits.len() > 1 && !any_empty {
            debug!("required literals found: {:?}", req_lits);
            let alts: Vec<String> = req_lits
                .into_iter()
                .map(|x| util::bytes_to_regex(x))
                .collect();
            // We're matching raw bytes, so disable Unicode mode.
            Some(format!("(?-u:{})", alts.join("|")))
        } else if lit.is_empty() {
            None
        } else {
            debug!("required literal found: {:?}", util::show_bytes(lit));
            Some(format!("(?-u:{})", util::bytes_to_regex(&lit)))
        }
    }
}

fn union_required(expr: &Hir, lits: &mut Literals) {
    match *expr.kind() {
        HirKind::Literal(hir::Literal::Unicode(c)) => {
            let mut buf = [0u8; 4];
            lits.cross_add(c.encode_utf8(&mut buf).as_bytes());
        }
        HirKind::Literal(hir::Literal::Byte(b)) => {
            lits.cross_add(&[b]);
        }
        HirKind::Class(hir::Class::Unicode(ref cls)) => {
            if count_unicode_class(cls) >= 5 || !lits.add_char_class(cls) {
                lits.cut();
            }
        }
        HirKind::Class(hir::Class::Bytes(ref cls)) => {
            if count_byte_class(cls) >= 5 || !lits.add_byte_class(cls) {
                lits.cut();
            }
        }
        HirKind::Group(hir::Group { ref hir, .. }) => {
            union_required(&**hir, lits);
        }
        HirKind::Repetition(ref x) => {
            match x.kind {
                hir::RepetitionKind::ZeroOrOne => lits.cut(),
                hir::RepetitionKind::ZeroOrMore => lits.cut(),
                hir::RepetitionKind::OneOrMore => {
                    union_required(&x.hir, lits);
                    lits.cut();
                }
                hir::RepetitionKind::Range(ref rng) => {
                    let (min, max) = match *rng {
                        hir::RepetitionRange::Exactly(m) => (m, Some(m)),
                        hir::RepetitionRange::AtLeast(m) => (m, None),
                        hir::RepetitionRange::Bounded(m, n) => (m, Some(n)),
                    };
                    repeat_range_literals(
                        &x.hir, min, max, x.greedy, lits, union_required);
                }
            }
        }
        HirKind::Concat(ref es) if es.is_empty() => {}
        HirKind::Concat(ref es) if es.len() == 1 => {
            union_required(&es[0], lits)
        }
        HirKind::Concat(ref es) => {
            for e in es {
                let mut lits2 = lits.to_empty();
                union_required(e, &mut lits2);
                if lits2.is_empty() {
                    lits.cut();
                    continue;
                }
                if lits2.contains_empty() || !is_simple(&e) {
                    lits.cut();
                }
                if !lits.cross_product(&lits2) || !lits2.any_complete() {
                    // If this expression couldn't yield any literal that
                    // could be extended, then we need to quit. Since we're
                    // short-circuiting, we also need to freeze every member.
                    lits.cut();
                    break;
                }
            }
        }
        HirKind::Alternation(ref es) => {
            alternate_literals(es, lits, union_required);
        }
        _ => lits.cut(),
    }
}

fn repeat_range_literals<F: FnMut(&Hir, &mut Literals)>(
    e: &Hir,
    min: u32,
    max: Option<u32>,
    _greedy: bool,
    lits: &mut Literals,
    mut f: F,
) {
    if min == 0 {
        // This is a bit conservative. If `max` is set, then we could
        // treat this as a finite set of alternations. For now, we
        // just treat it as `e*`.
        lits.cut();
    } else {
        let n = cmp::min(lits.limit_size(), min as usize);
        // We only extract literals from a single repetition, even though
        // we could do more. e.g., `a{3}` will have `a` extracted instead of
        // `aaa`. The reason is that inner literal extraction can't be unioned
        // across repetitions. e.g., extracting `foofoofoo` from `(\w+foo){3}`
        // is wrong.
        f(e, lits);
        if n < min as usize {
            lits.cut();
        }
        if max.map_or(true, |max| min < max) {
            lits.cut();
        }
    }
}

fn alternate_literals<F: FnMut(&Hir, &mut Literals)>(
    es: &[Hir],
    lits: &mut Literals,
    mut f: F,
) {
    let mut lits2 = lits.to_empty();
    for e in es {
        let mut lits3 = lits.to_empty();
        lits3.set_limit_size(lits.limit_size() / 5);
        f(e, &mut