summaryrefslogtreecommitdiffstats
path: root/crypto/modes/asm/ghash-x86.pl
blob: 0222ede585941e0066a62e1167298046346b20dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# The module implements "4-bit" Galois field multiplication and
# streamed GHASH function. "4-bit" means that it uses 256 bytes
# per-key table [+128/256 bytes fixed table]. It has two code paths:
# vanilla x86 and vanilla MMX. Former will be executed on 486 and
# Pentium, latter on all others. Performance results are for streamed
# GHASH subroutine and are expressed in cycles per processed byte,
# less is better:
#
#		gcc 2.95.3(*)	MMX assembler	x86 assembler
#
# Pentium	100/112(**)	-		50
# PIII		63 /77		17		24
# P4		96 /122		33		84(***)
# Opteron	50 /71		22		30
# Core2		63 /102		21		28
#
# (*)	gcc 3.4.x was observed to generate few percent slower code,
#	which is one of reasons why 2.95.3 result were chosen;
#	another reason is lack of 3.4.x results for older CPUs;
# (**)	second number is result for code compiled with -fPIC flag,
#	which is actually more relevant, because assembler code is
#	position-independent;
# (***)	see comment in non-MMX routine for further details;
#
# To summarize, it's 2-3 times faster than gcc-generated code. To
# anchor it to something else SHA1 assembler processes single byte
# in 11-13 cycles.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

&asm_init($ARGV[0],"gcm-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");

&static_label("rem_4bit") if (!$x86only);

$Zhh  = "ebp";
$Zhl  = "edx";
$Zlh  = "ecx";
$Zll  = "ebx";
$inp  = "edi";
$Htbl = "esi";

$unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
		# than unrolled, which has to be weighted against
		# almost 2x code size reduction. Well, *overall*
		# code size. x86-specific code shrinks by 7.5x...

sub mmx_loop() {
# MMX version performs 2.5 times better on P4 (see comment in non-MMX
# routine for further details), 35% better on Opteron and Core2, 40%
# better on PIII... In other words effort is considered to be well
# spent...
    my $inp = shift;
    my $rem_4bit = shift;
    my $cnt = $Zhh;
    my $nhi = $Zhl;
    my $nlo = $Zlh;
    my $rem = $Zll;

    my $Zlo = "mm0";
    my $Zhi = "mm1";
    my $tmp = "mm2";

	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
	&mov	($nhi,$Zll);
	&mov	(&LB($nlo),&LB($nhi));
	&mov	($cnt,15);
	&shl	(&LB($nlo),4);
	&and	($nhi,0xf0);
	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
	&movd	($rem,$Zlo);
	&jmp	(&label("mmx_loop"));

    &set_label("mmx_loop",16);
	&psrlq	($Zlo,4);
	&and	($rem,0xf);
	&movq	($tmp,$Zhi);
	&psrlq	($Zhi,4);
	&dec	($cnt);
	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
	&pxor	($Zlo,$tmp);
	&js	(&label("mmx_break"));

	&movz	($nhi,&BP(0,$inp,$cnt));
	&psrlq	($Zlo,4);
	&mov	(&LB($nlo),&LB($nhi));
	&movq	($tmp,$Zhi);
	&shl	(&LB($nlo),4);
	&psrlq	($Zhi,4);
	&and	($rem,0xf);
	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
	&pxor	($Zlo,$tmp);
	&and	($nhi,0xf0);
	&jmp	(&label("mmx_loop"));

    &set_label("mmx_break",16);
	&psrlq	($Zlo,32);	# lower part of Zlo is already there
	&movd	($Zhl,$Zhi);
	&psrlq	($Zhi,32);
	&movd	($Zlh,$Zlo);
	&movd	($Zhh,$Zhi);

	&bswap	($Zll);
	&bswap	($Zhl);
	&bswap	($Zlh);
	&bswap	($Zhh);
}

sub x86_loop {
    my $off = shift;
    my $rem = "eax";

	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
	&mov	($Zll,&DWP(8,$Htbl,$Zll));
	&xor	($rem,$rem);	# avoid partial register stalls on PIII

	# shrd practically kills P4, 2.5x deterioration, but P4 has
	# MMX code-path to execute. shrd runs tad faster [than twice
	# the shifts, move's and or's] on pre-MMX Pentium (as well as
	# PIII and Core2), *but* minimizes code size, spares register
	# and thus allows to fold the loop...
	if (!$unroll) {
	my $cnt = $inp;
	&mov	($cnt,15);
	&jmp	(&label("x86_loop"));
	&set_label("x86_loop",16);
	    for($i=1;$i<=2;$i++) {
		&mov	(&LB($rem),&LB($Zll));
		&shrd	($Zll,$Zlh,4);
		&and	(&LB($rem),0xf);
		&shrd	($Zlh,$Zhl,4);
		&shrd	($Zhl,$Zhh,4);
		&shr	($Zhh,4);
		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));

		&mov	(&LB($rem),&BP($off,"esp",$cnt));
		if ($i&1) {
			&and	(&LB($rem),0xf0);
		} else {
			&shl	(&LB($rem),4);
		}

		&xor	($Zll,&DWP(8,$Htbl,$rem));
		&xor	($Zlh,&DWP(12,$Htbl,$rem));
		&xor	($Zhl,&DWP(0,$Htbl,$rem));
		&xor	($Zhh,&DWP(4,$Htbl,$rem));

		if ($i&1) {
			&dec	($cnt);
			&js	(&label("x86_break"));
		} else {
			&jmp	(&label("x86_loop"));
		}
	    }
	&set_label("x86_break",16);
	} else {
	    for($i=1;$i<32;$i++) {
		&comment($i);
		&mov	(&LB($rem),&LB($Zll));
		&shrd	($Zll,$Zlh,4);
		&and	(&LB($rem),0xf);
		&shrd	($Zlh,$Zhl,4);
		&shrd	($Zhl,$Zhh,4);
		&shr	($Zhh,4);
		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));

		if ($i&1) {
			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
			&and	(&LB($rem),0xf0);
		} else {
			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
			&shl	(&LB($rem),4);
		}

		&xor	($Zll,&DWP(8,$Htbl,$rem));
		&xor	($Zlh,&DWP(12,$Htbl,$rem));
		&xor	($Zhl,&DWP(0,$Htbl,$rem));
		&xor	($Zhh,&DWP(4,$Htbl,$rem));
	    }
	}
	&bswap	($Zll);
	&bswap	($Zlh);
	&bswap	($Zhl);