summaryrefslogtreecommitdiffstats
path: root/crypto/bn/asm/x86_64-gf2m.pl
blob: dfbb17772c7b2efac63ff54359f84bcc102464db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# May 2011
#
# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
# the time being... Except that it has two code paths: code suitable
# for any x86_64 CPU and PCLMULQDQ one suitable for Westmere and
# later. Improvement varies from one benchmark and �-arch to another.
# Vanilla code path is at most 20% faster than compiler-generated code
# [not very impressive], while PCLMULQDQ - whole 85%-160% better on
# 163- and 571-bit ECDH benchmarks on Intel CPUs. Keep in mind that
# these coefficients are not ones for bn_GF2m_mul_2x2 itself, as not
# all CPU time is burnt in it...

$flavour = shift;
$output  = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";

open STDOUT,"| $^X $xlate $flavour $output";

($lo,$hi)=("%rax","%rdx");	$a=$lo;
($i0,$i1)=("%rsi","%rdi");
($t0,$t1)=("%rbx","%rcx");
($b,$mask)=("%rbp","%r8");
($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(9..15));
($R,$Tx)=("%xmm0","%xmm1");

$code.=<<___;
.text

.type	_mul_1x1,\@abi-omnipotent
.align	16
_mul_1x1:
	sub	\$128+8,%rsp
	mov	\$-1,$a1
	lea	($a,$a),$i0
	shr	\$3,$a1
	lea	(,$a,4),$i1
	and	$a,$a1			# a1=a&0x1fffffffffffffff
	lea	(,$a,8),$a8
	sar	\$63,$a			# broadcast 63rd bit
	lea	($a1,$a1),$a2
	sar	\$63,$i0		# broadcast 62nd bit
	lea	(,$a1,4),$a4
	and	$b,$a
	sar	\$63,$i1		# boardcast 61st bit
	mov	$a,$hi			# $a is $lo
	shl	\$63,$lo
	and	$b,$i0
	shr	\$1,$hi
	mov	$i0,$t1
	shl	\$62,$i0
	and	$b,$i1
	shr	\$2,$t1
	xor	$i0,$lo
	mov	$i1,$t0
	shl	\$61,$i1
	xor	$t1,$hi
	shr	\$3,$t0
	xor	$i1,$lo
	xor	$t0,$hi

	mov	$a1,$a12
	movq	\$0,0(%rsp)		# tab[0]=0
	xor	$a2,$a12		# a1^a2
	mov	$a1,8(%rsp)		# tab[1]=a1
	 mov	$a4,$a48
	mov	$a2,16(%rsp)		# tab[2]=a2
	 xor	$a8,$a48		# a4^a8
	mov	$a12,24(%rsp)		# tab[3]=a1^a2

	xor	$a4,$a1
	mov	$a4,32(%rsp)		# tab[4]=a4
	xor	$a4,$a2
	mov	$a1,40(%rsp)		# tab[5]=a1^a4
	xor	$a4,$a12
	mov	$a2,48(%rsp)		# tab[6]=a2^a4
	 xor	$a48,$a1		# a1^a4^a4^a8=a1^a8
	mov	$a12,56(%rsp)		# tab[7]=a1^a2^a4
	 xor	$a48,$a2		# a2^a4^a4^a8=a1^a8

	mov	$a8,64(%rsp)		# tab[8]=a8
	xor	$a48,$a12		# a1^a2^a4^a4^a8=a1^a2^a8
	mov	$a1,72(%rsp)		# tab[9]=a1^a8
	 xor	$a4,$a1			# a1^a8^a4
	mov	$a2,80(%rsp)		# tab[10]=a2^a8
	 xor	$a4,$a2			# a2^a8^a4
	mov	$a12,88(%rsp)		# tab[11]=a1^a2^a8

	xor	$a4,$a12		# a1^a2^a8^a4
	mov	$a48,96(%rsp)		# tab[12]=a4^a8
	 mov	$mask,$i0
	mov	$a1,104(%rsp)		# tab[13]=a1^a4^a8
	 and	$b,$i0
	mov	$a2,112(%rsp)		# tab[14]=a2^a4^a8
	 shr	\$4,$b
	mov	$a12,120(%rsp)		# tab[15]=a1^a2^a4^a8
	 mov	$mask,$i1
	 and	$b,$i1
	 shr	\$4,$b

	movq	(%rsp,$i0,8),$R		# half of calculations is done in SSE2
	mov	$mask,$i0
	and	$b,$i0
	shr	\$4,$b
___
    for ($n=1;$n<8;$n++) {
	$code.=<<___;
	mov	(%rsp,$i1,8),$t1
	mov	$mask,$i1
	mov	$t1,$t0
	shl	\$`8*$n-4`,$t1
	and	$b,$i1
	 movq	(%rsp,$i0,8),$Tx
	shr	\$`64-(8*$n-4)`,$t0
	xor	$t1,$lo
	 pslldq	\$$n,$Tx
	 mov	$mask,$i0
	shr	\$4,$b
	xor	$t0,$hi
	 and	$b,$i0
	 shr	\$4,$b
	 pxor	$Tx,$R
___
    }
$code.=<<___;
	mov	(%rsp,$i1,8),$t1
	mov	$t1,$t0
	shl	\$`8*$n-4`,$t1
	movq	$R,$i0
	shr	\$`64-(8*$n-4)`,$t0
	xor	$t1,$lo
	psrldq	\$8,$R
	xor	$t0,$hi
	movq	$R,$i1
	xor	$i0,$lo
	xor	$i1,$hi

	add	\$128+8,%rsp
	ret
.size	_mul_1x1,.-_mul_1x1
___

($rp,$a1,$a0,$b1,$b0) = $win64?	("%rcx","%rdx","%r8", "%r9","%r10") :	# Win64 order
				("%rdi","%rsi","%rdx","%rcx","%r8");	# Unix order

$code.=<<___;
.extern	OPENSSL_ia32cap_P
.globl	bn_GF2m_mul_2x2
.type	bn_GF2m_mul_2x2,\@abi-omnipotent
.align	16
bn_GF2m_mul_2x2:
	mov	OPENSSL_ia32cap_P(%rip),%rax
	bt	\$33,%rax
	jnc	.Lvanilla

	movq		$a1,%xmm0
	movq		$b1,%xmm1
	movq		$a0,%xmm2
___
$code.=<<___ if ($win64);
	movq		40(%rsp),%xmm3
___
$code.=<<___ if (!$win64);
	movq		$b0,%xmm3
___
$code.=<<___;
	movdqa		%xmm0,%xmm4
	movdqa		%xmm1,%xmm5
	pclmulqdq	\$0,%xmm1,%xmm0	# a1�b1
	pxor		%xmm2,%xmm4
	pxor		%xmm3,%xmm5
	pclmulqdq	\$0,%xmm3,%xmm2	# a0�b0
	pclmulqdq	\$0,%xmm5,%xmm4	# (a0+a1)�(b0+b1)
	xorps		%xmm0,%xmm4
	xorps		%xmm2,%xmm4
	movdqa		%xmm4,%xmm5
	pslldq		\$8,%xmm4
	psrldq		\$8,%xmm5
	pxor		%xmm4,%xmm2
	pxor		%xmm5,%xmm0
	movdqu		%xmm2,0($rp)
	movdqu		%xmm0,16($rp)
	ret

.align	16
.Lvanilla:
	lea	-8*17(%rsp),%rsp
___
$code.=<<___ if ($win64);
	mov	`8*17+40`(%rsp),$b0
	mov	%rdi,8*15(%rsp)
	mov	%rsi,8*16(%rsp)
___
$code.=<<___;
	mov	%r14,8*10(%rsp)
	mov	%r13,8*11(%rsp)
	mov	%r12,8*12(%rsp)
	mov	%rbp,8*13(%rsp)
	mov	%rbx,8*14(%rsp)
.Lbody:
	mov	$rp,32(%rsp)		# save the arguments
	mov	$a1,40(%rsp)
	mov	$a0,48(%rsp)
	mov	$b1,56(%rsp)
	mov	$b0,64(%rsp)

	mov	\$0xf,$mask
	mov	$a1,$a
	mov	$b1,$b
	call	_mul_1x1		# a1�b1
	mov	$lo,16(%rsp)
	mov	$hi,24(%rsp)

	mov	48(%rsp),$a
	mov	64(%rsp),$b
	call	_mul_1x1		# a0�b0
	mov	$lo,0(%rsp)
	mov	$hi,8(%rsp)

	mov	40(%rsp),$a
	mov	56(%rsp),$b
	xor	48(%rsp),$a
	xor	64(%rsp),$b
	call	_mul_1x1		# (a0+a1)�(b0+b1)
___
	@r=("%rbx","%rcx","%rdi","%rsi");
$code.=<<___;
	mov	0(%rsp),@r[0]
	mov	8(%rsp),@r[1]
	mov	16(%rsp),@r[2]
	mov	24(%rsp),@r[3]
	mov	32(%rsp),%rbp

	xor	$hi,$lo
	xor	@r[1],$hi
	xor	@r[0],$lo
	mov	@r[0],0(%rbp)
	xor	@r[2],$hi
	mov	@r[3],24(%rbp)
	xor	@r[3],$lo
	xor	@r[3],$hi
	xor	$hi,$lo
	mov	$hi,16(%rbp)
	mov	$lo,8(%rbp)

	mov	8*10(%rsp),%r14
	mov	8*11(%rsp),%r13
	mov	8*12(%rsp),%r12
	mov	8*13(%rsp),%rbp
	mov	8*14(%rsp),%rbx
___
$code.=<<___ if ($win64);
	mov	8*15(%rsp),%rdi
	mov	8*16(%rsp),%rsi
___
$code.=<<___;
	lea	8*17(%rsp),%rsp
	ret
.size	bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
.asciz	"GF(2^m) Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
___

$code =~ s/\`([^\`]*)\`/eval($1)/gem;
print $code;
close STDOUT;