/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "e_os.h" #include #include #include #include #include #include "testutil.h" #include "test_main_custom.h" /* * In bn_lcl.h, bn_expand() is defined as a static ossl_inline function. * This is fine in itself, it will end up as an unused static function in * the worst case. However, it references bn_expand2(), which is a private * function in libcrypto and therefore unavailable on some systems. This * may result in a linker error because of unresolved symbols. * * To avoid this, we define a dummy variant of bn_expand2() here, and to * avoid possible clashes with libcrypto, we rename it first, using a macro. */ #define bn_expand2 dummy_bn_expand2 BIGNUM *bn_expand2(BIGNUM *b, int words); BIGNUM *bn_expand2(BIGNUM *b, int words) { return NULL; } #include "../crypto/bn/bn_lcl.h" #define MAXPAIRS 20 /* * Things in boring, not in openssl. TODO we should add them. */ #define HAVE_BN_PADDED 0 #define HAVE_BN_SQRT 0 typedef struct pair_st { char *key; char *value; } PAIR; typedef struct stanza_st { int start; int numpairs; PAIR pairs[MAXPAIRS]; } STANZA; typedef struct filetest_st { const char *name; int (*func)(STANZA *s); } FILETEST; typedef struct mpitest_st { const char *base10; const char *mpi; size_t mpi_len; } MPITEST; static const int NUM0 = 100; /* number of tests */ static const int NUM1 = 50; /* additional tests for some functions */ static FILE *fp; static BN_CTX *ctx; /* * Look for |key| in the stanza and return it or NULL if not found. */ static const char *findattr(STANZA *s, const char *key) { int i = s->numpairs; PAIR *pp = s->pairs; for ( ; --i >= 0; pp++) if (strcasecmp(pp->key, key) == 0) return pp->value; return NULL; } /* * Parse BIGNUM, return number of bytes parsed. */ static int parseBN(BIGNUM **out, const char *in) { *out = NULL; return BN_hex2bn(out, in); } static int parsedecBN(BIGNUM **out, const char *in) { *out = NULL; return BN_dec2bn(out, in); } static BIGNUM *getBN(STANZA *s, const char *attribute) { const char *hex; BIGNUM *ret = NULL; if ((hex = findattr(s, attribute)) == NULL) { fprintf(stderr, "Can't find %s in test at line %d\n", attribute, s->start); return NULL; } if (parseBN(&ret, hex) != (int)strlen(hex)) { fprintf(stderr, "Could not decode '%s'.\n", hex); return NULL; } return ret; } static int getint(STANZA *s, int *out, const char *attribute) { BIGNUM *ret = getBN(s, attribute); BN_ULONG word; int st = 0; if (ret == NULL) goto err; if ((word = BN_get_word(ret)) > INT_MAX) goto err; *out = (int)word; st = 1; err: BN_free(ret); return st; } static int equalBN(const char *op, const BIGNUM *expected, const BIGNUM *actual) { char *exstr = NULL; char *actstr = NULL; if (BN_cmp(expected, actual) == 0) return 1; if (BN_is_zero(expected) && BN_is_negative(expected)) exstr = OPENSSL_strdup("-0"); else exstr = BN_bn2hex(expected); if (BN_is_zero(actual) && BN_is_negative(actual)) actstr = OPENSSL_strdup("-0"); else actstr = BN_bn2hex(actual); if (exstr == NULL || actstr == NULL) goto err; fprintf(stderr, "Got %s =\n", op); fprintf(stderr, "\t%s\n", actstr); fprintf(stderr, "wanted:\n"); fprintf(stderr, "\t%s\n", exstr); err: OPENSSL_free(exstr); OPENSSL_free(actstr); return 0; } /* * Return a "random" flag for if a BN should be negated. */ static int rand_neg(void) { static unsigned int neg = 0; static int sign[8] = { 0, 0, 0, 1, 1, 0, 1, 1 }; return sign[(neg++) % 8]; } static int test_sub() { BIGNUM *a, *b, *c; int i; a = BN_new(); b = BN_new(); c = BN_new(); for (i = 0; i < NUM0 + NUM1; i++) { if (i < NUM1) { BN_bntest_rand(a, 512, 0, 0); BN_copy(b, a); if (BN_set_bit(a, i) == 0) return 0; BN_add_word(b, i); } else { BN_bntest_rand(b, 400 + i - NUM1, 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); } BN_sub(c, a, b); BN_add(c, c, b); BN_sub(c, c, a); if (!BN_is_zero(c)) { printf("Subtract test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); return 1; } static int test_div_recip() { BIGNUM *a, *b, *c, *d, *e; BN_RECP_CTX *recp; int i; recp = BN_RECP_CTX_new(); a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); for (i = 0; i < NUM0 + NUM1; i++) { if (i < NUM1) { BN_bntest_rand(a, 400, 0, 0); BN_copy(b, a); BN_lshift(a, a, i); BN_add_word(a, i); } else BN_bntest_rand(b, 50 + 3 * (i - NUM1), 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); BN_RECP_CTX_set(recp, b, ctx); BN_div_recp(d, c, a, recp, ctx); BN_mul(e, d, b, ctx); BN_add(d, e, c); BN_sub(d, d, a); if (!BN_is_zero(d)) { printf("Reciprocal division test failed!\n"); printf("a="); BN_print_fp(stdout, a); printf("\nb="); BN_print_fp(stdout, b); printf("\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); BN_RECP_CTX_free(recp); return 1; } static int test_mod() { BIGNUM *a, *b, *c, *d, *e; int i; a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_bntest_rand(a, 1024, 0, 0); for (i = 0; i < NUM0; i++) { BN_bntest_rand(b, 450 + i * 10, 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); BN_mod(c, a, b, ctx); BN_div(d, e, a, b, ctx); BN_sub(e, e, c); if (!BN_is_zero(e)) { printf("Modulo test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); return 1; } static const char *bn1strings[] = { "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000000000FFFFFFFF00", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "00000000000000000000000000000000000000000000000000FFFFFFFFFFFFFF", NULL }; static const char *bn2strings[] = { "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000000000FFFFFFFF0000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "000000000000000000000000000000000000000000FFFFFFFFFFFFFF00000000", NULL }; static char *glue(const char *list[]) { size_t len = 0; char *p, *save; int i; for (i = 0; list[i] != NULL; i++) len += strlen(list[i]); p = save = OPENSSL_malloc(len + 1); if (p != NULL) { for (i = 0; list[i] != NULL; i++) p += strlen(strcpy(p, list[i])); } return save; } /* * Test constant-time modular exponentiation with 1024-bit inputs, which on * x86_64 cause a different code branch to be taken. */ static int test_modexp_mont5() { BIGNUM *a, *p, *m, *d, *e, *b, *n, *c; BN_MONT_CTX *mont; char *bigstring; a = BN_new(); p = BN_new(); m = BN_new(); d = BN_new(); e = BN_new(); b = BN_new(); n = BN_new(); c = BN_new(); mont = BN_MONT_CTX_new(); BN_bntest_rand(m, 1024, 0, 1); /* must be odd for montgomery */ /* Zero exponent */ BN_bntest_rand(a, 1024, 0, 0); BN_zero(p); if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL)) return 0; if (!BN_is_one(d)) { printf("Modular exponentiation test failed!\n"); return 0; } /* Regression test for carry bug in mulx4x_mont */ BN_hex2bn(&a, "7878787878787878787878787878787878787878787878787878787878787878" "7878787878787878787878787878787878787878787878787878787878787878" "7878787878787878787878787878787878787878787878787878787878787878" "7878787878787878787878787878787878787878787878787878787878787878"); BN_hex2bn(&b, "095D72C08C097BA488C5E439C655A192EAFB6380073D8C2664668EDDB4060744" "E16E57FB4EDB9AE10A0CEFCDC28A894F689A128379DB279D48A2E20849D68593" "9B7803BCF46CEBF5C533FB0DD35B080593DE5472E3FE5DB951B8BFF9B4CB8F03" "9CC638A5EE8CDD703719F8000E6A9F63BEED5F2FCD52FF293EA05A251BB4AB81"); BN_hex2bn(&n, "D78AF684E71DB0C39CFF4E64FB9DB567132CB9C50CC98009FEB820B26F2DED9B" "91B9B5E2B83AE0AE4EB4E0523CA726BFBE969B89FD754F674CE99118C3F2D1C5" "D81FDC7C54E02B60262B241D53C040E99E45826ECA37A804668E690E1AFC1CA4" "2C9A15D84D4954425F0B7642FC0BD9D7B24E2618D2DCC9B729D944BADACFDDAF"); BN_MONT_CTX_set(mont, n, ctx); BN_mod_mul_montgomery(c, a, b, mont, ctx); BN_mod_mul_montgomery(d, b, a, mont, ctx); if (BN_cmp(c, d)) { fprintf(stderr, "Montgomery multiplication test failed:" " a*b != b*a.\n"); return 0; } /* Regression test for carry bug in sqr[x]8x_mont */ bigstring = glue(bn1strings); BN_hex2bn(&n, bigstring); OPENSSL_free(bigstring); bigstring = glue(bn2strings); BN_hex2bn(&a, bigstring); OPENSSL_free(bigstring); BN_free(b); b = BN_dup(a); BN_MONT_CTX_set(mont, n, ctx); BN_mod_mul_montgomery(c, a, a, mont, ctx); BN_mod_mul_montgomery(d, a, b, mont, ctx); if (BN_cmp(c, d)) { fprintf(stderr, "Montgomery multiplication test failed:" " a**2 != a*a.\n"); return 0; } /* Zero input */ BN_bntest_rand(p, 1024, 0, 0); BN_zero(a); if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL)) return 0; if (!BN_is_zero(d)) { fprintf(stderr, "Modular exponentiation test failed!\n"); return 0; } /* * Craft an input whose Montgomery representation is 1, i.e., shorter * than the modulus m, in order to test the const time precomputation * scattering/gathering. */ BN_one(a); BN_MONT_CTX_set(mont, m, ctx); if (!BN_from_montgomery(e, a, mont, ctx)) return 0; if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL)) return 0; if (!BN_mod_exp_simple(a, e, p, m, ctx)) return 0; if (BN_cmp(a, d) != 0) { printf("Modular exponentiation test failed!\n"); return 0; } /* Finally, some regular test vectors. */ BN_bntest_rand(e, 1024, 0, 0); if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL)) return 0; if (!BN_mod_exp_simple(a, e, p, m, ctx)) return 0; if (BN_cmp(a, d) != 0) { printf("Modular exponentiation test failed!\n"); return 0; } BN_MONT_CTX_free(mont); BN_free(a); BN_free(p); BN_free(m); BN_free(d); BN_free(e); BN_free(b); BN_free(n); BN_free(c); return 1; } #ifndef OPENSSL_NO_EC2M static int test_gf2m_add() { BIGNUM *a, *b, *c; int i, st = 0; a = BN_new(); b = BN_new(); c = BN_new(); for (i = 0; i < NUM0; i++) { BN_rand(a, 512, 0, 0); BN_copy(b, BN_value_one()); a->neg = rand_neg(); b->neg = rand_neg(); BN_GF2m_add(c, a, b); /* Test that two added values have the correct parity. */ if ((BN_is_odd(a) && BN_is_odd(c)) || (!BN_is_odd(a) && !BN_is_odd(c))) { printf("GF(2^m) addition test (a) failed!\n"); goto err; } BN_GF2m_add(c, c, c); /* Test that c + c = 0. */ if (!BN_is_zero(c)) { printf("GF(2^m) addition test (b) failed!\n"); goto err; } } st = 1; err: BN_free(a); BN_free(b); BN_free(c); return st; } static int test_gf2m_mod() { static int p0[] = { 163, 7, 6, 3, 0, -1 }; static int p1[] = { 193, 15, 0, -1 }; BIGNUM *a, *b[2], *c, *d, *e; int i, j, st = 0; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < NUM0; i++) { BN_bntest_rand(a, 1024, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod(c, a, b[j]); BN_GF2m_add(d, a, c); BN_GF2m_mod(e, d, b[j]); /* Test that a + (a mod p) mod p == 0. */ if (!BN_is_zero(e)) { printf("GF(2^m) modulo test failed!\n"); goto err; } } } st = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); return st; } static int test_gf2m_mul() { BIGNUM *a, *b[2], *c, *d, *e, *f, *g, *h; int i, j, st = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); f = BN_new(); g = BN_new(); h = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < NUM0; i++) { BN_bntest_rand(a, 1024, 0, 0); BN_bntest_rand(c, 1024, 0, 0); BN_bntest_rand(d, 1024, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_mul(e, a, c, b[j], ctx); BN_GF2m_add(f, a, d); BN_GF2m_mod_mul(g, f, c, b[j], ctx); BN_GF2m_mod_mul(h, d, c, b[j], ctx); BN_GF2m_add(f, e, g); BN_GF2m_add(f, f, h); /* Test that (a+d)*c = a*c + d*c. */ if (!BN_is_zero(f)) { printf("GF(2^m) modular multiplication test failed!\n"); goto err; } } } st = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); BN_free(f); BN_free(g); BN_free(h); return st; } static int test_gf2m_sqr() { BIGNUM *a, *b[2], *c, *d; int i, j, st = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < NUM0; i++) { BN_bntest_rand(a, 1024, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_sqr(c, a, b[j], ctx); BN_copy(d, a); BN_GF2m_mod_mul(d, a, d, b[j], ctx); BN_GF2m_add(d, c, d); /* Test that a*a = a^2. */ if (!BN_is_zero(d)) { printf("GF(2^m) modular squaring test failed!\n"); goto err; } } } st = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); return st; } static int test_gf2m_modinv() { BIGNUM *a, *b[2], *c, *d; int i, j, st = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < NUM0; i++) { BN_bntest_rand(a, 512, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_inv(c, a, b[j], ctx); BN_GF2m_mod_mul(d, a, c, b[j], ctx); /* Test that ((1/a)*a) = 1. */ if (!BN_is_one(d)) { printf("GF(2^m) modular inversion test failed!\n"); goto err; } } } st = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); return st; } static int test_gf2m_moddiv() { BIGNUM *a, *b[2], *c, *d, *e, *f; int i, j, st = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); f = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < NUM0; i++) { BN_bntest_rand(a, 512, 0, 0); BN_bntest_rand(c, 512, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_div(d, a, c, b[j], ctx); BN_GF2m_mod_mul(e, d, c, b[j], ctx); BN_GF2m_mod_div(f, a, e, b[j], ctx); /* Test that ((a/c)*c)/a = 1. */ if (!BN_is_one(f)) { printf("GF(2^m) modular division test failed!\n"); goto err; } } } st = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); BN_free(f); return st; } static int test_gf2m_modexp() { BIGNUM *a, *b[2], *c, *d, *e, *f; int i, j, st = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); f = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < NUM0; i++) { BN_bntest_rand(a, 512, 0, 0); BN_bntest_rand(c, 512, 0, 0); BN_bntest_rand(d, 512, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_exp(e, a, c, b[j], ctx); BN_GF2m_mod_exp(f, a, d, b[j], ctx); BN_GF2m_mod_mul(e, e, f, b[j], ctx); BN_add(f, c, d); BN_GF2m_mod_exp(f, a, f, b[j], ctx); BN_GF2m_add(f, e, f); /* Test that a^(c+d)=a^c*a^d. */ if (!BN_is_zero(f)) { printf("GF(2^m) modular exponentiation test failed!\n"); goto err; } } } st = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); BN_free(f); return st; } static int test_gf2m_modsqrt() { BIGNUM *a, *b[2], *c, *d, *e, *f; int i, j, st = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); f = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < NUM0; i++) { BN_bntest_rand(a, 512, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod(c, a, b[j]); BN_GF2m_mod_sqrt(d, a, b[j], ctx); BN_GF2m_mod_sqr(e, d, b[j], ctx); BN_GF2m_add(f, c, e); /* Test that d^2 = a, where d = sqrt(a). */ if (!BN_is_zero(f)) { printf("GF(2^m) modular square root test failed!\n"); goto err; } } } st = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); BN_free(f); return st; } static int test_gf2m_modsolvequad() { BIGNUM *a, *b[2], *c, *d, *e; int i, j, s = 0, t, st = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < NUM0; i++) { BN_bntest_rand(a, 512, 0, 0); for (j = 0; j < 2; j++) { t = BN_GF2m_mod_solve_quad(c, a, b[j], ctx); if (t) { s++; BN_GF2m_mod_sqr(d, c, b[j], ctx); BN_GF2m_add(d, c, d); BN_GF2m_mod(e, a, b[j]); BN_GF2m_add(e, e, d); /* * Test that solution of quadratic c satisfies c^2 + c = a. */ if (!BN_is_zero(e)) { printf("GF(2^m) modular solve quadratic test failed!\n"); goto err; } } } } if (s == 0) { printf("All %i tests of GF(2^m) modular solve quadratic resulted in no roots;\n", NUM0); printf("this is very unlikely and probably indicates an error.\n"); goto err; } st = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); return st; } #endif static int test_kronecker() { BIGNUM *a, *b, *r, *t; int i; int legendre, kronecker; int st = 0; a = BN_new(); b = BN_new(); r = BN_new(); t = BN_new(); if (a == NULL || b == NULL || r == NULL || t == NULL) goto err; /* * We test BN_kronecker(a, b, ctx) just for b odd (Jacobi symbol). In * this case we know that if b is prime, then BN_kronecker(a, b, ctx) is * congruent to $a^{(b-1)/2}$, modulo $b$ (Legendre symbol). So we * generate a random prime b and compare these values for a number of * random a's. (That is, we run the Solovay-Strassen primality test to * confirm that b is prime, except that we don't want to test whether b * is prime but whether BN_kronecker works.) */ if (!BN_generate_prime_ex(b, 512, 0, NULL, NULL, NULL)) goto err; b->neg = rand_neg(); for (i = 0; i < NUM0; i++) { if (!BN_bntest_rand(a, 512, 0, 0)) goto err; a->neg = rand_neg(); /* t := (|b|-1)/2 (note that b is odd) */ if (!BN_copy(t, b)) goto err; t->neg = 0; if (!BN_sub_word(t, 1)) goto err; if (!BN_rshift1(t, t)) goto err; /* r := a^t mod b */ b->neg = 0; if (!BN_mod_exp_recp(r, a, t, b, ctx)) goto err; b->neg = 1; if (BN_is_word(r, 1)) legendre = 1; else if (BN_is_zero(r)) legendre = 0; else { if (!BN_add_word(r, 1)) goto err; if (0 != BN_ucmp(r, b)) { printf("Legendre symbol computation failed\n"); goto err; } legendre = -1; } kronecker = BN_kronecker(a, b, ctx); if (kronecker < -1) goto err; /* we actually need BN_kronecker(a, |b|) */ if (a->neg && b->neg) kronecker = -kronecker; if (legendre != kronecker) { printf("legendre != kronecker; a = "); BN_print_fp(stdout, a); printf(", b = "); BN_print_fp(stdout, b); printf("\n"); goto err; } } st = 1; err: BN_free(a); BN_free(b); BN_free(r); BN_free(t); return st; } static int file_sum(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *b = getBN(s, "B"); BIGNUM *sum = getBN(s, "Sum"); BIGNUM *ret = BN_new(); BN_ULONG b_word; int st = 0; if (a == NULL || b == NULL || sum == NULL || ret == NULL) goto err; if (!BN_add(ret, a, b) || !equalBN("A + B", sum, ret) || !BN_sub(ret, sum, a) || !equalBN("Sum - A", b, ret) || !BN_sub(ret, sum, b) || !equalBN("Sum - B", a, ret)) goto err; /* * Test that the functions work when |r| and |a| point to the same BIGNUM, * or when |r| and |b| point to the same BIGNUM. * TODO: Test where all of |r|, |a|, and |b| point to the same BIGNUM. */ if (!BN_copy(ret, a) || !BN_add(ret, ret, b) || !equalBN("A + B (r is a)", sum, ret) || !BN_copy(ret, b) || !BN_add(ret, a, ret) || !equalBN("A + B (r is b)", sum, ret) || !BN_copy(ret, sum) || !BN_sub(ret, ret, a) || !equalBN("Sum - A (r is a)", b, ret) || !BN_copy(ret, a) || !BN_sub(ret, sum, ret) || !equalBN("Sum - A (r is b)", b, ret) || !BN_copy(ret, sum) || !BN_sub(ret, ret, b) || !equalBN("Sum - B (r is a)", a, ret) || !BN_copy(ret, b) || !BN_sub(ret, sum, ret) || !equalBN("Sum - B (r is b)", a, ret)) goto err; /* * Test BN_uadd() and BN_usub() with the prerequisites they are * documented as having. Note that these functions are frequently used * when the prerequisites don't hold. In those cases, they are supposed * to work as if the prerequisite hold, but we don't test that yet. * TODO: test that. */ if (!BN_is_negative(a) && !BN_is_negative(b) && BN_cmp(a, b) >= 0) { if (!BN_uadd(ret, a, b) || !equalBN("A +u B", sum, ret) || !BN_usub(ret, sum, a) || !equalBN("Sum -u A", b, ret) || !BN_usub(ret, sum, b) || !equalBN("Sum -u B", a, ret)) goto err; /* * Test that the functions work when |r| and |a| point to the same * BIGNUM, or when |r| and |b| point to the same BIGNUM. * TODO: Test where all of |r|, |a|, and |b| point to the same BIGNUM. */ if (!BN_copy(ret, a) || !BN_uadd(ret, ret, b) || !equalBN("A +u B (r is a)", sum, ret) || !BN_copy(ret, b) || !BN_uadd(ret, a, ret) || !equalBN("A +u B (r is b)", sum, ret) || !BN_copy(ret, sum) || !BN_usub(ret, ret, a) || !equalBN("Sum -u A (r is a)", b, ret) || !BN_copy(ret, a) || !BN_usub(ret, sum, ret) || !equalBN("Sum -u A (r is b)", b, ret) || !BN_copy(ret, sum) || !BN_usub(ret, ret, b) || !equalBN("Sum -u B (r is a)", a, ret) || !BN_copy(ret, b) || !BN_usub(ret, sum, ret) || !equalBN("Sum -u B (r is b)", a, ret)) goto err; } /* * Test with BN_add_word() and BN_sub_word() if |b| is small enough. */ b_word = BN_get_word(b); if (!BN_is_negative(b) && b_word != (BN_ULONG)-1) { if (!BN_copy(ret, a) || !BN_add_word(ret, b_word) || !equalBN("A + B (word)", sum, ret) || !BN_copy(ret, sum) || !BN_sub_word(ret, b_word) || !equalBN("Sum - B (word)", a, ret)) goto err; } st = 1; err: BN_free(a); BN_free(b); BN_free(sum); BN_free(ret); return st; } static int file_lshift1(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *lshift1 = getBN(s, "LShift1"); BIGNUM *zero = BN_new(); BIGNUM *ret = BN_new(); BIGNUM *two = BN_new(); BIGNUM *remainder = BN_new(); int st = 0; if (a == NULL || lshift1 == NULL || zero == NULL || ret == NULL || two == NULL || remainder == NULL) goto err; BN_zero(zero); if (!BN_set_word(two, 2) || !BN_add(ret, a, a) || !equalBN("A + A", lshift1, ret) || !BN_mul(ret, a, two, ctx) || !equalBN("A * 2", lshift1, ret) || !BN_div(ret, remainder, lshift1, two, ctx) || !equalBN("LShift1 / 2", a, ret) || !equalBN("LShift1 % 2", zero, remainder) || !BN_lshift1(ret, a) || !equalBN("A << 1", lshift1, ret) || !BN_rshift1(ret, lshift1) || !equalBN("LShift >> 1", a, ret) || !BN_rshift1(ret, lshift1) || !equalBN("LShift >> 1", a, ret)) goto err; /* Set the LSB to 1 and test rshift1 again. */ if (!BN_set_bit(lshift1, 0) || !BN_div(ret, NULL /* rem */ , lshift1, two, ctx) || !equalBN("(LShift1 | 1) / 2", a, ret) || !BN_rshift1(ret, lshift1) || !equalBN("(LShift | 1) >> 1", a, ret)) goto err; st = 1; err: BN_free(a); BN_free(lshift1); BN_free(zero); BN_free(ret); BN_free(two); BN_free(remainder); return st; } static int file_lshift(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *lshift = getBN(s, "LShift"); BIGNUM *ret = BN_new(); int n = 0; int st = 0; if (a == NULL || lshift == NULL || ret == NULL || !getint(s, &n, "N")) goto err; if (!BN_lshift(ret, a, n) || !equalBN("A << N", lshift, ret) || !BN_rshift(ret, lshift, n) || !equalBN("A >> N", a, ret)) goto err; st = 1; err: BN_free(a); BN_free(lshift); BN_free(ret); return st; } static int file_rshift(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *rshift = getBN(s, "RShift"); BIGNUM *ret = BN_new(); int n = 0; int errcnt = 1; if (a == NULL || rshift == NULL || ret == NULL || !getint(s, &n, "N")) goto err; errcnt = 0; if (!BN_rshift(ret, a, n) || !equalBN("A >> N", rshift, ret)) errcnt++; /* If N == 1, try with rshift1 as well */ if (n == 1) { if (!BN_rshift1(ret, a) || !equalBN("A >> 1 (rshift1)", rshift, ret)) errcnt++; } err: BN_free(a); BN_free(rshift); BN_free(ret); return errcnt == 0; } static int file_square(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *square = getBN(s, "Square"); BIGNUM *zero = BN_new(); BIGNUM *ret = BN_new(); BIGNUM *remainder = BN_new(); BIGNUM *tmp = NULL; int st = 0; if (a == NULL || square == NULL || zero == NULL || ret == NULL || remainder == NULL) goto err; BN_zero(zero); if (!BN_sqr(ret, a, ctx) || !equalBN("A^2", square, ret) || !BN_mul(ret, a, a, ctx) || !equalBN("A * A", square, ret) || !BN_div(ret, remainder, square, a, ctx) || !equalBN("Square / A", a, ret) || !equalBN("Square % A", zero, remainder)) goto err; #if HAVE_BN_SQRT BN_set_negative(a, 0); if (!BN_sqrt(ret, square, ctx) || !equalBN("sqrt(Square)", a, ret)) goto err; /* BN_sqrt should fail on non-squares and negative numbers. */ if (!BN_is_zero(square)) { tmp = BN_new(); if (tmp == NULL || !BN_copy(tmp, square)) goto err; BN_set_negative(tmp, 1); if (BN_sqrt(ret, tmp, ctx)) { fprintf(stderr, "BN_sqrt succeeded on a negative number"); goto err; } ERR_clear_error(); BN_set_negative(tmp, 0); if (BN_add(tmp, tmp, BN_value_one())) goto err; if (BN_sqrt(ret, tmp, ctx)) { fprintf(stderr, "BN_sqrt succeeded on a non-square"); goto err; } ERR_clear_error(); } #endif st = 1; err: BN_free(a); BN_free(square); BN_free(zero); BN_free(ret); BN_free(remainder); BN_free(tmp); return st; } static int file_product(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *b = getBN(s, "B"); BIGNUM *product = getBN(s, "Product"); BIGNUM *ret = BN_new(); BIGNUM *remainder = BN_new(); BIGNUM *zero = BN_new(); int st = 0; if (a == NULL || b == NULL || product == NULL || ret == NULL || remainder == NULL || zero == NULL) goto err; BN_zero(zero); if (!BN_mul(ret, a, b, ctx) || !equalBN("A * B", product, ret) || !BN_div(ret, remainder, product, a, ctx) || !equalBN("Product / A", b, ret) || !equalBN("Product % A", zero, remainder) || !BN_div(ret, remainder, product, b, ctx) || !equalBN("Product / B", a, ret) || !equalBN("Product % B", zero, remainder)) goto err; st = 1; err: BN_free(a); BN_free(b); BN_free(product); BN_free(ret); BN_free(remainder); BN_free(zero); return st; } static int file_quotient(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *b = getBN(s, "B"); BIGNUM *quotient = getBN(s, "Quotient"); BIGNUM *remainder = getBN(s, "Remainder"); BIGNUM *ret = BN_new(); BIGNUM *ret2 = BN_new(); BIGNUM *nnmod = BN_new(); BN_ULONG b_word, ret_word; int st = 0; if (a == NULL || b == NULL || quotient == NULL || remainder == NULL || ret == NULL || ret2 == NULL || nnmod == NULL) goto err; if (!BN_div(ret, ret2, a, b, ctx) || !equalBN("A / B", quotient, ret) || !equalBN("A % B", remainder, ret2) || !BN_mul(ret, quotient, b, ctx) || !BN_add(ret, ret, remainder) || !equalBN("Quotient * B + Remainder", a, ret)) goto err; /* * Test with BN_mod_word() and BN_div_word() if the divisor is * small enough. */ b_word = BN_get_word(b); if (!BN_is_negative(b) && b_word != (BN_ULONG)-1) { BN_ULONG remainder_word = BN_get_word(remainder); assert(remainder_word != (BN_ULONG)-1); if (!BN_copy(ret, a)) goto err; ret_word = BN_div_word(ret, b_word); if (ret_word != remainder_word) { #ifdef BN_DEC_FMT1 fprintf(stderr, "Got A %% B (word) = " BN_DEC_FMT1 ", wanted " BN_DEC_FMT1 "\n", ret_word, remainder_word); #else fprintf(stderr, "Got A %% B (word) mismatch\n"); #endif goto err; } if (!equalBN ("A / B (word)", quotient, ret)) goto err; ret_word = BN_mod_word(a, b_word); if (ret_word != remainder_word) { #ifdef BN_DEC_FMT1 fprintf(stderr, "Got A %% B (word) = " BN_DEC_FMT1 ", wanted " BN_DEC_FMT1 "\n", ret_word, remainder_word); #else fprintf(stderr, "Got A %% B (word) mismatch\n"); #endif goto err; } } /* Test BN_nnmod. */ if (!BN_is_negative(b)) { if (!BN_copy(nnmod, remainder) || (BN_is_negative(nnmod) && !BN_add(nnmod, nnmod, b)) || !BN_nnmod(ret, a, b, ctx) || !equalBN("A % B (non-negative)", nnmod, ret)) goto err; } st = 1; err: BN_free(a); BN_free(b); BN_free(quotient); BN_free(remainder); BN_free(ret); BN_free(ret2); BN_free(nnmod); return st; } static int file_modmul(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *b = getBN(s, "B"); BIGNUM *m = getBN(s, "M"); BIGNUM *mod_mul = getBN(s, "ModMul"); BIGNUM *ret = BN_new(); int st = 0; if (a == NULL || b == NULL || m == NULL || mod_mul == NULL || ret == NULL) goto err; if (!BN_mod_mul(ret, a, b, m, ctx) || !equalBN("A * B (mod M)", mod_mul, ret)) goto err; if (BN_is_odd(m)) { /* Reduce |a| and |b| and test the Montgomery version. */ BN_MONT_CTX *mont = BN_MONT_CTX_new(); BIGNUM *a_tmp = BN_new(); BIGNUM *b_tmp = BN_new(); if (mont == NULL || a_tmp == NULL || b_tmp == NULL || !BN_MONT_CTX_set(mont, m, ctx) || !BN_nnmod(a_tmp, a, m, ctx) || !BN_nnmod(b_tmp, b, m, ctx) || !BN_to_montgomery(a_tmp, a_tmp, mont, ctx) || !BN_to_montgomery(b_tmp, b_tmp, mont, ctx) || !BN_mod_mul_montgomery(ret, a_tmp, b_tmp, mont, ctx) || !BN_from_montgomery(ret, ret, mont, ctx) || !equalBN("A * B (mod M) (mont)", mod_mul, ret)) { st = 0; } else { st = 1; } BN_MONT_CTX_free(mont); BN_free(a_tmp); BN_free(b_tmp); if (st == 0) goto err; } st = 1; err: BN_free(a); BN_free(b); BN_free(m); BN_free(mod_mul); BN_free(ret); return st; } static int file_modexp(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *e = getBN(s, "E"); BIGNUM *m = getBN(s, "M"); BIGNUM *mod_exp = getBN(s, "ModExp"); BIGNUM *ret = BN_new(); BIGNUM *b = NULL, *c = NULL, *d = BN_new(); int st = 0; if (a == NULL || e == NULL || m == NULL || mod_exp == NULL || ret == NULL) goto err; if (!BN_mod_exp(ret, a, e, m, ctx) || !equalBN("A ^ E (mod M)", mod_exp, ret)) goto err; if (BN_is_odd(m)) { if (!BN_mod_exp_mont(ret, a, e, m, ctx, NULL) || !equalBN("A ^ E (mod M) (mont)", mod_exp, ret) || !BN_mod_exp_mont_consttime(ret, a, e, m, ctx, NULL) || !equalBN("A ^ E (mod M) (mont const", mod_exp, ret)) goto err; } /* Regression test for carry propagation bug in sqr8x_reduction */ BN_hex2bn(&a, "050505050505"); BN_hex2bn(&b, "02"); BN_hex2bn(&c, "4141414141414141414141274141414141414141414141414141414141414141" "4141414141414141414141414141414141414141414141414141414141414141" "4141414141414141414141800000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000001"); BN_mod_exp(d, a, b, c, ctx); BN_mul(e, a, a, ctx); if (BN_cmp(d, e)) { fprintf(stderr, "BN_mod_exp and BN_mul produce different results!\n"); goto err; } st = 1; err: BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); BN_free(m); BN_free(mod_exp); BN_free(ret); return st; } static int file_exp(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *e = getBN(s, "E"); BIGNUM *exp = getBN(s, "Exp"); BIGNUM *ret = BN_new(); int st = 0; if (a == NULL || e == NULL || exp == NULL || ret == NULL) goto err; if (!BN_exp(ret, a, e, ctx) || !equalBN("A ^ E", exp, ret)) goto err; st = 1; err: BN_free(a); BN_free(e); BN_free(exp); BN_free(ret); return st; } static int file_modsqrt(STANZA *s) { BIGNUM *a = getBN(s, "A"); BIGNUM *p = getBN(s, "P"); BIGNUM *mod_sqrt = getBN(s, "ModSqrt"); BIGNUM *ret = BN_new(); BIGNUM *ret2 = BN_new(); int st = 0; if (a == NULL || p == NULL || mod_sqrt == NULL || ret == NULL || ret2 == NULL) goto err; /* There are two possible answers. */ if (!BN_mod_sqrt(ret, a, p, ctx) || !BN_sub(ret2, p, ret)) goto err; if (BN_cmp(ret2, mod_sqrt) != 0 && !equalBN("sqrt(A) (mod P)", mod_sqrt, ret)) goto err; st = 1; err: BN_free(a); BN_free(p); BN_free(mod_sqrt); BN_free(ret); BN_free(ret2); return st; } static int test_bn2padded() { #if HAVE_BN_PADDED uint8_t zeros[256], out[256], reference[128]; BIGNUM *n = BN_new(); int st = 0; /* Test edge case at 0. */ if (n == NULL) goto err; if (!BN_bn2bin_padded(NULL, 0, n)) { fprintf(stderr, "BN_bn2bin_padded failed to encode 0 in an empty buffer.\n"); goto err; } memset(out, -1, sizeof(out)); if (!BN_bn2bin_padded(out, sizeof(out), n)) { fprintf(stderr, "BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n"); goto err; } memset(zeros, 0, sizeof(zeros)); if (memcmp(zeros, out, sizeof(out))) { fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n"); goto err; } /* Test a random numbers at various byte lengths. */ for (size_t bytes = 128 - 7; bytes <= 128; bytes++) { #define TOP_BIT_ON 0 #define BOTTOM_BIT_NOTOUCH 0 if (!BN_rand(n, bytes * 8, TOP_BIT_ON, BOTTOM_BIT_NOTOUCH)) { ERR_print_errors_fp(stderr); goto err; } if (BN_num_bytes(n) != bytes || BN_bn2bin(n, reference) != bytes) { fprintf(stderr, "Bad result from BN_rand; bytes.\n"); goto err; } /* Empty buffer should fail. */ if (BN_bn2bin_padded(NULL, 0, n)) { fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on empty buffer.\n"); goto err; } /* One byte short should fail. */ if (BN_bn2bin_padded(out, bytes - 1, n)) { fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on short.\n"); goto err; } /* Exactly right size should encode. */ if (!BN_bn2bin_padded(out, bytes, n) || memcmp(out, reference, bytes) != 0) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); goto err; } /* Pad up one byte extra. */ if (!BN_bn2bin_padded(out, bytes + 1, n) || memcmp(out + 1, reference, bytes) || memcmp(out, zeros, 1)) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); goto err; } /* Pad up to 256. */ if (!BN_bn2bin_padded(out, sizeof(out), n) || memcmp(out + sizeof(out) - bytes, reference, bytes) || memcmp(out, zeros, sizeof(out) - bytes)) { fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); goto err; } } st = 1; err: BN_free(n); return st; #else return ctx != NULL; #endif } static int test_dec2bn() { BIGNUM *bn = NULL; int st = 0; int ret = parsedecBN(&bn, "0"); if (ret != 1 || !BN_is_zero(bn) || BN_is_negative(bn)) { fprintf(stderr, "BN_dec2bn(0) gave a bad result.\n"); goto err; } BN_free(bn); ret = parsedecBN(&bn, "256"); if (ret != 3 || !BN_is_word(bn, 256) || BN_is_negative(bn)) { fprintf(stderr, "BN_dec2bn(256) gave a bad result.\n"); goto err; } BN_free(bn); ret = parsedecBN(&bn, "-42"); if (ret != 3 || !BN_abs_is_word(bn, 42) || !BN_is_negative(bn)) { fprintf(stderr, "BN_dec2bn(42) gave a bad result.\n"); goto err; } BN_free(bn); ret = parsedecBN(&bn, "-0"); if (ret != 2 || !BN_is_zero(bn) || BN_is_negative(bn)) { fprintf(stderr, "BN_dec2bn(-0) gave a bad result.\n"); goto err; } BN_free(bn); ret = parsedecBN(&bn, "42trailing garbage is ignored"); if (ret != 2 || !BN_abs_is_word(bn, 42) || BN_is_negative(bn)) { fprintf(stderr, "BN_dec2bn(42trailing...) gave a bad result.\n"); goto err; } st = 1; err: BN_free(bn); return st; } static int test_hex2bn() { BIGNUM *bn = NULL; int ret, st = 0; ret = parseBN(&bn, "0"); if (ret != 1 || !BN_is_zero(bn) || BN_is_negative(bn)) { fprintf(stderr, "BN_hex2bn(0) gave a bad result.\n"); goto err; } BN_free(bn); ret = parseBN(&bn, "256"); if (ret != 3 || !BN_is_word(bn, 0x256) || BN_is_negative(bn)) { fprintf(stderr, "BN_hex2bn(256) gave a bad result.\n"); goto err; } BN_free(bn); ret = parseBN(&bn, "-42"); if (ret != 3 || !BN_abs_is_word(bn, 0x42) || !BN_is_negative(bn)) { fprintf(stderr, "BN_hex2bn(-42) gave a bad result.\n"); goto err; } BN_free(bn); ret = parseBN(&bn, "-0"); if (ret != 2 || !BN_is_zero(bn) || BN_is_negative(bn)) { fprintf(stderr, "BN_hex2bn(-0) gave a bad result.\n"); goto err; } BN_free(bn); ret = parseBN(&bn, "abctrailing garbage is ignored"); if (ret != 3 || !BN_is_word(bn, 0xabc) || BN_is_negative(bn)) { fprintf(stderr, "BN_hex2bn(abctrail...) gave a bad result.\n"); goto err; } st = 1; err: BN_free(bn); return st; } static int test_asc2bn() { BIGNUM *bn = BN_new(); int st = 0; if (!BN_asc2bn(&bn, "0") || !BN_is_zero(bn) || BN_is_negative(bn)) { fprintf(stderr, "BN_asc2bn(0) gave a bad result.\n"); goto err; } if (!BN_asc2bn(&bn, "256") || !BN_is_word(bn, 256) || BN_is_negative(bn)) { fprintf(stderr, "BN_asc2bn(256) gave a bad result.\n"); goto err; } if (!BN_asc2bn(&bn, "-42") || !BN_abs_is_word(bn, 42) || !BN_is_negative(bn)) { fprintf(stderr, "BN_asc2bn(-42) gave a bad result.\n"); goto err; } if (!BN_asc2bn(&bn, "0x1234") || !BN_is_word(bn, 0x1234) || BN_is_negative(bn)) { fprintf(stderr, "BN_asc2bn(0x1234) gave a bad result.\n"); goto err; } if (!BN_asc2bn(&bn, "0X1234") || !BN_is_word(bn, 0x1234) || BN_is_negative(bn)) { fprintf(stderr, "BN_asc2bn(0X1234) gave a bad result.\n"); goto err; } if (!BN_asc2bn(&bn, "-0xabcd") || !BN_abs_is_word(bn, 0xabcd) || !BN_is_negative(bn)) { fprintf(stderr, "BN_asc2bn(-0xabcd) gave a bad result.\n"); goto err; } if (!BN_asc2bn(&bn, "-0") || !BN_is_zero(bn) || BN_is_negative(bn)) { fprintf(stderr, "BN_asc2bn(-0) gave a bad result.\n"); goto err; } if (!BN_asc2bn(&bn, "123trailing garbage is ignored") || !BN_is_word(bn, 123) || BN_is_negative(bn)) { fprintf(stderr, "BN_asc2bn(123trail...) gave a bad result.\n"); goto err; } st = 1; err: BN_free(bn); return st; } static const MPITEST kMPITests[] = { {"0", "\x00\x00\x00\x00", 4}, {"1", "\x00\x00\x00\x01\x01", 5}, {"-1", "\x00\x00\x00\x01\x81", 5}, {"128", "\x00\x00\x00\x02\x00\x80", 6}, {"256", "\x00\x00\x00\x02\x01\x00", 6}, {"-256", "\x00\x00\x00\x02\x81\x00", 6}, }; static int test_mpi() { uint8_t scratch[8]; int i = (int)sizeof(kMPITests) / sizeof(kMPITests[0]); const MPITEST *test = kMPITests; size_t mpi_len, mpi_len2; BIGNUM *bn = BN_new(); BIGNUM *bn2 = NULL; int st = 0; for ( ; --i >= 0; test++) { if (!BN_asc2bn(&bn, test->base10)) { fprintf(stderr, "Can't convert %s\n", test->base10); goto err; } mpi_len = BN_bn2mpi(bn, NULL); if (mpi_len > sizeof (scratch)) { fprintf(stderr, "MPI test #%u: MPI size is too large to test.\n", (unsigned)i); goto err; } mpi_len2 = BN_bn2mpi(bn, scratch); if (mpi_len != mpi_len2) { fprintf(stderr, "MPI test #%u: length changes.\n", (unsigned)i); goto err; } if (mpi_len != test->mpi_len || memcmp(test->mpi, scratch, mpi_len) != 0) { fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i); goto err; } bn2 = BN_mpi2bn(scratch, mpi_len, NULL); if (bn2 == NULL) { fprintf(stderr, "MPI test #%u: failed to parse\n", (unsigned)i); goto err; } if (BN_cmp(bn, bn2) != 0) { fprintf(stderr, "MPI test #%u: wrong result\n", (unsigned)i); BN_free(bn2); goto err; } BN_free(bn2); } st = 1; err: BN_free(bn); return st; } static int test_rand() { BIGNUM *bn = BN_new(); int st = 0; if (bn == NULL) return 0; /* * Test BN_rand for degenerate cases with |top| and |bottom| parameters. */ if (BN_rand(bn, 0, 0 /* top */ , 0 /* bottom */ )) { fprintf(stderr, "BN_rand1 gave a bad result.\n"); goto err; } if (BN_rand(bn, 0, 1 /* top */ , 1 /* bottom */ )) { fprintf(stderr, "BN_rand2 gave a bad result.\n"); goto err; } if (!BN_rand(bn, 1, 0 /* top */ , 0 /* bottom */ ) || !BN_is_word(bn, 1)) { fprintf(stderr, "BN_rand3 gave a bad result.\n"); goto err; } if (BN_rand(bn, 1, 1 /* top */ , 0 /* bottom */ )) { fprintf(stderr, "BN_rand4 gave a bad result.\n"); goto err; } if (!BN_rand(bn, 1, -1 /* top */ , 1 /* bottom */ ) || !BN_is_word(bn, 1)) { fprintf(stderr, "BN_rand5 gave a bad result.\n"); goto err; } if (!BN_rand(bn, 2, 1 /* top */ , 0 /* bottom */ ) || !BN_is_word(bn, 3)) { fprintf(stderr, "BN_rand6 gave a bad result.\n"); goto err; } st = 1; err: BN_free(bn); return st; } static int test_negzero() { BIGNUM *a = BN_new(); BIGNUM *b = BN_new(); BIGNUM *c = BN_new(); BIGNUM *d = BN_new(); BIGNUM *numerator = NULL, *denominator = NULL; int consttime, st = 0; if (a == NULL || b == NULL || c == NULL || d == NULL) goto err; /* Test that BN_mul never gives negative zero. */ if (!BN_set_word(a, 1)) goto err; BN_set_negative(a, 1); BN_zero(b); if (!BN_mul(c, a, b, ctx)) goto err; if (!BN_is_zero(c) || BN_is_negative(c)) { fprintf(stderr, "Multiplication test failed!\n"); goto err; } for (consttime = 0; consttime < 2; consttime++) { numerator = BN_new(); denominator = BN_new(); if (numerator == NULL || denominator == NULL) goto err; if (consttime) { BN_set_flags(numerator, BN_FLG_CONSTTIME); BN_set_flags(denominator, BN_FLG_CONSTTIME); } /* Test that BN_div never gives negative zero in the quotient. */ if (!BN_set_word(numerator, 1) || !BN_set_word(denominator, 2)) goto err; BN_set_negative(numerator, 1); if (!BN_div(a, b, numerator, denominator, ctx)) goto err; if (!BN_is_zero(a) || BN_is_negative(a)) { fprintf(stderr, "Incorrect quotient (consttime = %d).\n", consttime); goto err; } /* Test that BN_div never gives negative zero in the remainder. */ if (!BN_set_word(denominator, 1)) goto err; if (!BN_div(a, b, numerator, denominator, ctx)) goto err; if (!BN_is_zero(b) || BN_is_negative(b)) { fprintf(stderr, "Incorrect remainder (consttime = %d).\n", consttime); goto err; } BN_free(numerator); BN_free(denominator); numerator = denominator = NULL; } /* Test that BN_set_negative will not produce a negative zero. */ BN_zero(a); BN_set_negative(a, 1); if (BN_is_negative(a)) { fprintf(stderr, "BN_set_negative produced a negative zero.\n"); goto err; } st = 1; err: BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(numerator); BN_free(denominator); return st; } static int test_badmod() { BIGNUM *a = BN_new(); BIGNUM *b = BN_new(); BIGNUM *zero = BN_new(); BN_MONT_CTX *mont = BN_MONT_CTX_new(); int st = 0; if (a == NULL || b == NULL || zero == NULL || mont == NULL) goto err; BN_zero(zero); if (BN_div(a, b, BN_value_one(), zero, ctx)) { fprintf(stderr, "Division by zero succeeded!\n"); goto err; } ERR_clear_error(); if (BN_mod_mul(a, BN_value_one(), BN_value_one(), zero, ctx)) { fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n"); goto err; } ERR_clear_error(); if (BN_mod_exp(a, BN_value_one(), BN_value_one(), zero, ctx)) { fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n"); goto err; } ERR_clear_error(); if (BN_mod_exp_mont(a, BN_value_one(), BN_value_one(), zero, ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont with zero modulus succeeded!\n"); goto err; } ERR_clear_error(); if (BN_mod_exp_mont_consttime(a, BN_value_one(), BN_value_one(), zero, ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont_consttime with zero modulus succeeded!\n"); goto err; } ERR_clear_error(); if (BN_MONT_CTX_set(mont, zero, ctx)) { fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n"); goto err; } ERR_clear_error(); /* Some operations also may not be used with an even modulus. */ if (!BN_set_word(b, 16)) goto err; if (BN_MONT_CTX_set(mont, b, ctx)) { fprintf(stderr, "BN_MONT_CTX_set succeeded for even modulus!\n"); goto err; } ERR_clear_error(); if (BN_mod_exp_mont(a, BN_value_one(), BN_value_one(), b, ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont with even modulus succeeded!\n"); goto err; } ERR_clear_error(); if (BN_mod_exp_mont_consttime(a, BN_value_one(), BN_value_one(), b, ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont_consttime with even modulus succeeded!\n"); goto err; } ERR_clear_error(); st = 1; err: BN_free(a); BN_free(b); BN_free(zero); BN_MONT_CTX_free(mont); return st; } static int test_expmodzero() { BIGNUM *zero = BN_new(); BIGNUM *a = BN_new(); BIGNUM *r = BN_new(); int st = 0; if (zero == NULL || a == NULL || r == NULL || !BN_rand(a, 1024, 0, 0)) goto err; BN_zero(zero); if (!BN_mod_exp(r, a, zero, BN_value_one(), NULL) || !BN_is_zero(r) || !BN_mod_exp_mont(r, a, zero, BN_value_one(), NULL, NULL) || !BN_is_zero(r) || !BN_mod_exp_mont_consttime(r, a, zero, BN_value_one(), NULL, NULL) || !BN_is_zero(r) || !BN_mod_exp_mont_word(r, 42, zero, BN_value_one(), NULL, NULL) || !BN_is_zero(r)) goto err; st = 1; err: BN_free(zero); BN_free(a); BN_free(r); return st; } static int test_smallprime() { static const int kBits = 10; BIGNUM *r = BN_new(); int st = 0; if (r == NULL || !BN_generate_prime_ex(r, (int)kBits, 0, NULL, NULL, NULL)) goto err; if (BN_num_bits(r) != kBits) { fprintf(stderr, "Expected %u bit prime, got %u bit number\n", kBits, BN_num_bits(r)); goto err; } st = 1; err: BN_free(r); return st; } /* Delete leading and trailing spaces from a string */ static char *strip_spaces(char *p) { char *q; /* Skip over leading spaces */ while (*p && isspace(*p)) p++; if (!*p) return NULL; for (q = p + strlen(p) - 1; q != p && isspace(*q); ) *q-- = '\0'; return *p ? p : NULL; } /* * Read next test stanza; return 1 if found, 0 on EOF or error. */ static int readstanza(STANZA *s, int *linesread) { PAIR *pp = s->pairs; char *p, *equals, *key, *value; char buff[1024]; while (fgets(buff, sizeof(buff), fp) != NULL) { (*linesread)++; if ((p = strchr(buff, '\n')) == NULL) { fprintf(stderr, "Line %d too long.\n", s->start); return 0; } *p = '\0'; /* Blank line marks end of tests. */ if (buff[0] == '\0') break; /* Lines starting with a pound sign are ignored. */ if (buff[0] == '#') continue; if ((equals = strchr(buff, '=')) == NULL) { fprintf(stderr, "Line %d missing equals.\n", s->start); return 0; } *equals++ = '\0'; key = strip_spaces(buff); value = strip_spaces(equals); if (key == NULL || value == NULL) { fprintf(stderr, "Line %d missing field.\n", s->start); return 0; } s->numpairs++; if (s->numpairs >= MAXPAIRS) { fprintf(stderr, "Line %d too many lines\n", s->start); return 0; } pp->key = OPENSSL_strdup(key); pp->value = OPENSSL_strdup(value); pp++; } /* If we read anything, return ok. */ return 1; } static void clearstanza(STANZA *s) { PAIR *pp = s->pairs; int i = s->numpairs; int start = s->start; for ( ; --i >= 0; pp++) { OPENSSL_free(pp->key); OPENSSL_free(pp->value); } memset(s, 0, sizeof(*s)); s->start = start; } static int file_test_run(STANZA *s) { static const FILETEST filetests[] = { {"Sum", file_sum}, {"LShift1", file_lshift1}, {"LShift", file_lshift}, {"RShift", file_rshift}, {"Square", file_square}, {"Product", file_product}, {"Quotient", file_quotient}, {"ModMul", file_modmul}, {"ModExp", file_modexp}, {"Exp", file_exp}, {"ModSqrt", file_modsqrt}, }; int numtests = OSSL_NELEM(filetests); const FILETEST *tp = filetests; for ( ; --numtests >= 0; tp++) { if (findattr(s, tp->name) != NULL) return tp->func(s); } fprintf(stderr, "Unknown test at %d\n", s->start); return 0; } static int file_tests() { STANZA s; int linesread = 0, errcnt = 0; /* Read test file. */ memset(&s, 0, sizeof(s)); while (!feof(fp) && readstanza(&s, &linesread)) { if (s.numpairs == 0) continue; if (!file_test_run(&s)) { fprintf(stderr, "Test at %d failed\n", s.start); errcnt++; } clearstanza(&s); s.start = linesread; } return errcnt == 0; } int test_main(int argc, char *argv[]) { static const char rnd_seed[] = "If not seeded, BN_generate_prime might fail"; int result = 0; if (argc != 2) { fprintf(stderr, "%s TEST_FILE\n", argv[0]); return 1; } ADD_TEST(test_sub); ADD_TEST(test_div_recip); ADD_TEST(test_mod); ADD_TEST(test_modexp_mont5); ADD_TEST(test_kronecker); ADD_TEST(test_rand); ADD_TEST(test_bn2padded); ADD_TEST(test_dec2bn); ADD_TEST(test_hex2bn); ADD_TEST(test_asc2bn); ADD_TEST(test_mpi); ADD_TEST(test_negzero); ADD_TEST(test_badmod); ADD_TEST(test_expmodzero); ADD_TEST(test_smallprime); #ifndef OPENSSL_NO_EC2M ADD_TEST(test_gf2m_add); ADD_TEST(test_gf2m_mod); ADD_TEST(test_gf2m_mul); ADD_TEST(test_gf2m_sqr); ADD_TEST(test_gf2m_modinv); ADD_TEST(test_gf2m_moddiv); ADD_TEST(test_gf2m_modexp); ADD_TEST(test_gf2m_modsqrt); ADD_TEST(test_gf2m_modsolvequad); #endif ADD_TEST(file_tests); RAND_seed(rnd_seed, sizeof rnd_seed); ctx = BN_CTX_new(); TEST_check(ctx != NULL); fp = fopen(argv[1], "r"); TEST_check(fp != NULL); result = run_tests(argv[0]); fclose(fp); BN_CTX_free(ctx); return result; }