/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2015 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /***************************************************************************** * * * These structures should be considered PRIVATE to the record layer. No * * non-record layer code should be using these structures in any way. * * * *****************************************************************************/ typedef struct ssl3_buffer_st { /* at least SSL3_RT_MAX_PACKET_SIZE bytes, see ssl3_setup_buffers() */ unsigned char *buf; /* default buffer size (or 0 if no default set) */ size_t default_len; /* buffer size */ size_t len; /* where to 'copy from' */ int offset; /* how many bytes left */ int left; } SSL3_BUFFER; #define SEQ_NUM_SIZE 8 typedef struct ssl3_record_st { /* Record layer version */ /* r */ int rec_version; /* type of record */ /* r */ int type; /* How many bytes available */ /* rw */ unsigned int length; /* * How many bytes were available before padding was removed? This is used * to implement the MAC check in constant time for CBC records. */ /* rw */ unsigned int orig_len; /* read/write offset into 'buf' */ /* r */ unsigned int off; /* pointer to the record data */ /* rw */ unsigned char *data; /* where the decode bytes are */ /* rw */ unsigned char *input; /* only used with decompression - malloc()ed */ /* r */ unsigned char *comp; /* epoch number, needed by DTLS1 */ /* r */ unsigned long epoch; /* sequence number, needed by DTLS1 */ /* r */ unsigned char seq_num[SEQ_NUM_SIZE]; } SSL3_RECORD; typedef struct dtls1_bitmap_st { /* Track 32 packets on 32-bit systems and 64 - on 64-bit systems */ unsigned long map; /* Max record number seen so far, 64-bit value in big-endian encoding */ unsigned char max_seq_num[SEQ_NUM_SIZE]; } DTLS1_BITMAP; typedef struct record_pqueue_st { unsigned short epoch; struct pqueue_st *q; } record_pqueue; typedef struct dtls1_record_data_st { unsigned char *packet; unsigned int packet_length; SSL3_BUFFER rbuf; SSL3_RECORD rrec; # ifndef OPENSSL_NO_SCTP struct bio_dgram_sctp_rcvinfo recordinfo; # endif } DTLS1_RECORD_DATA; typedef struct dtls_record_layer_st { /* * The current data and handshake epoch. This is initially * undefined, and starts at zero once the initial handshake is * completed */ unsigned short r_epoch; unsigned short w_epoch; /* records being received in the current epoch */ DTLS1_BITMAP bitmap; /* renegotiation starts a new set of sequence numbers */ DTLS1_BITMAP next_bitmap; /* Received handshake records (processed and unprocessed) */ record_pqueue unprocessed_rcds; record_pqueue processed_rcds; /* * Buffered application records. Only for records between CCS and * Finished to prevent either protocol violation or unnecessary message * loss. */ record_pqueue buffered_app_data; /* * storage for Alert/Handshake protocol data received but not yet * processed by ssl3_read_bytes: */ unsigned char alert_fragment[DTLS1_AL_HEADER_LENGTH]; unsigned int alert_fragment_len; unsigned char handshake_fragment[DTLS1_HM_HEADER_LENGTH]; unsigned int handshake_fragment_len; /* save last and current sequence numbers for retransmissions */ unsigned char last_write_sequence[8]; unsigned char curr_write_sequence[8]; } DTLS_RECORD_LAYER; /***************************************************************************** * * * This structure should be considered "opaque" to anything outside of the * * record layer. No non-record layer code should be accessing the members of * * this structure. * * * *****************************************************************************/ typedef struct record_layer_st { /* The parent SSL structure */ SSL *s; /* * Read as many input bytes as possible (for * non-blocking reads) */ int read_ahead; /* where we are when reading */ int rstate; /* How many pipelines can be used to read data */ unsigned int numrpipes; /* How many pipelines can be used to write data */ unsigned int numwpipes; /* read IO goes into here */ SSL3_BUFFER rbuf; /* write IO goes into here */ SSL3_BUFFER wbuf[SSL_MAX_PIPELINES]; /* each decoded record goes in here */ SSL3_RECORD rrec[SSL_MAX_PIPELINES]; /* used internally to point at a raw packet */ unsigned char *packet; unsigned int packet_length; /* number of bytes sent so far */ unsigned int wnum; /* * storage for Alert/Handshake protocol data received but not yet * processed by ssl3_read_bytes: */ unsigned char alert_fragment[2]; unsigned int alert_fragment_len; unsigned char handshake_fragment[4]; unsigned int handshake_fragment_len; /* partial write - check the numbers match */ /* number bytes written */ int wpend_tot; int wpend_type; /* number of bytes submitted */ int wpend_ret; const unsigned char *wpend_buf; unsigned char read_sequence[SEQ_NUM_SIZE]; unsigned char write_sequence[SEQ_NUM_SIZE]; DTLS_RECORD_LAYER *d; } RECORD_LAYER; /***************************************************************************** * * * The following macros/functions represent the libssl internal API to the * * record layer. Any libssl code may call these functions/macros * * * *****************************************************************************/ #define MIN_SSL2_RECORD_LEN 9 #define RECORD_LAYER_set_read_ahead(rl, ra) ((rl)->read_ahead = (ra)) #define RECORD_LAYER_get_read_ahead(rl) ((rl)->read_ahead) #define RECORD_LAYER_get_packet(rl) ((rl)->packet) #define RECORD_LAYER_get_packet_length(rl) ((rl)->packet_length) #define RECORD_LAYER_add_packet_length(rl, inc) ((rl)->packet_length += (inc)) #define DTLS_RECORD_LAYER_get_w_epoch(rl) ((rl)->d->w_epoch) #define DTLS_RECORD_LAYER_get_processed_rcds(rl) \ ((rl)->d->processed_rcds) #define DTLS_RECORD_LAYER_get_unprocessed_rcds(rl) \ ((rl)->d->unprocessed_rcds) void RECORD_LAYER_init(RECORD_LAYER *rl, SSL *s); void RECORD_LAYER_clear(RECORD_LAYER *rl); void RECORD_LAYER_release(RECORD_LAYER *rl); int RECORD_LAYER_read_pending(const RECORD_LAYER *rl); int RECORD_LAYER_write_pending(const RECORD_LAYER *rl); int RECORD_LAYER_set_data(RECORD_LAYER *rl, const unsigned char *buf, int len); void RECORD_LAYER_reset_read_sequence(RECORD_LAYER *rl); void RECORD_LAYER_reset_write_sequence(RECORD_LAYER *rl); int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl); unsigned int RECORD_LAYER_get_rrec_length(RECORD_LAYER *rl); __owur int ssl3_pending(const SSL *s); __owur int ssl3_write_bytes(SSL *s, int type, const void *buf, int len); __owur int do_ssl3_write(SSL *s, int type, const unsigned char *buf, unsigned int *pipelens, unsigned int numpipes, int create_empty_fragment); __owur int ssl3_read_bytes(SSL *s, int type, int *recvd_type, unsigned char *buf, int len, int peek); __owur int ssl3_setup_buffers(SSL *s); __owur int ssl3_enc(SSL *s, SSL3_RECORD *inrecs, unsigned int n_recs, int send); __owur int n_ssl3_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int send); __owur int ssl3_write_pending(SSL *s, int type, const unsigned char *buf, unsigned int len); __owur int tls1_enc(SSL *s, SSL3_RECORD *recs, unsigned int n_recs, int send); __owur int tls1_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int send); int DTLS_RECORD_LAYER_new(RECORD_LAYER *rl); void DTLS_RECORD_LAYER_free(RECORD_LAYER *rl); void DTLS_RECORD_LAYER_clear(RECORD_LAYER *rl); void DTLS_RECORD_LAYER_set_saved_w_epoch(RECORD_LAYER *rl, unsigned short e); void DTLS_RECORD_LAYER_clear(RECORD_LAYER *rl); void DTLS_RECORD_LAYER_resync_write(RECORD_LAYER *rl); void DTLS_RECORD_LAYER_set_write_sequence(RECORD_LAYER *rl, unsigned char *seq); __owur int dtls1_read_bytes(SSL *s, int type, int *recvd_type, unsigned char *buf, int len, int peek); __owur int dtls1_write_bytes(SSL *s, int type, const void *buf, int len); __owur int do_dtls1_write(SSL *s, int type, const unsigned char *buf, unsigned int len, int create_empty_fragement); void dtls1_reset_seq_numbers(SSL *s, int rw);