/* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Refer to "The TLS Protocol Version 1.0" Section 5 * (https://tools.ietf.org/html/rfc2246#section-5) and * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 * (https://tools.ietf.org/html/rfc5246#section-5). * * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by: * * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR * P_SHA-1(S2, label + seed) * * where P_MD5 and P_SHA-1 are defined by P_, below, and S1 and S2 are * two halves of the secret (with the possibility of one shared byte, in the * case where the length of the original secret is odd). S1 is taken from the * first half of the secret, S2 from the second half. * * For TLS v1.2 the TLS PRF algorithm is given by: * * PRF(secret, label, seed) = P_(secret, label + seed) * * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect, * unless defined otherwise by the cipher suite. * * P_ is an expansion function that uses a single hash function to expand * a secret and seed into an arbitrary quantity of output: * * P_(secret, seed) = HMAC_(secret, A(1) + seed) + * HMAC_(secret, A(2) + seed) + * HMAC_(secret, A(3) + seed) + ... * * where + indicates concatenation. P_ can be iterated as many times as * is necessary to produce the required quantity of data. * * A(i) is defined as: * A(0) = seed * A(i) = HMAC_(secret, A(i-1)) */ #include #include #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include "crypto/evp.h" #include "prov/provider_ctx.h" #include "prov/providercommonerr.h" #include "prov/implementations.h" #include "prov/provider_util.h" #include "e_os.h" static OSSL_FUNC_kdf_newctx_fn kdf_tls1_prf_new; static OSSL_FUNC_kdf_freectx_fn kdf_tls1_prf_free; static OSSL_FUNC_kdf_reset_fn kdf_tls1_prf_reset; static OSSL_FUNC_kdf_derive_fn kdf_tls1_prf_derive; static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params; static OSSL_FUNC_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params; static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, const unsigned char *sec, size_t slen, const unsigned char *seed, size_t seed_len, unsigned char *out, size_t olen); #define TLS1_PRF_MAXBUF 1024 /* TLS KDF kdf context structure */ typedef struct { void *provctx; /* MAC context for the main digest */ EVP_MAC_CTX *P_hash; /* MAC context for SHA1 for the MD5/SHA-1 combined PRF */ EVP_MAC_CTX *P_sha1; /* Secret value to use for PRF */ unsigned char *sec; size_t seclen; /* Buffer of concatenated seed data */ unsigned char seed[TLS1_PRF_MAXBUF]; size_t seedlen; } TLS1_PRF; static void *kdf_tls1_prf_new(void *provctx) { TLS1_PRF *ctx; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); ctx->provctx = provctx; return ctx; } static void kdf_tls1_prf_free(void *vctx) { TLS1_PRF *ctx = (TLS1_PRF *)vctx; if (ctx != NULL) { kdf_tls1_prf_reset(ctx); OPENSSL_free(ctx); } } static void kdf_tls1_prf_reset(void *vctx) { TLS1_PRF *ctx = (TLS1_PRF *)vctx; EVP_MAC_free_ctx(ctx->P_hash); EVP_MAC_free_ctx(ctx->P_sha1); OPENSSL_clear_free(ctx->sec, ctx->seclen); OPENSSL_cleanse(ctx->seed, ctx->seedlen); memset(ctx, 0, sizeof(*ctx)); } static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, size_t keylen) { TLS1_PRF *ctx = (TLS1_PRF *)vctx; if (ctx->P_hash == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); return 0; } if (ctx->sec == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); return 0; } if (ctx->seedlen == 0) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED); return 0; } return tls1_prf_alg(ctx->P_hash, ctx->P_sha1, ctx->sec, ctx->seclen, ctx->seed, ctx->seedlen, key, keylen); } static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { const OSSL_PARAM *p; TLS1_PRF *ctx = vctx; OPENSSL_CTX *libctx = PROV_LIBRARY_CONTEXT_OF(ctx->provctx); if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) { if (strcasecmp(p->data, SN_md5_sha1) == 0) { if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, OSSL_MAC_NAME_HMAC, NULL, SN_md5, libctx) || !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params, OSSL_MAC_NAME_HMAC, NULL, SN_sha1, libctx)) return 0; } else { EVP_MAC_free_ctx(ctx->P_sha1); if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, OSSL_MAC_NAME_HMAC, NULL, NULL, libctx)) return 0; } } if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) { OPENSSL_clear_free(ctx->sec, ctx->seclen); ctx->sec = NULL; if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen)) return 0; } /* The seed fields concatenate, so process them all */ if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) { OPENSSL_cleanse(ctx->seed, ctx->seedlen); ctx->seedlen = 0; for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1, OSSL_KDF_PARAM_SEED)) { const void *q = ctx->seed + ctx->seedlen; size_t sz = 0; if (p->data_size != 0 && p->data != NULL && !OSSL_PARAM_get_octet_string(p, (void **)&q, TLS1_PRF_MAXBUF - ctx->seedlen, &sz)) return 0; ctx->seedlen += sz; } } return 1; } static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params(void) { static const OSSL_PARAM known_settable_ctx_params[] = { OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0), OSSL_PARAM_END }; return known_settable_ctx_params; } static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[]) { OSSL_PARAM *p; if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) return OSSL_PARAM_set_size_t(p, SIZE_MAX); return -2; } static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params(void) { static const OSSL_PARAM known_gettable_ctx_params[] = { OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), OSSL_PARAM_END }; return known_gettable_ctx_params; } const OSSL_DISPATCH kdf_tls1_prf_functions[] = { { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_tls1_prf_new }, { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_tls1_prf_free }, { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_tls1_prf_reset }, { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_tls1_prf_derive }, { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, (void(*)(void))kdf_tls1_prf_settable_ctx_params }, { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_tls1_prf_set_ctx_params }, { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, (void(*)(void))kdf_tls1_prf_gettable_ctx_params }, { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_tls1_prf_get_ctx_params }, { 0, NULL } }; /* * Refer to "The TLS Protocol Version 1.0" Section 5 * (https://tools.ietf.org/html/rfc2246#section-5) and * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 * (https://tools.ietf.org/html/rfc5246#section-5). * * P_ is an expansion function that uses a single hash function to expand * a secret and seed into an arbitrary quantity of output: * * P_(secret, seed) = HMAC_(secret, A(1) + seed) + * HMAC_(secret, A(2) + seed) + * HMAC_(secret, A(3) + seed) + ... * * where + indicates concatenation. P_ can be iterated as many times as * is necessary to produce the required quantity of data. * * A(i) is defined as: * A(0) = seed * A(i) = HMAC_(secret, A(i-1)) */ static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init, const unsigned char *sec, size_t sec_len, const unsigned char *seed, size_t seed_len, unsigned char *out, size_t olen) { size_t chunk; EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL; unsigned char Ai[EVP_MAX_MD_SIZE]; size_t Ai_len; int ret = 0; OSSL_PARAM params[2], *p = params; *p++ = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (void *)sec, sec_len); *p = OSSL_PARAM_construct_end(); if (!EVP_MAC_set_ctx_params(ctx_init, params)) goto err; if (!EVP_MAC_init(ctx_init)) goto err; chunk = EVP_MAC_size(ctx_init); if (chunk == 0) goto err; /* A(0) = seed */ ctx_Ai = EVP_MAC_dup_ctx(ctx_init); if (ctx_Ai == NULL) goto err; if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len)) goto err; for (;;) { /* calc: A(i) = HMAC_(secret, A(i-1)) */ if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai))) goto err; EVP_MAC_free_ctx(ctx_Ai); ctx_Ai = NULL; /* calc next chunk: HMAC_(secret, A(i) + seed) */ ctx = EVP_MAC_dup_ctx(ctx_init); if (ctx == NULL) goto err; if (!EVP_MAC_update(ctx, Ai, Ai_len)) goto err; /* save state for calculating next A(i) value */ if (olen > chunk) { ctx_Ai = EVP_MAC_dup_ctx(ctx); if (ctx_Ai == NULL) goto err; } if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len)) goto err; if (olen <= chunk) { /* last chunk - use Ai as temp bounce buffer */ if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai))) goto err; memcpy(out, Ai, olen); break; } if (!EVP_MAC_final(ctx, out, NULL, olen)) goto err; EVP_MAC_free_ctx(ctx); ctx = NULL; out += chunk; olen -= chunk; } ret = 1; err: EVP_MAC_free_ctx(ctx); EVP_MAC_free_ctx(ctx_Ai); OPENSSL_cleanse(Ai, sizeof(Ai)); return ret; } /* * Refer to "The TLS Protocol Version 1.0" Section 5 * (https://tools.ietf.org/html/rfc2246#section-5) and * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 * (https://tools.ietf.org/html/rfc5246#section-5). * * For TLS v1.0 and TLS v1.1: * * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR * P_SHA-1(S2, label + seed) * * S1 is taken from the first half of the secret, S2 from the second half. * * L_S = length in bytes of secret; * L_S1 = L_S2 = ceil(L_S / 2); * * For TLS v1.2: * * PRF(secret, label, seed) = P_(secret, label + seed) */ static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, const unsigned char *sec, size_t slen, const unsigned char *seed, size_t seed_len, unsigned char *out, size_t olen) { if (sha1ctx != NULL) { /* TLS v1.0 and TLS v1.1 */ size_t i; unsigned char *tmp; /* calc: L_S1 = L_S2 = ceil(L_S / 2) */ size_t L_S1 = (slen + 1) / 2; size_t L_S2 = L_S1; if (!tls1_prf_P_hash(mdctx, sec, L_S1, seed, seed_len, out, olen)) return 0; if ((tmp = OPENSSL_malloc(olen)) == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return 0; } if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2, seed, seed_len, tmp, olen)) { OPENSSL_clear_free(tmp, olen); return 0; } for (i = 0; i < olen; i++) out[i] ^= tmp[i]; OPENSSL_clear_free(tmp, olen); return 1; } /* TLS v1.2 */ if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen)) return 0; return 1; }