/* * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * https://www.openssl.org/source/license.html * or in the file LICENSE in the source distribution. */ #include #include #include #include #include #include #include #include "fuzzer.h" #define DEFINE_ALGORITHMS(name, evp) DEFINE_STACK_OF(evp) \ static int cmp_##evp(const evp *const *a, const evp *const *b); \ static void collect_##evp(evp *obj, void *stack); \ static void init_##name(OSSL_LIB_CTX *libctx); \ static void cleanup_##name(void); \ static STACK_OF(evp) *name##_collection; \ static int cmp_##evp(const evp *const *a, const evp *const *b) \ { \ return strcmp(OSSL_PROVIDER_get0_name(evp##_get0_provider(*a)), \ OSSL_PROVIDER_get0_name(evp##_get0_provider(*b))); \ } \ static void collect_##evp(evp *obj, void *stack) \ { \ STACK_OF(evp) *obj_stack = stack; \ \ if (sk_##evp##_push(obj_stack, obj) > 0) \ evp##_up_ref(obj); \ } \ static void init_##name(OSSL_LIB_CTX *libctx) \ { \ name##_collection = sk_##evp##_new(cmp_##evp); \ evp##_do_all_provided(libctx, collect_##evp, name##_collection); \ } \ static void cleanup_##name(void) \ { \ sk_##evp##_pop_free(name##_collection, evp##_free); \ } DEFINE_ALGORITHMS(digests, EVP_MD) DEFINE_ALGORITHMS(kdf, EVP_KDF) DEFINE_ALGORITHMS(cipher, EVP_CIPHER) DEFINE_ALGORITHMS(kem, EVP_KEM) DEFINE_ALGORITHMS(keyexch, EVP_KEYEXCH) DEFINE_ALGORITHMS(rand, EVP_RAND) DEFINE_ALGORITHMS(mac, EVP_MAC) DEFINE_ALGORITHMS(keymgmt, EVP_KEYMGMT) DEFINE_ALGORITHMS(signature, EVP_SIGNATURE) DEFINE_ALGORITHMS(asym_ciphers, EVP_ASYM_CIPHER) static OSSL_LIB_CTX *libctx = NULL; int FuzzerInitialize(int *argc, char ***argv) { libctx = OSSL_LIB_CTX_new(); if (libctx == NULL) return 0; init_digests(libctx); init_kdf(libctx); init_cipher(libctx); init_kem(libctx); init_keyexch(libctx); init_rand(libctx); init_mac(libctx); init_keymgmt(libctx); init_signature(libctx); init_asym_ciphers(libctx); return 1; } void FuzzerCleanup(void) { cleanup_digests(); cleanup_kdf(); cleanup_cipher(); cleanup_kem(); cleanup_keyexch(); cleanup_rand(); cleanup_mac(); cleanup_keymgmt(); cleanup_signature(); cleanup_asym_ciphers(); OSSL_LIB_CTX_free(libctx); } static int read_uint(const uint8_t **buf, size_t *len, uint64_t **res) { int r = 1; if (*len < sizeof(uint64_t)) { r = 0; goto end; } *res = OPENSSL_malloc(sizeof(uint64_t)); **res = (uint64_t) **buf; *buf += sizeof(uint64_t); *len -= sizeof(uint64_t); end: return r; } static int read_int(const uint8_t **buf, size_t *len, int64_t **res) { int r = 1; if (*len < sizeof(int64_t)) { r = 0; goto end; } *res = OPENSSL_malloc(sizeof(int64_t)); **res = (int64_t) **buf; *buf += sizeof(int64_t); *len -= sizeof(int64_t); end: return r; } static int read_double(const uint8_t **buf, size_t *len, double **res) { int r = 1; if (*len < sizeof(double)) { r = 0; goto end; } *res = OPENSSL_malloc(sizeof(double)); **res = (double) **buf; *buf += sizeof(double); *len -= sizeof(double); end: return r; } static int read_utf8_string(const uint8_t **buf, size_t *len, char **res) { size_t found_len; int r; found_len = strnlen((const char *) *buf, *len); if (found_len == *len) { r = -1; goto end; } found_len++; /* skip over the \0 byte */ r = (int) found_len; *res = (char *) *buf; *len -= found_len; *buf = *buf + found_len; /* continue after the \0 byte */ end: return r; } static int read_utf8_ptr(const uint8_t **buf, size_t *len, char **res) { if (*len > 0 && **buf == 0xFF) { /* represent NULL somehow */ *res = NULL; *buf += 1; *len -= 1; return 0; } return read_utf8_string(buf, len, res); } static int read_octet_string(const uint8_t **buf, size_t *len, char **res) { int r; size_t i; const uint8_t *ptr = *buf; int found = 0; for (i = 0; i < *len; ++i) { if (*ptr == 0xFF && (i + 1 < *len && *(ptr + 1) == 0xFF)) { ptr++; found = 1; break; } ptr++; } if (!found) { r = -1; goto end; } *res = (char *) *buf; r = ptr - *buf; *len -= r; *buf = ptr; end: return r; } static int read_octet_ptr(const uint8_t **buf, size_t *len, char **res) { /* TODO: This representation could need an improvement potentially. */ if (*len > 1 && **buf == 0xFF && *(*buf + 1) == 0xFF) { /* represent NULL somehow */ *res = NULL; *buf += 2; *len -= 2; return 0; } return read_octet_string(buf, len, res); } static char *DFLT_STR = ""; static char *DFLT_UTF8_PTR = NULL; static char *DFLT_OCTET_STRING = ""; static char *DFLT_OCTET_PTR = NULL; static int64_t ITERS = 1; static uint64_t UITERS = 1; static int64_t BLOCKSIZE = 8; static uint64_t UBLOCKSIZE = 8; static void free_params(OSSL_PARAM *param) { for (; param != NULL && param->key != NULL; param++) { switch (param->data_type) { case OSSL_PARAM_INTEGER: case OSSL_PARAM_UNSIGNED_INTEGER: case OSSL_PARAM_REAL: if (param->data != NULL) { OPENSSL_free(param->data); } break; } } } static OSSL_PARAM *fuzz_params(OSSL_PARAM *param, const uint8_t **buf, size_t *len) { OSSL_PARAM *p; OSSL_PARAM *fuzzed_parameters; int p_num = 0; for (p = param; p != NULL && p->key != NULL; p++) p_num++; fuzzed_parameters = OPENSSL_zalloc(sizeof(OSSL_PARAM) *(p_num + 1)); p = fuzzed_parameters; for (; param != NULL && param->key != NULL; param++) { int64_t *use_param = NULL; int64_t *p_value_int = NULL; uint64_t *p_value_uint = NULL; double *p_value_double = NULL; char *p_value_utf8_str = DFLT_STR; char *p_value_octet_str = DFLT_OCTET_STRING; char *p_value_utf8_ptr = DFLT_UTF8_PTR; char *p_value_octet_ptr = DFLT_OCTET_PTR; int data_len = 0; if (!read_int(buf, len, &use_param)) { use_param = OPENSSL_malloc(sizeof(uint64_t)); *use_param = 0; } switch (param->data_type) { case OSSL_PARAM_INTEGER: if (strcmp(param->key, OSSL_KDF_PARAM_ITER) == 0) { p_value_int = OPENSSL_malloc(sizeof(ITERS)); *p_value_int = ITERS; } else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_N) == 0) { p_value_int = OPENSSL_malloc(sizeof(ITERS)); *p_value_int = ITERS; } else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_R) == 0) { p_value_int = OPENSSL_malloc(sizeof(BLOCKSIZE)); *p_value_int = BLOCKSIZE; } else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_P) == 0) { p_value_int = OPENSSL_malloc(sizeof(BLOCKSIZE)); *p_value_int = BLOCKSIZE; } else if (!*use_param || !read_int(buf, len, &p_value_int)) { p_value_int = OPENSSL_malloc(sizeof(int64_t)); *p_value_int = 0; } *p = *param; p->data = p_value_int; p++; break; case OSSL_PARAM_UNSIGNED_INTEGER: if (strcmp(param->key, OSSL_KDF_PARAM_ITER) == 0) { p_value_uint = OPENSSL_malloc(sizeof(UITERS)); *p_value_uint = UITERS; } else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_N) == 0) { p_value_uint = OPENSSL_malloc(sizeof(UITERS)); *p_value_uint = UITERS; } else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_R) == 0) { p_value_uint = OPENSSL_malloc(sizeof(UBLOCKSIZE)); *p_value_uint = UBLOCKSIZE; } else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_P) == 0) { p_value_uint = OPENSSL_malloc(sizeof(UBLOCKSIZE)); *p_value_uint = UBLOCKSIZE; } else if (!*use_param || !read_uint(buf, len, &p_value_uint)) { p_value_uint = OPENSSL_malloc(sizeof(uint64_t)); *p_value_uint = 0; } *p = *param; p->data = p_value_uint; p++; break; case OSSL_PARAM_REAL: if (!*use_param || !read_double(buf, len, &p_value_double)) { p_value_double = OPENSSL_malloc(sizeof(double)); *p_value_double = 0; } *p = *param; p->data = p_value_double; p++; break; case OSSL_PARAM_UTF8_STRING: if (*use_param && (data_len = read_utf8_string(buf, len, &p_value_utf8_str)) < 0) data_len = 0; *p = *param; p->data = p_value_utf8_str; p->data_size = data_len; p++; break; case OSSL_PARAM_OCTET_STRING: if (*use_param && (data_len = read_octet_string(buf, len, &p_value_octet_str)) < 0) data_len = 0; *p = *param; p->data = p_value_octet_str; p->data_size = data_len; p++; break; case OSSL_PARAM_UTF8_PTR: if (*use_param && (data_len = read_utf8_ptr(buf, len, &p_value_utf8_ptr)) < 0) data_len = 0; *p = *param; p->data = p_value_utf8_ptr; p->data_size = data_len; p++; break; case OSSL_PARAM_OCTET_PTR: if (*use_param && (data_len = read_octet_ptr(buf, len, &p_value_octet_ptr)) < 0) data_len = 0; *p = *param; p->data = p_value_octet_ptr; p->data_size = data_len; p++; break; default: break; } OPENSSL_free(use_param); } return fuzzed_parameters; } static int do_evp_cipher(const EVP_CIPHER *evp_cipher, const OSSL_PARAM param[]) { unsigned char outbuf[1024]; int outlen, tmplen; unsigned char key[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; unsigned char iv[] = {1, 2, 3, 4, 5, 6, 7, 8}; const char intext[] = "text"; EVP_CIPHER_CTX *ctx; ctx = EVP_CIPHER_CTX_new(); if (!EVP_CIPHER_CTX_set_params(ctx, param)) { EVP_CIPHER_CTX_free(ctx); return 0; } if (!EVP_EncryptInit_ex2(ctx, evp_cipher, key, iv, NULL)) { /* Error */ EVP_CIPHER_CTX_free(ctx); return 0; } if (!EVP_EncryptUpdate(ctx, outbuf, &outlen, (const unsigned char *) intext, strlen(intext))) { /* Error */ EVP_CIPHER_CTX_free(ctx); return 0; } /* * Buffer passed to EVP_EncryptFinal() must be after data just * encrypted to avoid overwriting it. */ if (!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen)) { /* Error */ EVP_CIPHER_CTX_free(ctx); return 0; } outlen += tmplen; EVP_CIPHER_CTX_free(ctx); return 1; } static int do_evp_kdf(EVP_KDF *evp_kdf, const OSSL_PARAM params[]) { int r = 1; EVP_KDF_CTX *kctx = NULL; unsigned char derived[32]; kctx = EVP_KDF_CTX_new(evp_kdf); if (kctx == NULL) { r = 0; goto end; } if (EVP_KDF_CTX_set_params(kctx, params) <= 0) { r = 0; goto end; } if (EVP_KDF_derive(kctx, derived, sizeof(derived), NULL) <= 0) { r = 0; goto end; } end: EVP_KDF_CTX_free(kctx); return r; } static int do_evp_mac(EVP_MAC *evp_mac, const OSSL_PARAM params[]) { int r = 1; const char *key = "mac_key"; char text[] = "Some Crypto Text"; EVP_MAC_CTX *ctx = NULL; unsigned char buf[4096]; size_t final_l; if ((ctx = EVP_MAC_CTX_new(evp_mac)) == NULL || !EVP_MAC_init(ctx, (const unsigned char *) key, strlen(key), params)) { r = 0; goto end; } if (EVP_MAC_CTX_set_params(ctx, params) <= 0) { r = 0; goto end; } if (!EVP_MAC_update(ctx, (unsigned char *) text, sizeof(text))) { r = 0; goto end; } if (!EVP_MAC_final(ctx, buf, &final_l, sizeof(buf))) { r = 0; goto end; } end: EVP_MAC_CTX_free(ctx); return r; } static int do_evp_rand(EVP_RAND *evp_rand, const OSSL_PARAM params[]) { int r = 1; EVP_RAND_CTX *ctx = NULL; unsigned char buf[4096]; if (!(ctx = EVP_RAND_CTX_new(evp_rand, NULL))) { r = 0; goto end; } if (EVP_RAND_CTX_set_params(ctx, params) <= 0) { r = 0; goto end; } if (!EVP_RAND_generate(ctx, buf, sizeof(buf), 0, 0, NULL, 0)) { r = 0; goto end; } if (!EVP_RAND_reseed(ctx, 0, 0, 0, NULL, 0)) { r = 0; goto end; } end: EVP_RAND_CTX_free(ctx); return r; } static int do_evp_sig(EVP_SIGNATURE *evp_sig, const OSSL_PARAM params[]) { return 0; } static int do_evp_asym_cipher(EVP_ASYM_CIPHER *evp_asym_cipher, const OSSL_PARAM params[]) { return 0; } static int do_evp_kem(EVP_KEM *evp_kem, const OSSL_PARAM params[]) { return 0; } static int do_evp_key_exch(EVP_KEYEXCH *evp_kdf, const OSSL_PARAM params[]) { return 0; } static int do_evp_md(EVP_MD *evp_md, const OSSL_PARAM params[]) { int r = 1; unsigned char md_value[EVP_MAX_MD_SIZE]; unsigned int md_len; EVP_MD_CTX *mdctx = NULL; if (!(mdctx = EVP_MD_CTX_new())) { r = 0; goto end; } if (!EVP_MD_CTX_set_params(mdctx, params)) { r = 0; goto end; } if (!EVP_DigestInit_ex2(mdctx, evp_md, NULL)) { r = 0; goto end; } if (!EVP_DigestUpdate(mdctx, "Test", strlen("Test"))) { r = 0; goto end; } if (!EVP_DigestFinal_ex(mdctx, md_value, &md_len)) { r = 0; goto end; } end: EVP_MD_CTX_free(mdctx); return r; } #define EVP_FUZZ(source, evp, f) \ do { \ evp *alg = sk_##evp##_value(source, *algorithm % sk_##evp##_num(source)); \ OSSL_PARAM *fuzzed_params; \ \ if (alg == NULL) \ break; \ fuzzed_params = fuzz_params((OSSL_PARAM*) evp##_settable_ctx_params(alg), &buf, &len); \ if (fuzzed_params != NULL) \ f(alg, fuzzed_params); \ free_params(fuzzed_params); \ OSSL_PARAM_free(fuzzed_params); \ } while (0); int FuzzerTestOneInput(const uint8_t *buf, size_t len) { int r = 1; uint64_t *operation = NULL; int64_t *algorithm = NULL; if (!read_uint(&buf, &len, &operation)) { r = 0; goto end; } if (!read_int(&buf, &len, &algorithm)) { r = 0; goto end; } switch (*operation % 10) { case 0: EVP_FUZZ(digests_collection, EVP_MD, do_evp_md); break; case 1: EVP_FUZZ(cipher_collection, EVP_CIPHER, do_evp_cipher); break; case 2: EVP_FUZZ(kdf_collection, EVP_KDF, do_evp_kdf); break; case 3: EVP_FUZZ(mac_collection, EVP_MAC, do_evp_mac); break; case 4: EVP_FUZZ(kem_collection, EVP_KEM, do_evp_kem); break; case 5: EVP_FUZZ(rand_collection, EVP_RAND, do_evp_rand); break; case 6: EVP_FUZZ(asym_ciphers_collection, EVP_ASYM_CIPHER, do_evp_asym_cipher); break; case 7: EVP_FUZZ(signature_collection, EVP_SIGNATURE, do_evp_sig); break; case 8: EVP_FUZZ(keyexch_collection, EVP_KEYEXCH, do_evp_key_exch); break; case 9: /* Implement and call: static int do_evp_keymgmt(EVP_KEYMGMT *evp_kdf, const OSSL_PARAM params[]) { return 0; } */ /* not yet implemented */ break; default: r = 0; goto end; } end: OPENSSL_free(operation); OPENSSL_free(algorithm); return r; }