#include #include /* * Demo 5: Client — Client Uses Memory BIO — Nonblocking * ===================================================== * * This is an example of (part of) an application which uses libssl in an * asynchronous, nonblocking fashion. The application passes memory BIOs to * OpenSSL, meaning that it controls both when data is read/written from an SSL * object on the decrypted side but also when encrypted data from the network is * shunted to/from OpenSSL. In this way OpenSSL is used as a pure state machine * which does not make its own network I/O calls. OpenSSL never sees or creates * any file descriptor for a network socket. The functions below show all * interactions with libssl the application makes, and would hypothetically be * linked into a larger application. */ typedef struct app_conn_st { SSL *ssl; BIO *ssl_bio, *net_bio; int rx_need_tx, tx_need_rx; } APP_CONN; /* * The application is initializing and wants an SSL_CTX which it will use for * some number of outgoing connections, which it creates in subsequent calls to * new_conn. The application may also call this function multiple times to * create multiple SSL_CTX. */ SSL_CTX *create_ssl_ctx(void) { SSL_CTX *ctx; ctx = SSL_CTX_new(TLS_client_method()); if (ctx == NULL) return NULL; /* Enable trust chain verification. */ SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, NULL); /* Load default root CA store. */ if (SSL_CTX_set_default_verify_paths(ctx) == 0) { SSL_CTX_free(ctx); return NULL; } return ctx; } /* * The application wants to create a new outgoing connection using a given * SSL_CTX. * * hostname is a string like "openssl.org" used for certificate validation. */ APP_CONN *new_conn(SSL_CTX *ctx, const char *bare_hostname) { BIO *ssl_bio, *internal_bio, *net_bio; APP_CONN *conn; SSL *ssl; conn = calloc(1, sizeof(APP_CONN)); if (conn == NULL) return NULL; ssl = conn->ssl = SSL_new(ctx); if (ssl == NULL) { free(conn); return NULL; } SSL_set_connect_state(ssl); /* cannot fail */ if (BIO_new_bio_pair(&internal_bio, 0, &net_bio, 0) <= 0) { SSL_free(ssl); free(conn); return NULL; } SSL_set_bio(ssl, internal_bio, internal_bio); if (SSL_set1_host(ssl, bare_hostname) <= 0) { SSL_free(ssl); free(conn); return NULL; } if (SSL_set_tlsext_host_name(ssl, bare_hostname) <= 0) { SSL_free(ssl); free(conn); return NULL; } ssl_bio = BIO_new(BIO_f_ssl()); if (ssl_bio == NULL) { SSL_free(ssl); free(conn); return NULL; } if (BIO_set_ssl(ssl_bio, ssl, BIO_CLOSE) <= 0) { SSL_free(ssl); BIO_free(ssl_bio); return NULL; } conn->ssl_bio = ssl_bio; conn->net_bio = net_bio; return conn; } /* * Non-blocking transmission. * * Returns -1 on error. Returns -2 if the function would block (corresponds to * EWOULDBLOCK). */ int tx(APP_CONN *conn, const void *buf, int buf_len) { int rc, l; l = BIO_write(conn->ssl_bio, buf, buf_len); if (l <= 0) { rc = SSL_get_error(conn->ssl, l); switch (rc) { case SSL_ERROR_WANT_READ: conn->tx_need_rx = 1; case SSL_ERROR_WANT_CONNECT: case SSL_ERROR_WANT_WRITE: return -2; default: return -1; } } else { conn->tx_need_rx = 0; } return l; } /* * Non-blocking reception. * * Returns -1 on error. Returns -2 if the function would block (corresponds to * EWOULDBLOCK). */ int rx(APP_CONN *conn, void *buf, int buf_len) { int rc, l; l = BIO_read(conn->ssl_bio, buf, buf_len); if (l <= 0) { rc = SSL_get_error(conn->ssl, l); switch (rc) { case SSL_ERROR_WANT_WRITE: conn->rx_need_tx = 1; case SSL_ERROR_WANT_READ: return -2; default: return -1; } } else { conn->rx_need_tx = 0; } return l; } /* * Called to get data which has been enqueued for transmission to the network * by OpenSSL. */ int read_net_tx(APP_CONN *conn, void *buf, int buf_len) { return BIO_read(conn->net_bio, buf, buf_len); } /* * Called to feed data which has been received from the network to OpenSSL. */ int write_net_rx(APP_CONN *conn, const void *buf, int buf_len) { return BIO_write(conn->net_bio, buf, buf_len); } /* * Determine how much data can be written to the network RX BIO. */ size_t net_rx_space(APP_CONN *conn) { return BIO_ctrl_get_write_guarantee(conn->net_bio); } /* * Determine how much data is currently queued for transmission in the network * TX BIO. */ size_t net_tx_avail(APP_CONN *conn) { return BIO_ctrl_pending(conn->net_bio); } /* * These functions returns zero or more of: * * POLLIN: The SSL state machine is interested in socket readability events. * * POLLOUT: The SSL state machine is interested in socket writeability events. * * POLLERR: The SSL state machine is interested in socket error events. * * get_conn_pending_tx returns events which may cause SSL_write to make * progress and get_conn_pending_rx returns events which may cause SSL_read * to make progress. */ int get_conn_pending_tx(APP_CONN *conn) { return (conn->tx_need_rx ? POLLIN : 0) | POLLOUT | POLLERR; } int get_conn_pending_rx(APP_CONN *conn) { return (conn->rx_need_tx ? POLLOUT : 0) | POLLIN | POLLERR; } /* * The application wants to close the connection and free bookkeeping * structures. */ void teardown(APP_CONN *conn) { BIO_free_all(conn->ssl_bio); BIO_free_all(conn->net_bio); free(conn); } /* * The application is shutting down and wants to free a previously * created SSL_CTX. */ void teardown_ctx(SSL_CTX *ctx) { SSL_CTX_free(ctx); } /* * ============================================================================ * Example driver for the above code. This is just to demonstrate that the code * works and is not intended to be representative of a real application. */ #include #include #include #include #include #include #include static int pump(APP_CONN *conn, int fd, int events, int timeout) { int l, l2; char buf[2048]; size_t wspace; struct pollfd pfd = {0}; pfd.fd = fd; pfd.events = (events & (POLLIN | POLLERR)); if (net_rx_space(conn) == 0) pfd.events &= ~POLLIN; if (net_tx_avail(conn) > 0) pfd.events |= POLLOUT; if ((pfd.events & (POLLIN|POLLOUT)) == 0) return 1; if (poll(&pfd, 1, timeout) == 0) return -1; if (pfd.revents & POLLIN) { while ((wspace = net_rx_space(conn)) > 0) { l = read(fd, buf, wspace > sizeof(buf) ? sizeof(buf) : wspace); if (l <= 0) { switch (errno) { case EAGAIN: goto stop; default: if (l == 0) /* EOF */ goto stop; fprintf(stderr, "error on read: %d\n", errno); return -1; } break; } l2 = write_net_rx(conn, buf, l); if (l2 < l) fprintf(stderr, "short write %d %d\n", l2, l); } stop:; } if (pfd.revents & POLLOUT) { for (;;) { l = read_net_tx(conn, buf, sizeof(buf)); if (l <= 0) break; l2 = write(fd, buf, l); if (l2 < l) fprintf(stderr, "short read %d %d\n", l2, l); } } return 1; } int main(int argc, char **argv) { int rc, fd = -1, res = 1; static char tx_msg[300]; const char *tx_p = tx_msg; char rx_buf[2048]; int l, tx_len = sizeof(tx_msg)-1; int timeout = 2000 /* ms */; APP_CONN *conn = NULL; struct addrinfo hints = {0}, *result = NULL; SSL_CTX *ctx = NULL; if (argc < 3) { fprintf(stderr, "usage: %s host port\n", argv[0]); goto fail; } snprintf(tx_msg, sizeof(tx_msg), "GET / HTTP/1.0\r\nHost: %s\r\n\r\n", argv[1]); ctx = create_ssl_ctx(); if (ctx == NULL) { fprintf(stderr, "cannot create SSL context\n"); goto fail; } hints.ai_family = AF_INET; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = AI_PASSIVE; rc = getaddrinfo(argv[1], argv[2], &hints, &result); if (rc < 0) { fprintf(stderr, "cannot resolve\n"); goto fail; } signal(SIGPIPE, SIG_IGN); fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd < 0) { fprintf(stderr, "cannot create socket\n"); goto fail; } rc = connect(fd, result->ai_addr, result->ai_addrlen); if (rc < 0) { fprintf(stderr, "cannot connect\n"); goto fail; } rc = fcntl(fd, F_SETFL, O_NONBLOCK); if (rc < 0) { fprintf(stderr, "cannot make socket nonblocking\n"); goto fail; } conn = new_conn(ctx, argv[1]); if (conn == NULL) { fprintf(stderr, "cannot establish connection\n"); goto fail; } /* TX */ while (tx_len != 0) { l = tx(conn, tx_p, tx_len); if (l > 0) { tx_p += l; tx_len -= l; } else if (l == -1) { fprintf(stderr, "tx error\n"); } else if (l == -2) { if (pump(conn, fd, get_conn_pending_tx(conn), timeout) != 1) { fprintf(stderr, "pump error\n"); goto fail; } } } /* RX */ for (;;) { l = rx(conn, rx_buf, sizeof(rx_buf)); if (l > 0) { fwrite(rx_buf, 1, l, stdout); } else if (l == -1) { break; } else if (l == -2) { if (pump(conn, fd, get_conn_pending_rx(conn), timeout) != 1) { fprintf(stderr, "pump error\n"); goto fail; } } } res = 0; fail: if (conn != NULL) teardown(conn); if (ctx != NULL) teardown_ctx(ctx); if (result != NULL) freeaddrinfo(result); return res; }