/* * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * See SP800-185 "Appendix A - KMAC, .... in Terms of Keccak[c]" * * Inputs are: * K = Key (len(K) < 2^2040 bits) * X = Input * L = Output length (0 <= L < 2^2040 bits) * S = Customization String Default="" (len(S) < 2^2040 bits) * * KMAC128(K, X, L, S) * { * newX = bytepad(encode_string(K), 168) || X || right_encode(L). * T = bytepad(encode_string(“KMAC”) || encode_string(S), 168). * return KECCAK[256](T || newX || 00, L). * } * * KMAC256(K, X, L, S) * { * newX = bytepad(encode_string(K), 136) || X || right_encode(L). * T = bytepad(encode_string(“KMAC”) || encode_string(S), 136). * return KECCAK[512](T || newX || 00, L). * } * * KMAC128XOF(K, X, L, S) * { * newX = bytepad(encode_string(K), 168) || X || right_encode(0). * T = bytepad(encode_string(“KMAC”) || encode_string(S), 168). * return KECCAK[256](T || newX || 00, L). * } * * KMAC256XOF(K, X, L, S) * { * newX = bytepad(encode_string(K), 136) || X || right_encode(0). * T = bytepad(encode_string(“KMAC”) || encode_string(S), 136). * return KECCAK[512](T || newX || 00, L). * } * */ #include #include #include "internal/cryptlib.h" #include "internal/evp_int.h" #define KMAC_MAX_BLOCKSIZE ((1600 - 128*2) / 8) /* 168 */ #define KMAC_MIN_BLOCKSIZE ((1600 - 256*2) / 8) /* 136 */ /* Length encoding will be a 1 byte size + length in bits (2 bytes max) */ #define KMAC_MAX_ENCODED_HEADER_LEN 3 /* * Custom string max size is chosen such that: * len(encoded_string(custom) + len(kmac_encoded_string) <= KMAC_MIN_BLOCKSIZE * i.e: (KMAC_MAX_CUSTOM + KMAC_MAX_ENCODED_LEN) + 6 <= 136 */ #define KMAC_MAX_CUSTOM 127 /* Maximum size of encoded custom string */ #define KMAC_MAX_CUSTOM_ENCODED (KMAC_MAX_CUSTOM + KMAC_MAX_ENCODED_HEADER_LEN) /* Maximum key size in bytes = 2040 / 8 */ #define KMAC_MAX_KEY 255 /* * Maximum Encoded Key size will be padded to a multiple of the blocksize * i.e KMAC_MAX_KEY + KMAC_MAX_ENCODED_LEN = 258 * Padded to a multiple of KMAC_MAX_BLOCKSIZE */ #define KMAC_MAX_KEY_ENCODED (KMAC_MAX_BLOCKSIZE * 2) /* Fixed value of encode_string("KMAC") */ static const unsigned char kmac_string[] = { 0x01, 0x20, 0x4B, 0x4D, 0x41, 0x43 }; #define KMAC_FLAG_XOF_MODE 1 /* typedef EVP_MAC_IMPL */ struct evp_mac_impl_st { EVP_MD_CTX *ctx; const EVP_MD *md; size_t out_len; int key_len; int custom_len; /* If xof_mode = 1 then we use right_encode(0) */ int xof_mode; /* key and custom are stored in encoded form */ unsigned char key[KMAC_MAX_KEY_ENCODED]; unsigned char custom[KMAC_MAX_CUSTOM_ENCODED]; }; static int encode_string(unsigned char *out, int *out_len, const unsigned char *in, int in_len); static int right_encode(unsigned char *out, int *out_len, size_t bits); static int bytepad(unsigned char *out, int *out_len, const unsigned char *in1, int in1_len, const unsigned char *in2, int in2_len, int w); static int kmac_bytepad_encode_key(unsigned char *out, int *out_len, const unsigned char *in, int in_len, int w); static int kmac_ctrl_str(EVP_MAC_IMPL *kctx, const char *type, const char *value); static void kmac_free(EVP_MAC_IMPL *kctx) { if (kctx != NULL) { EVP_MD_CTX_free(kctx->ctx); OPENSSL_cleanse(kctx->key, kctx->key_len); OPENSSL_cleanse(kctx->custom, kctx->custom_len); OPENSSL_free(kctx); } } static EVP_MAC_IMPL *kmac_new(const EVP_MD *md) { EVP_MAC_IMPL *kctx = NULL; if ((kctx = OPENSSL_zalloc(sizeof(*kctx))) == NULL || (kctx->ctx = EVP_MD_CTX_new()) == NULL) { kmac_free(kctx); return NULL; } kctx->md = md; kctx->out_len = md->md_size; return kctx; } static EVP_MAC_IMPL *kmac128_new(void) { return kmac_new(evp_keccak_kmac128()); } static EVP_MAC_IMPL *kmac256_new(void) { return kmac_new(evp_keccak_kmac256()); } static int kmac_copy(EVP_MAC_IMPL *gdst, EVP_MAC_IMPL *gsrc) { gdst->md = gsrc->md; gdst->out_len = gsrc->out_len; gdst->key_len = gsrc->key_len; gdst->custom_len = gsrc->custom_len; gdst->xof_mode = gsrc->xof_mode; memcpy(gdst->key, gsrc->key, gsrc->key_len); memcpy(gdst->custom, gsrc->custom, gdst->custom_len); return EVP_MD_CTX_copy(gdst->ctx, gsrc->ctx); } /* * The init() assumes that any ctrl methods are set beforehand for * md, key and custom. Setting the fields afterwards will have no * effect on the output mac. */ static int kmac_init(EVP_MAC_IMPL *kctx) { EVP_MD_CTX *ctx = kctx->ctx; unsigned char out[KMAC_MAX_BLOCKSIZE]; int out_len, block_len; /* Check key has been set */ if (kctx->key_len == 0) { EVPerr(EVP_F_KMAC_INIT, EVP_R_NO_KEY_SET); return 0; } if (!EVP_DigestInit_ex(kctx->ctx, kctx->md, NULL)) return 0; block_len = EVP_MD_block_size(kctx->md); /* Set default custom string if it is not already set */ if (kctx->custom_len == 0) (void)kmac_ctrl_str(kctx, "custom", ""); return bytepad(out, &out_len, kmac_string, sizeof(kmac_string), kctx->custom, kctx->custom_len, block_len) && EVP_DigestUpdate(ctx, out, out_len) && EVP_DigestUpdate(ctx, kctx->key, kctx->key_len); } static size_t kmac_size(EVP_MAC_IMPL *kctx) { return kctx->out_len; } static int kmac_update(EVP_MAC_IMPL *kctx, const unsigned char *data, size_t datalen) { return EVP_DigestUpdate(kctx->ctx, data, datalen); } static int kmac_final(EVP_MAC_IMPL *kctx, unsigned char *out) { EVP_MD_CTX *ctx = kctx->ctx; int lbits, len; unsigned char encoded_outlen[KMAC_MAX_ENCODED_HEADER_LEN]; /* KMAC XOF mode sets the encoded length to 0 */ lbits = (kctx->xof_mode ? 0 : (kctx->out_len * 8)); return right_encode(encoded_outlen, &len, lbits) && EVP_DigestUpdate(ctx, encoded_outlen, len) && EVP_DigestFinalXOF(ctx, out, kctx->out_len); } /* * The following Ctrl functions can be set any time before final(): * - EVP_MAC_CTRL_SET_SIZE: The requested output length. * - EVP_MAC_CTRL_SET_XOF: If set, this indicates that right_encoded(0) is * part of the digested data, otherwise it uses * right_encoded(requested output length). * All other Ctrl functions should be set before init(). */ static int kmac_ctrl(EVP_MAC_IMPL *kctx, int cmd, va_list args) { const unsigned char *p; size_t len; size_t size; switch (cmd) { case EVP_MAC_CTRL_SET_XOF: kctx->xof_mode = va_arg(args, int); return 1; case EVP_MAC_CTRL_SET_SIZE: size = va_arg(args, size_t); kctx->out_len = size; return 1; case EVP_MAC_CTRL_SET_KEY: p = va_arg(args, const unsigned char *); len = va_arg(args, size_t); if (len < 4 || len > KMAC_MAX_KEY) { EVPerr(EVP_F_KMAC_CTRL, EVP_R_INVALID_KEY_LENGTH); return 0; } return kmac_bytepad_encode_key(kctx->key, &kctx->key_len, p, len, EVP_MD_block_size(kctx->md)); case EVP_MAC_CTRL_SET_CUSTOM: p = va_arg(args, const unsigned char *); len = va_arg(args, size_t); if (len > KMAC_MAX_CUSTOM) { EVPerr(EVP_F_KMAC_CTRL, EVP_R_INVALID_CUSTOM_LENGTH); return 0; } return encode_string(kctx->custom, &kctx->custom_len, p, len); default: return -2; } } static int kmac_ctrl_int(EVP_MAC_IMPL *kctx, int cmd, ...) { int rv; va_list args; va_start(args, cmd); rv = kmac_ctrl(kctx, cmd, args); va_end(args); return rv; } static int kmac_ctrl_str_cb(void *kctx, int cmd, void *buf, size_t buflen) { return kmac_ctrl_int(kctx, cmd, buf, buflen); } static int kmac_ctrl_str(EVP_MAC_IMPL *kctx, const char *type, const char *value) { if (value == NULL) return 0; if (strcmp(type, "outlen") == 0) return kmac_ctrl_int(kctx, EVP_MAC_CTRL_SET_SIZE, (size_t)atoi(value)); if (strcmp(type, "xof") == 0) return kmac_ctrl_int(kctx, EVP_MAC_CTRL_SET_XOF, atoi(value)); if (strcmp(type, "key") == 0) return EVP_str2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_KEY, value); if (strcmp(type, "hexkey") == 0) return EVP_hex2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_KEY, value); if (strcmp(type, "custom") == 0) return EVP_str2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_CUSTOM, value); if (strcmp(type, "hexcustom") == 0) return EVP_hex2ctrl(kmac_ctrl_str_cb, kctx, EVP_MAC_CTRL_SET_CUSTOM, value); return -2; } /* * Encoding/Padding Methods. */ /* Returns the number of bytes required to store 'bits' into a byte array */ static unsigned int get_encode_size(size_t bits) { unsigned int cnt = 0, sz = sizeof(size_t); while (bits && (cnt < sz)) { ++cnt; bits >>= 8; } /* If bits is zero 1 byte is required */ if (cnt == 0) cnt = 1; return cnt; } /* * Convert an integer into bytes . The number of bytes is appended * to the end of the buffer. Returns an array of bytes 'out' of size * *out_len. * * e.g if bits = 32, out[2] = { 0x20, 0x01 } * */ static int right_encode(unsigned char *out, int *out_len, size_t bits) { unsigned int len = get_encode_size(bits); int i; /* The length is constrained to a single byte: 2040/8 = 255 */ if (len > 0xFF) return 0; /* MSB's are at the start of the bytes array */ for (i = len - 1; i >= 0; --i) { out[i] = (unsigned char)(bits & 0xFF); bits >>= 8; } /* Tack the length onto the end */ out[len] = (unsigned char)len; /* The Returned length includes the tacked on byte */ *out_len = len + 1; return 1; } /* * Encodes a string with a left encoded length added. Note that the * in_len is converted to bits (*8). * * e.g- in="KMAC" gives out[6] = { 0x01, 0x20, 0x4B, 0x4D, 0x41, 0x43 } * len bits K M A C */ static int encode_string(unsigned char *out, int *out_len, const unsigned char *in, int in_len) { if (in == NULL) { *out_len = 0; } else { int i, bits, len; bits = 8 * in_len; len = get_encode_size(bits); if (len > 0xFF) return 0; out[0] = len; for (i = len; i > 0; --i) { out[i] = (bits & 0xFF); bits >>= 8; } memcpy(out + len + 1, in, in_len); *out_len = (1 + len + in_len); } return 1; } /* * Returns a zero padded encoding of the inputs in1 and an optional * in2 (can be NULL). The padded output must be a multiple of the blocksize 'w'. * The value of w is in bytes (< 256). * * The returned output is: * zero_padded(multiple of w, (left_encode(w) || in1 [|| in2]) */ static int bytepad(unsigned char *out, int *out_len, const unsigned char *in1, int in1_len, const unsigned char *in2, int in2_len, int w) { int len; unsigned char *p = out; int sz = w; /* Left encoded w */ *p++ = 1; *p++ = w; /* || in1 */ memcpy(p, in1, in1_len); p += in1_len; /* [ || in2 ] */ if (in2 != NULL && in2_len > 0) { memcpy(p, in2, in2_len); p += in2_len; } /* Figure out the pad size (divisible by w) */ len = p - out; while (len > sz) { sz += w; } /* zero pad the end of the buffer */ memset(p, 0, sz - len); *out_len = sz; return 1; } /* * Returns out = bytepad(encode_string(in), w) */ static int kmac_bytepad_encode_key(unsigned char *out, int *out_len, const unsigned char *in, int in_len, int w) { unsigned char tmp[KMAC_MAX_KEY + KMAC_MAX_ENCODED_HEADER_LEN]; int tmp_len; if (!encode_string(tmp, &tmp_len, in, in_len)) return 0; return bytepad(out, out_len, tmp, tmp_len, NULL, 0, w); } const EVP_MAC kmac128_meth = { EVP_MAC_KMAC128, kmac128_new, kmac_copy, kmac_free, kmac_size, kmac_init, kmac_update, kmac_final, kmac_ctrl, kmac_ctrl_str }; const EVP_MAC kmac256_meth = { EVP_MAC_KMAC256, kmac256_new, kmac_copy, kmac_free, kmac_size, kmac_init, kmac_update, kmac_final, kmac_ctrl, kmac_ctrl_str };