/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include "internal/evp_int.h" #include "kdf_local.h" #define HKDF_MAXBUF 1024 static void kdf_hkdf_reset(EVP_KDF_IMPL *impl); static int HKDF(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *key, size_t key_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len); static int HKDF_Extract(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *ikm, size_t ikm_len, unsigned char *prk, size_t prk_len); static int HKDF_Expand(const EVP_MD *evp_md, const unsigned char *prk, size_t prk_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len); struct evp_kdf_impl_st { int mode; const EVP_MD *md; unsigned char *salt; size_t salt_len; unsigned char *key; size_t key_len; unsigned char info[HKDF_MAXBUF]; size_t info_len; }; static EVP_KDF_IMPL *kdf_hkdf_new(void) { EVP_KDF_IMPL *impl; if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL) KDFerr(KDF_F_KDF_HKDF_NEW, ERR_R_MALLOC_FAILURE); return impl; } static void kdf_hkdf_free(EVP_KDF_IMPL *impl) { kdf_hkdf_reset(impl); OPENSSL_free(impl); } static void kdf_hkdf_reset(EVP_KDF_IMPL *impl) { OPENSSL_free(impl->salt); OPENSSL_clear_free(impl->key, impl->key_len); OPENSSL_cleanse(impl->info, impl->info_len); memset(impl, 0, sizeof(*impl)); } static int kdf_hkdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args) { const unsigned char *p; size_t len; const EVP_MD *md; switch (cmd) { case EVP_KDF_CTRL_SET_MD: md = va_arg(args, const EVP_MD *); if (md == NULL) return 0; impl->md = md; return 1; case EVP_KDF_CTRL_SET_HKDF_MODE: impl->mode = va_arg(args, int); return 1; case EVP_KDF_CTRL_SET_SALT: p = va_arg(args, const unsigned char *); len = va_arg(args, size_t); if (len == 0 || p == NULL) return 1; OPENSSL_free(impl->salt); impl->salt = OPENSSL_memdup(p, len); if (impl->salt == NULL) return 0; impl->salt_len = len; return 1; case EVP_KDF_CTRL_SET_KEY: p = va_arg(args, const unsigned char *); len = va_arg(args, size_t); OPENSSL_clear_free(impl->key, impl->key_len); impl->key = OPENSSL_memdup(p, len); if (impl->key == NULL) return 0; impl->key_len = len; return 1; case EVP_KDF_CTRL_RESET_HKDF_INFO: OPENSSL_cleanse(impl->info, impl->info_len); impl->info_len = 0; return 1; case EVP_KDF_CTRL_ADD_HKDF_INFO: p = va_arg(args, const unsigned char *); len = va_arg(args, size_t); if (len == 0 || p == NULL) return 1; if (len > (HKDF_MAXBUF - impl->info_len)) return 0; memcpy(impl->info + impl->info_len, p, len); impl->info_len += len; return 1; default: return -2; } } static int kdf_hkdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type, const char *value) { if (strcmp(type, "mode") == 0) { int mode; if (strcmp(value, "EXTRACT_AND_EXPAND") == 0) mode = EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND; else if (strcmp(value, "EXTRACT_ONLY") == 0) mode = EVP_KDF_HKDF_MODE_EXTRACT_ONLY; else if (strcmp(value, "EXPAND_ONLY") == 0) mode = EVP_KDF_HKDF_MODE_EXPAND_ONLY; else return 0; return call_ctrl(kdf_hkdf_ctrl, impl, EVP_KDF_CTRL_SET_HKDF_MODE, mode); } if (strcmp(type, "digest") == 0) return kdf_md2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_MD, value); if (strcmp(type, "salt") == 0) return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value); if (strcmp(type, "hexsalt") == 0) return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value); if (strcmp(type, "key") == 0) return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value); if (strcmp(type, "hexkey") == 0) return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value); if (strcmp(type, "info") == 0) return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO, value); if (strcmp(type, "hexinfo") == 0) return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO, value); return -2; } static size_t kdf_hkdf_size(EVP_KDF_IMPL *impl) { int sz; if (impl->mode != EVP_KDF_HKDF_MODE_EXTRACT_ONLY) return SIZE_MAX; if (impl->md == NULL) { KDFerr(KDF_F_KDF_HKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST); return 0; } sz = EVP_MD_size(impl->md); if (sz < 0) return 0; return sz; } static int kdf_hkdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen) { if (impl->md == NULL) { KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); return 0; } if (impl->key == NULL) { KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_KEY); return 0; } switch (impl->mode) { case EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND: return HKDF(impl->md, impl->salt, impl->salt_len, impl->key, impl->key_len, impl->info, impl->info_len, key, keylen); case EVP_KDF_HKDF_MODE_EXTRACT_ONLY: return HKDF_Extract(impl->md, impl->salt, impl->salt_len, impl->key, impl->key_len, key, keylen); case EVP_KDF_HKDF_MODE_EXPAND_ONLY: return HKDF_Expand(impl->md, impl->key, impl->key_len, impl->info, impl->info_len, key, keylen); default: return 0; } } const EVP_KDF hkdf_kdf_meth = { EVP_KDF_HKDF, kdf_hkdf_new, kdf_hkdf_free, kdf_hkdf_reset, kdf_hkdf_ctrl, kdf_hkdf_ctrl_str, kdf_hkdf_size, kdf_hkdf_derive }; /* * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" * Section 2 (https://tools.ietf.org/html/rfc5869#section-2) and * "Cryptographic Extraction and Key Derivation: The HKDF Scheme" * Section 4.2 (https://eprint.iacr.org/2010/264.pdf). * * From the paper: * The scheme HKDF is specified as: * HKDF(XTS, SKM, CTXinfo, L) = K(1) | K(2) | ... | K(t) * * where: * SKM is source key material * XTS is extractor salt (which may be null or constant) * CTXinfo is context information (may be null) * L is the number of key bits to be produced by KDF * k is the output length in bits of the hash function used with HMAC * t = ceil(L/k) * the value K(t) is truncated to its first d = L mod k bits. * * From RFC 5869: * 2.2. Step 1: Extract * HKDF-Extract(salt, IKM) -> PRK * 2.3. Step 2: Expand * HKDF-Expand(PRK, info, L) -> OKM */ static int HKDF(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *ikm, size_t ikm_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len) { unsigned char prk[EVP_MAX_MD_SIZE]; int ret, sz; size_t prk_len; sz = EVP_MD_size(evp_md); if (sz < 0) return 0; prk_len = (size_t)sz; /* Step 1: HKDF-Extract(salt, IKM) -> PRK */ if (!HKDF_Extract(evp_md, salt, salt_len, ikm, ikm_len, prk, prk_len)) return 0; /* Step 2: HKDF-Expand(PRK, info, L) -> OKM */ ret = HKDF_Expand(evp_md, prk, prk_len, info, info_len, okm, okm_len); OPENSSL_cleanse(prk, sizeof(prk)); return ret; } /* * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" * Section 2.2 (https://tools.ietf.org/html/rfc5869#section-2.2). * * 2.2. Step 1: Extract * * HKDF-Extract(salt, IKM) -> PRK * * Options: * Hash a hash function; HashLen denotes the length of the * hash function output in octets * * Inputs: * salt optional salt value (a non-secret random value); * if not provided, it is set to a string of HashLen zeros. * IKM input keying material * * Output: * PRK a pseudorandom key (of HashLen octets) * * The output PRK is calculated as follows: * * PRK = HMAC-Hash(salt, IKM) */ static int HKDF_Extract(const EVP_MD *evp_md, const unsigned char *salt, size_t salt_len, const unsigned char *ikm, size_t ikm_len, unsigned char *prk, size_t prk_len) { int sz = EVP_MD_size(evp_md); if (sz < 0) return 0; if (prk_len != (size_t)sz) { KDFerr(KDF_F_HKDF_EXTRACT, KDF_R_WRONG_OUTPUT_BUFFER_SIZE); return 0; } /* calc: PRK = HMAC-Hash(salt, IKM) */ return HMAC(evp_md, salt, salt_len, ikm, ikm_len, prk, NULL) != NULL; } /* * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" * Section 2.3 (https://tools.ietf.org/html/rfc5869#section-2.3). * * 2.3. Step 2: Expand * * HKDF-Expand(PRK, info, L) -> OKM * * Options: * Hash a hash function; HashLen denotes the length of the * hash function output in octets * * Inputs: * PRK a pseudorandom key of at least HashLen octets * (usually, the output from the extract step) * info optional context and application specific information * (can be a zero-length string) * L length of output keying material in octets * (<= 255*HashLen) * * Output: * OKM output keying material (of L octets) * * The output OKM is calculated as follows: * * N = ceil(L/HashLen) * T = T(1) | T(2) | T(3) | ... | T(N) * OKM = first L octets of T * * where: * T(0) = empty string (zero length) * T(1) = HMAC-Hash(PRK, T(0) | info | 0x01) * T(2) = HMAC-Hash(PRK, T(1) | info | 0x02) * T(3) = HMAC-Hash(PRK, T(2) | info | 0x03) * ... * * (where the constant concatenated to the end of each T(n) is a * single octet.) */ static int HKDF_Expand(const EVP_MD *evp_md, const unsigned char *prk, size_t prk_len, const unsigned char *info, size_t info_len, unsigned char *okm, size_t okm_len) { HMAC_CTX *hmac; int ret = 0, sz; unsigned int i; unsigned char prev[EVP_MAX_MD_SIZE]; size_t done_len = 0, dig_len, n; sz = EVP_MD_size(evp_md); if (sz <= 0) return 0; dig_len = (size_t)sz; /* calc: N = ceil(L/HashLen) */ n = okm_len / dig_len; if (okm_len % dig_len) n++; if (n > 255 || okm == NULL) return 0; if ((hmac = HMAC_CTX_new()) == NULL) return 0; if (!HMAC_Init_ex(hmac, prk, prk_len, evp_md, NULL)) goto err; for (i = 1; i <= n; i++) { size_t copy_len; const unsigned char ctr = i; /* calc: T(i) = HMAC-Hash(PRK, T(i - 1) | info | i) */ if (i > 1) { if (!HMAC_Init_ex(hmac, NULL, 0, NULL, NULL)) goto err; if (!HMAC_Update(hmac, prev, dig_len)) goto err; } if (!HMAC_Update(hmac, info, info_len)) goto err; if (!HMAC_Update(hmac, &ctr, 1)) goto err; if (!HMAC_Final(hmac, prev, NULL)) goto err; copy_len = (done_len + dig_len > okm_len) ? okm_len - done_len : dig_len; memcpy(okm + done_len, prev, copy_len); done_len += copy_len; } ret = 1; err: OPENSSL_cleanse(prev, sizeof(prev)); HMAC_CTX_free(hmac); return ret; }