From 87bea6550ae0dda7c40937cff2e86cc2b0b09491 Mon Sep 17 00:00:00 2001 From: Bernd Edlinger Date: Fri, 23 Aug 2019 10:17:31 +0200 Subject: Remove x86/x86_64 BSAES and AES_ASM support This leaves VPAES and AESNI support. The VPAES performance is comparable but BSAES is not completely constant time. There are table lookups using secret key data in AES_set_encrypt/decrypt_key and in ctr mode short data uses the non-constant time AES_encrypt function instead of bit-slicing. Furthermore the AES_ASM is by far outperformed by recent GCC versions. Since BSAES calls back to AES_ASM for short data blocks the performance on those is also worse than the pure software implementaion. Fixes: #9640 Reviewed-by: Richard Levitte (Merged from https://github.com/openssl/openssl/pull/9675) --- crypto/aes/asm/aes-586.pl | 3000 ------------------------------------- crypto/aes/asm/aes-x86_64.pl | 2916 ------------------------------------ crypto/aes/asm/bsaes-x86_64.pl | 3239 ---------------------------------------- 3 files changed, 9155 deletions(-) delete mode 100755 crypto/aes/asm/aes-586.pl delete mode 100755 crypto/aes/asm/aes-x86_64.pl delete mode 100644 crypto/aes/asm/bsaes-x86_64.pl (limited to 'crypto/aes') diff --git a/crypto/aes/asm/aes-586.pl b/crypto/aes/asm/aes-586.pl deleted file mode 100755 index 29059edf8b..0000000000 --- a/crypto/aes/asm/aes-586.pl +++ /dev/null @@ -1,3000 +0,0 @@ -#! /usr/bin/env perl -# Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. -# -# Licensed under the OpenSSL license (the "License"). You may not use -# this file except in compliance with the License. You can obtain a copy -# in the file LICENSE in the source distribution or at -# https://www.openssl.org/source/license.html - -# -# ==================================================================== -# Written by Andy Polyakov for the OpenSSL -# project. The module is, however, dual licensed under OpenSSL and -# CRYPTOGAMS licenses depending on where you obtain it. For further -# details see http://www.openssl.org/~appro/cryptogams/. -# ==================================================================== -# -# Version 4.3. -# -# You might fail to appreciate this module performance from the first -# try. If compared to "vanilla" linux-ia32-icc target, i.e. considered -# to be *the* best Intel C compiler without -KPIC, performance appears -# to be virtually identical... But try to re-configure with shared -# library support... Aha! Intel compiler "suddenly" lags behind by 30% -# [on P4, more on others]:-) And if compared to position-independent -# code generated by GNU C, this code performs *more* than *twice* as -# fast! Yes, all this buzz about PIC means that unlike other hand- -# coded implementations, this one was explicitly designed to be safe -# to use even in shared library context... This also means that this -# code isn't necessarily absolutely fastest "ever," because in order -# to achieve position independence an extra register has to be -# off-loaded to stack, which affects the benchmark result. -# -# Special note about instruction choice. Do you recall RC4_INT code -# performing poorly on P4? It might be the time to figure out why. -# RC4_INT code implies effective address calculations in base+offset*4 -# form. Trouble is that it seems that offset scaling turned to be -# critical path... At least eliminating scaling resulted in 2.8x RC4 -# performance improvement [as you might recall]. As AES code is hungry -# for scaling too, I [try to] avoid the latter by favoring off-by-2 -# shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF. -# -# As was shown by Dean Gaudet, the above note turned out to be -# void. Performance improvement with off-by-2 shifts was observed on -# intermediate implementation, which was spilling yet another register -# to stack... Final offset*4 code below runs just a tad faster on P4, -# but exhibits up to 10% improvement on other cores. -# -# Second version is "monolithic" replacement for aes_core.c, which in -# addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key. -# This made it possible to implement little-endian variant of the -# algorithm without modifying the base C code. Motivating factor for -# the undertaken effort was that it appeared that in tight IA-32 -# register window little-endian flavor could achieve slightly higher -# Instruction Level Parallelism, and it indeed resulted in up to 15% -# better performance on most recent µ-archs... -# -# Third version adds AES_cbc_encrypt implementation, which resulted in -# up to 40% performance improvement of CBC benchmark results. 40% was -# observed on P4 core, where "overall" improvement coefficient, i.e. if -# compared to PIC generated by GCC and in CBC mode, was observed to be -# as large as 4x:-) CBC performance is virtually identical to ECB now -# and on some platforms even better, e.g. 17.6 "small" cycles/byte on -# Opteron, because certain function prologues and epilogues are -# effectively taken out of the loop... -# -# Version 3.2 implements compressed tables and prefetch of these tables -# in CBC[!] mode. Former means that 3/4 of table references are now -# misaligned, which unfortunately has negative impact on elder IA-32 -# implementations, Pentium suffered 30% penalty, PIII - 10%. -# -# Version 3.3 avoids L1 cache aliasing between stack frame and -# S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The -# latter is achieved by copying the key schedule to controlled place in -# stack. This unfortunately has rather strong impact on small block CBC -# performance, ~2x deterioration on 16-byte block if compared to 3.3. -# -# Version 3.5 checks if there is L1 cache aliasing between user-supplied -# key schedule and S-boxes and abstains from copying the former if -# there is no. This allows end-user to consciously retain small block -# performance by aligning key schedule in specific manner. -# -# Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB. -# -# Current ECB performance numbers for 128-bit key in CPU cycles per -# processed byte [measure commonly used by AES benchmarkers] are: -# -# small footprint fully unrolled -# P4 24 22 -# AMD K8 20 19 -# PIII 25 23 -# Pentium 81 78 -# -# Version 3.7 reimplements outer rounds as "compact." Meaning that -# first and last rounds reference compact 256 bytes S-box. This means -# that first round consumes a lot more CPU cycles and that encrypt -# and decrypt performance becomes asymmetric. Encrypt performance -# drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is -# aggressively pre-fetched. -# -# Version 4.0 effectively rolls back to 3.6 and instead implements -# additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact, -# which use exclusively 256 byte S-box. These functions are to be -# called in modes not concealing plain text, such as ECB, or when -# we're asked to process smaller amount of data [or unconditionally -# on hyper-threading CPU]. Currently it's called unconditionally from -# AES_[en|de]crypt, which affects all modes, but CBC. CBC routine -# still needs to be modified to switch between slower and faster -# mode when appropriate... But in either case benchmark landscape -# changes dramatically and below numbers are CPU cycles per processed -# byte for 128-bit key. -# -# ECB encrypt ECB decrypt CBC large chunk -# P4 52[54] 83[95] 23 -# AMD K8 46[41] 66[70] 18 -# PIII 41[50] 60[77] 24 -# Core 2 31[36] 45[64] 18.5 -# Atom 76[100] 96[138] 60 -# Pentium 115 150 77 -# -# Version 4.1 switches to compact S-box even in key schedule setup. -# -# Version 4.2 prefetches compact S-box in every SSE round or in other -# words every cache-line is *guaranteed* to be accessed within ~50 -# cycles window. Why just SSE? Because it's needed on hyper-threading -# CPU! Which is also why it's prefetched with 64 byte stride. Best -# part is that it has no negative effect on performance:-) -# -# Version 4.3 implements switch between compact and non-compact block -# functions in AES_cbc_encrypt depending on how much data was asked -# to be processed in one stroke. -# -###################################################################### -# Timing attacks are classified in two classes: synchronous when -# attacker consciously initiates cryptographic operation and collects -# timing data of various character afterwards, and asynchronous when -# malicious code is executed on same CPU simultaneously with AES, -# instruments itself and performs statistical analysis of this data. -# -# As far as synchronous attacks go the root to the AES timing -# vulnerability is twofold. Firstly, of 256 S-box elements at most 160 -# are referred to in single 128-bit block operation. Well, in C -# implementation with 4 distinct tables it's actually as little as 40 -# references per 256 elements table, but anyway... Secondly, even -# though S-box elements are clustered into smaller amount of cache- -# lines, smaller than 160 and even 40, it turned out that for certain -# plain-text pattern[s] or simply put chosen plain-text and given key -# few cache-lines remain unaccessed during block operation. Now, if -# attacker can figure out this access pattern, he can deduct the key -# [or at least part of it]. The natural way to mitigate this kind of -# attacks is to minimize the amount of cache-lines in S-box and/or -# prefetch them to ensure that every one is accessed for more uniform -# timing. But note that *if* plain-text was concealed in such way that -# input to block function is distributed *uniformly*, then attack -# wouldn't apply. Now note that some encryption modes, most notably -# CBC, do mask the plain-text in this exact way [secure cipher output -# is distributed uniformly]. Yes, one still might find input that -# would reveal the information about given key, but if amount of -# candidate inputs to be tried is larger than amount of possible key -# combinations then attack becomes infeasible. This is why revised -# AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk -# of data is to be processed in one stroke. The current size limit of -# 512 bytes is chosen to provide same [diminishingly low] probability -# for cache-line to remain untouched in large chunk operation with -# large S-box as for single block operation with compact S-box and -# surely needs more careful consideration... -# -# As for asynchronous attacks. There are two flavours: attacker code -# being interleaved with AES on hyper-threading CPU at *instruction* -# level, and two processes time sharing single core. As for latter. -# Two vectors. 1. Given that attacker process has higher priority, -# yield execution to process performing AES just before timer fires -# off the scheduler, immediately regain control of CPU and analyze the -# cache state. For this attack to be efficient attacker would have to -# effectively slow down the operation by several *orders* of magnitude, -# by ratio of time slice to duration of handful of AES rounds, which -# unlikely to remain unnoticed. Not to mention that this also means -# that he would spend correspondingly more time to collect enough -# statistical data to mount the attack. It's probably appropriate to -# say that if adversary reckons that this attack is beneficial and -# risks to be noticed, you probably have larger problems having him -# mere opportunity. In other words suggested code design expects you -# to preclude/mitigate this attack by overall system security design. -# 2. Attacker manages to make his code interrupt driven. In order for -# this kind of attack to be feasible, interrupt rate has to be high -# enough, again comparable to duration of handful of AES rounds. But -# is there interrupt source of such rate? Hardly, not even 1Gbps NIC -# generates interrupts at such raging rate... -# -# And now back to the former, hyper-threading CPU or more specifically -# Intel P4. Recall that asynchronous attack implies that malicious -# code instruments itself. And naturally instrumentation granularity -# has be noticeably lower than duration of codepath accessing S-box. -# Given that all cache-lines are accessed during that time that is. -# Current implementation accesses *all* cache-lines within ~50 cycles -# window, which is actually *less* than RDTSC latency on Intel P4! - -$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; -push(@INC,"${dir}","${dir}../../perlasm"); -require "x86asm.pl"; - -$output = pop; -open OUT,">$output"; -*STDOUT=*OUT; - -&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); -&static_label("AES_Te"); -&static_label("AES_Td"); - -$s0="eax"; -$s1="ebx"; -$s2="ecx"; -$s3="edx"; -$key="edi"; -$acc="esi"; -$tbl="ebp"; - -# stack frame layout in _[x86|sse]_AES_* routines, frame is allocated -# by caller -$__ra=&DWP(0,"esp"); # return address -$__s0=&DWP(4,"esp"); # s0 backing store -$__s1=&DWP(8,"esp"); # s1 backing store -$__s2=&DWP(12,"esp"); # s2 backing store -$__s3=&DWP(16,"esp"); # s3 backing store -$__key=&DWP(20,"esp"); # pointer to key schedule -$__end=&DWP(24,"esp"); # pointer to end of key schedule -$__tbl=&DWP(28,"esp"); # %ebp backing store - -# stack frame layout in AES_[en|crypt] routines, which differs from -# above by 4 and overlaps by %ebp backing store -$_tbl=&DWP(24,"esp"); -$_esp=&DWP(28,"esp"); - -sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } } - -$speed_limit=512; # chunks smaller than $speed_limit are - # processed with compact routine in CBC mode -$small_footprint=1; # $small_footprint=1 code is ~5% slower [on - # recent µ-archs], but ~5 times smaller! - # I favor compact code to minimize cache - # contention and in hope to "collect" 5% back - # in real-life applications... - -$vertical_spin=0; # shift "vertically" defaults to 0, because of - # its proof-of-concept status... -# Note that there is no decvert(), as well as last encryption round is -# performed with "horizontal" shifts. This is because this "vertical" -# implementation [one which groups shifts on a given $s[i] to form a -# "column," unlike "horizontal" one, which groups shifts on different -# $s[i] to form a "row"] is work in progress. It was observed to run -# few percents faster on Intel cores, but not AMD. On AMD K8 core it's -# whole 12% slower:-( So we face a trade-off... Shall it be resolved -# some day? Till then the code is considered experimental and by -# default remains dormant... - -sub encvert() -{ my ($te,@s) = @_; - my ($v0,$v1) = ($acc,$key); - - &mov ($v0,$s[3]); # copy s3 - &mov (&DWP(4,"esp"),$s[2]); # save s2 - &mov ($v1,$s[0]); # copy s0 - &mov (&DWP(8,"esp"),$s[1]); # save s1 - - &movz ($s[2],&HB($s[0])); - &and ($s[0],0xFF); - &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0 - &shr ($v1,16); - &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8 - &movz ($s[1],&HB($v1)); - &and ($v1,0xFF); - &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16 - &mov ($v1,$v0); - &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24 - - &and ($v0,0xFF); - &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0 - &movz ($v0,&HB($v1)); - &shr ($v1,16); - &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8 - &movz ($v0,&HB($v1)); - &and ($v1,0xFF); - &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16 - &mov ($v1,&DWP(4,"esp")); # restore s2 - &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24 - - &mov ($v0,$v1); - &and ($v1,0xFF); - &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0 - &movz ($v1,&HB($v0)); - &shr ($v0,16); - &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8 - &movz ($v1,&HB($v0)); - &and ($v0,0xFF); - &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16 - &mov ($v0,&DWP(8,"esp")); # restore s1 - &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24 - - &mov ($v1,$v0); - &and ($v0,0xFF); - &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0 - &movz ($v0,&HB($v1)); - &shr ($v1,16); - &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8 - &movz ($v0,&HB($v1)); - &and ($v1,0xFF); - &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16 - &mov ($key,$__key); # reincarnate v1 as key - &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24 -} - -# Another experimental routine, which features "horizontal spin," but -# eliminates one reference to stack. Strangely enough runs slower... -sub enchoriz() -{ my ($v0,$v1) = ($key,$acc); - - &movz ($v0,&LB($s0)); # 3, 2, 1, 0* - &rotr ($s2,8); # 8,11,10, 9 - &mov ($v1,&DWP(0,$te,$v0,8)); # 0 - &movz ($v0,&HB($s1)); # 7, 6, 5*, 4 - &rotr ($s3,16); # 13,12,15,14 - &xor ($v1,&DWP(3,$te,$v0,8)); # 5 - &movz ($v0,&HB($s2)); # 8,11,10*, 9 - &rotr ($s0,16); # 1, 0, 3, 2 - &xor ($v1,&DWP(2,$te,$v0,8)); # 10 - &movz ($v0,&HB($s3)); # 13,12,15*,14 - &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected - &mov ($__s0,$v1); # t[0] saved - - &movz ($v0,&LB($s1)); # 7, 6, 5, 4* - &shr ($s1,16); # -, -, 7, 6 - &mov ($v1,&DWP(0,$te,$v0,8)); # 4 - &movz ($v0,&LB($s3)); # 13,12,15,14* - &xor ($v1,&DWP(2,$te,$v0,8)); # 14 - &movz ($v0,&HB($s0)); # 1, 0, 3*, 2 - &and ($s3,0xffff0000); # 13,12, -, - - &xor ($v1,&DWP(1,$te,$v0,8)); # 3 - &movz ($v0,&LB($s2)); # 8,11,10, 9* - &or ($s3,$s1); # 13,12, 7, 6 - &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected - &mov ($s1,$v1); # s[1]=t[1] - - &movz ($v0,&LB($s0)); # 1, 0, 3, 2* - &shr ($s2,16); # -, -, 8,11 - &mov ($v1,&DWP(2,$te,$v0,8)); # 2 - &movz ($v0,&HB($s3)); # 13,12, 7*, 6 - &xor ($v1,&DWP(1,$te,$v0,8)); # 7 - &movz ($v0,&HB($s2)); # -, -, 8*,11 - &xor ($v1,&DWP(0,$te,$v0,8)); # 8 - &mov ($v0,$s3); - &shr ($v0,24); # 13 - &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected - - &movz ($v0,&LB($s2)); # -, -, 8,11* - &shr ($s0,24); # 1* - &mov ($s2,&DWP(1,$te,$v0,8)); # 11 - &xor ($s2,&DWP(3,$te,$s0,8)); # 1 - &mov ($s0,$__s0); # s[0]=t[0] - &movz ($v0,&LB($s3)); # 13,12, 7, 6* - &shr ($s3,16); # , ,13,12 - &xor ($s2,&DWP(2,$te,$v0,8)); # 6 - &mov ($key,$__key); # reincarnate v0 as key - &and ($s3,0xff); # , ,13,12* - &mov ($s3,&DWP(0,$te,$s3,8)); # 12 - &xor ($s3,$s2); # s[2]=t[3] collected - &mov ($s2,$v1); # s[2]=t[2] -} - -# More experimental code... SSE one... Even though this one eliminates -# *all* references to stack, it's not faster... -sub sse_encbody() -{ - &movz ($acc,&LB("eax")); # 0 - &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0 - &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 - &movz ("edx",&HB("eax")); # 1 - &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1 - &shr ("eax",16); # 5, 4 - - &movz ($acc,&LB("ebx")); # 10 - &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10 - &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 - &movz ($acc,&HB("ebx")); # 11 - &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11 - &shr ("ebx",16); # 15,14 - - &movz ($acc,&HB("eax")); # 5 - &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5 - &movq ("mm3",QWP(16,$key)); - &movz ($acc,&HB("ebx")); # 15 - &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15 - &movd ("mm0","ecx"); # t[0] collected - - &movz ($acc,&LB("eax")); # 4 - &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4 - &movd ("eax","mm2"); # 7, 6, 3, 2 - &movz ($acc,&LB("ebx")); # 14 - &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14 - &movd ("ebx","mm6"); # 13,12, 9, 8 - - &movz ($acc,&HB("eax")); # 3 - &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3 - &movz ($acc,&HB("ebx")); # 9 - &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9 - &movd ("mm1","ecx"); # t[1] collected - - &movz ($acc,&LB("eax")); # 2 - &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2 - &shr ("eax",16); # 7, 6 - &punpckldq ("mm0","mm1"); # t[0,1] collected - &movz ($acc,&LB("ebx")); # 8 - &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8 - &shr ("ebx",16); # 13,12 - - &movz ($acc,&HB("eax")); # 7 - &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7 - &pxor ("mm0","mm3"); - &movz ("eax",&LB("eax")); # 6 - &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6 - &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 - &movz ($acc,&HB("ebx")); # 13 - &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13 - &xor ("ecx",&DWP(24,$key)); # t[2] - &movd ("mm4","ecx"); # t[2] collected - &movz ("ebx",&LB("ebx")); # 12 - &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12 - &shr ("ecx",16); - &movd ("eax","mm1"); # 5, 4, 1, 0 - &mov ("ebx",&DWP(28,$key)); # t[3] - &xor ("ebx","edx"); - &movd ("mm5","ebx"); # t[3] collected - &and ("ebx",0xffff0000); - &or ("ebx","ecx"); - - &punpckldq ("mm4","mm5"); # t[2,3] collected -} - -###################################################################### -# "Compact" block function -###################################################################### - -sub enccompact() -{ my $Fn = \&mov; - while ($#_>5) { pop(@_); $Fn=sub{}; } - my ($i,$te,@s)=@_; - my $tmp = $key; - my $out = $i==3?$s[0]:$acc; - - # $Fn is used in first compact round and its purpose is to - # void restoration of some values from stack, so that after - # 4xenccompact with extra argument $key value is left there... - if ($i==3) { &$Fn ($key,$__key); }##%edx - else { &mov ($out,$s[0]); } - &and ($out,0xFF); - if ($i==1) { &shr ($s[0],16); }#%ebx[1] - if ($i==2) { &shr ($s[0],24); }#%ecx[2] - &movz ($out,&BP(-128,$te,$out,1)); - - if ($i==3) { $tmp=$s[1]; }##%eax - &movz ($tmp,&HB($s[1])); - &movz ($tmp,&BP(-128,$te,$tmp,1)); - &shl ($tmp,8); - &xor ($out,$tmp); - - if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx - else { &mov ($tmp,$s[2]); - &shr ($tmp,16); } - if ($i==2) { &and ($s[1],0xFF); }#%edx[2] - &and ($tmp,0xFF); - &movz ($tmp,&BP(-128,$te,$tmp,1)); - &shl ($tmp,16); - &xor ($out,$tmp); - - if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx - elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] - else { &mov ($tmp,$s[3]); - &shr ($tmp,24); } - &movz ($tmp,&BP(-128,$te,$tmp,1)); - &shl ($tmp,24); - &xor ($out,$tmp); - if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } - if ($i==3) { &mov ($s[3],$acc); } - &comment(); -} - -sub enctransform() -{ my @s = ($s0,$s1,$s2,$s3); - my $i = shift; - my $tmp = $tbl; - my $r2 = $key ; - - &and ($tmp,$s[$i]); - &lea ($r2,&DWP(0,$s[$i],$s[$i])); - &mov ($acc,$tmp); - &shr ($tmp,7); - &and ($r2,0xfefefefe); - &sub ($acc,$tmp); - &mov ($tmp,$s[$i]); - &and ($acc,0x1b1b1b1b); - &rotr ($tmp,16); - &xor ($acc,$r2); # r2 - &mov ($r2,$s[$i]); - - &xor ($s[$i],$acc); # r0 ^ r2 - &rotr ($r2,16+8); - &xor ($acc,$tmp); - &rotl ($s[$i],24); - &xor ($acc,$r2); - &mov ($tmp,0x80808080) if ($i!=1); - &xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2 -} - -&function_begin_B("_x86_AES_encrypt_compact"); - # note that caller is expected to allocate stack frame for me! - &mov ($__key,$key); # save key - - &xor ($s0,&DWP(0,$key)); # xor with key - &xor ($s1,&DWP(4,$key)); - &xor ($s2,&DWP(8,$key)); - &xor ($s3,&DWP(12,$key)); - - &mov ($acc,&DWP(240,$key)); # load key->rounds - &lea ($acc,&DWP(-2,$acc,$acc)); - &lea ($acc,&DWP(0,$key,$acc,8)); - &mov ($__end,$acc); # end of key schedule - - # prefetch Te4 - &mov ($key,&DWP(0-128,$tbl)); - &mov ($acc,&DWP(32-128,$tbl)); - &mov ($key,&DWP(64-128,$tbl)); - &mov ($acc,&DWP(96-128,$tbl)); - &mov ($key,&DWP(128-128,$tbl)); - &mov ($acc,&DWP(160-128,$tbl)); - &mov ($key,&DWP(192-128,$tbl)); - &mov ($acc,&DWP(224-128,$tbl)); - - &set_label("loop",16); - - &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1); - &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1); - &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1); - &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1); - &mov ($tbl,0x80808080); - &enctransform(2); - &enctransform(3); - &enctransform(0); - &enctransform(1); - &mov ($key,$__key); - &mov ($tbl,$__tbl); - &add ($key,16); # advance rd_key - &xor ($s0,&DWP(0,$key)); - &xor ($s1,&DWP(4,$key)); - &xor ($s2,&DWP(8,$key)); - &xor ($s3,&DWP(12,$key)); - - &cmp ($key,$__end); - &mov ($__key,$key); - &jb (&label("loop")); - - &enccompact(0,$tbl,$s0,$s1,$s2,$s3); - &enccompact(1,$tbl,$s1,$s2,$s3,$s0); - &enccompact(2,$tbl,$s2,$s3,$s0,$s1); - &enccompact(3,$tbl,$s3,$s0,$s1,$s2); - - &xor ($s0,&DWP(16,$key)); - &xor ($s1,&DWP(20,$key)); - &xor ($s2,&DWP(24,$key)); - &xor ($s3,&DWP(28,$key)); - - &ret (); -&function_end_B("_x86_AES_encrypt_compact"); - -###################################################################### -# "Compact" SSE block function. -###################################################################### -# -# Performance is not actually extraordinary in comparison to pure -# x86 code. In particular encrypt performance is virtually the same. -# Decrypt performance on the other hand is 15-20% better on newer -# µ-archs [but we're thankful for *any* improvement here], and ~50% -# better on PIII:-) And additionally on the pros side this code -# eliminates redundant references to stack and thus relieves/ -# minimizes the pressure on the memory bus. -# -# MMX register layout lsb -# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ -# | mm4 | mm0 | -# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ -# | s3 | s2 | s1 | s0 | -# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ -# |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| -# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ -# -# Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8. -# In this terms encryption and decryption "compact" permutation -# matrices can be depicted as following: -# -# encryption lsb # decryption lsb -# +----++----+----+----+----+ # +----++----+----+----+----+ -# | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 | -# +----++----+----+----+----+ # +----++----+----+----+----+ -# | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 | -# +----++----+----+----+----+ # +----++----+----+----+----+ -# | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 | -# +----++----+----+----+----+ # +----++----+----+----+----+ -# | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 | -# +----++----+----+----+----+ # +----++----+----+----+----+ -# -###################################################################### -# Why not xmm registers? Short answer. It was actually tested and -# was not any faster, but *contrary*, most notably on Intel CPUs. -# Longer answer. Main advantage of using mm registers is that movd -# latency is lower, especially on Intel P4. While arithmetic -# instructions are twice as many, they can be scheduled every cycle -# and not every second one when they are operating on xmm register, -# so that "arithmetic throughput" remains virtually the same. And -# finally the code can be executed even on elder SSE-only CPUs:-) - -sub sse_enccompact() -{ - &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 - &pshufw ("mm5","mm4",0x0d); # 15,14,11,10 - &movd ("eax","mm1"); # 5, 4, 1, 0 - &movd ("ebx","mm5"); # 15,14,11,10 - &mov ($__key,$key); - - &movz ($acc,&LB("eax")); # 0 - &movz ("edx",&HB("eax")); # 1 - &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 - &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 - &movz ($key,&LB("ebx")); # 10 - &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 - &shr ("eax",16); # 5, 4 - &shl ("edx",8); # 1 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 - &movz ($key,&HB("ebx")); # 11 - &shl ($acc,16); # 10 - &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 - &or ("ecx",$acc); # 10 - &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 - &movz ($key,&HB("eax")); # 5 - &shl ($acc,24); # 11 - &shr ("ebx",16); # 15,14 - &or ("edx",$acc); # 11 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 - &movz ($key,&HB("ebx")); # 15 - &shl ($acc,8); # 5 - &or ("ecx",$acc); # 5 - &movz ($acc,&BP(-128,$tbl,$key,1)); # 15 - &movz ($key,&LB("eax")); # 4 - &shl ($acc,24); # 15 - &or ("ecx",$acc); # 15 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 - &movz ($key,&LB("ebx")); # 14 - &movd ("eax","mm2"); # 7, 6, 3, 2 - &movd ("mm0","ecx"); # t[0] collected - &movz ("ecx",&BP(-128,$tbl,$key,1)); # 14 - &movz ($key,&HB("eax")); # 3 - &shl ("ecx",16); # 14 - &movd ("ebx","mm6"); # 13,12, 9, 8 - &or ("ecx",$acc); # 14 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 3 - &movz ($key,&HB("ebx")); # 9 - &shl ($acc,24); # 3 - &or ("ecx",$acc); # 3 - &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 - &movz ($key,&LB("ebx")); # 8 - &shl ($acc,8); # 9 - &shr ("ebx",16); # 13,12 - &or ("ecx",$acc); # 9 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 8 - &movz ($key,&LB("eax")); # 2 - &shr ("eax",16); # 7, 6 - &movd ("mm1","ecx"); # t[1] collected - &movz ("ecx",&BP(-128,$tbl,$key,1)); # 2 - &movz ($key,&HB("eax")); # 7 - &shl ("ecx",16); # 2 - &and ("eax",0xff); # 6 - &or ("ecx",$acc); # 2 - - &punpckldq ("mm0","mm1"); # t[0,1] collected - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 - &movz ($key,&HB("ebx")); # 13 - &shl ($acc,24); # 7 - &and ("ebx",0xff); # 12 - &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6 - &or ("ecx",$acc); # 7 - &shl ("eax",16); # 6 - &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 - &or ("edx","eax"); # 6 - &shl ($acc,8); # 13 - &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12 - &or ("ecx",$acc); # 13 - &or ("edx","ebx"); # 12 - &mov ($key,$__key); - &movd ("mm4","ecx"); # t[2] collected - &movd ("mm5","edx"); # t[3] collected - - &punpckldq ("mm4","mm5"); # t[2,3] collected -} - - if (!$x86only) { -&function_begin_B("_sse_AES_encrypt_compact"); - &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 - &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 - - # note that caller is expected to allocate stack frame for me! - &mov ($acc,&DWP(240,$key)); # load key->rounds - &lea ($acc,&DWP(-2,$acc,$acc)); - &lea ($acc,&DWP(0,$key,$acc,8)); - &mov ($__end,$acc); # end of key schedule - - &mov ($s0,0x1b1b1b1b); # magic constant - &mov (&DWP(8,"esp"),$s0); - &mov (&DWP(12,"esp"),$s0); - - # prefetch Te4 - &mov ($s0,&DWP(0-128,$tbl)); - &mov ($s1,&DWP(32-128,$tbl)); - &mov ($s2,&DWP(64-128,$tbl)); - &mov ($s3,&DWP(96-128,$tbl)); - &mov ($s0,&DWP(128-128,$tbl)); - &mov ($s1,&DWP(160-128,$tbl)); - &mov ($s2,&DWP(192-128,$tbl)); - &mov ($s3,&DWP(224-128,$tbl)); - - &set_label("loop",16); - &sse_enccompact(); - &add ($key,16); - &cmp ($key,$__end); - &ja (&label("out")); - - &movq ("mm2",&QWP(8,"esp")); - &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); - &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0 - &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4"); - &pand ("mm3","mm2"); &pand ("mm7","mm2"); - &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16) - &paddb ("mm0","mm0"); &paddb ("mm4","mm4"); - &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2 - &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0 - &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2 - &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16) - - &movq ("mm2","mm3"); &movq ("mm6","mm7"); - &pslld ("mm3",8); &pslld ("mm7",8); - &psrld ("mm2",24); &psrld ("mm6",24); - &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8 - &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24 - - &movq ("mm3","mm1"); &movq ("mm7","mm5"); - &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); - &psrld ("mm1",8); &psrld ("mm5",8); - &mov ($s0,&DWP(0-128,$tbl)); - &pslld ("mm3",24); &pslld ("mm7",24); - &mov ($s1,&DWP(64-128,$tbl)); - &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8 - &mov ($s2,&DWP(128-128,$tbl)); - &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24 - &mov ($s3,&DWP(192-128,$tbl)); - - &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); - &jmp (&label("loop")); - - &set_label("out",16); - &pxor ("mm0",&QWP(0,$key)); - &pxor ("mm4",&QWP(8,$key)); - - &ret (); -&function_end_B("_sse_AES_encrypt_compact"); - } - -###################################################################### -# Vanilla block function. -###################################################################### - -sub encstep() -{ my ($i,$te,@s) = @_; - my $tmp = $key; - my $out = $i==3?$s[0]:$acc; - - # lines marked with #%e?x[i] denote "reordered" instructions... - if ($i==3) { &mov ($key,$__key); }##%edx - else { &mov ($out,$s[0]); - &and ($out,0xFF); } - if ($i==1) { &shr ($s[0],16); }#%ebx[1] - if ($i==2) { &shr ($s[0],24); }#%ecx[2] - &mov ($out,&DWP(0,$te,$out,8)); - - if ($i==3) { $tmp=$s[1]; }##%eax - &movz ($tmp,&HB($s[1])); - &xor ($out,&DWP(3,$te,$tmp,8)); - - if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx - else { &mov ($tmp,$s[2]); - &shr ($tmp,16); } - if ($i==2) { &and ($s[1],0xFF); }#%edx[2] - &and ($tmp,0xFF); - &xor ($out,&DWP(2,$te,$tmp,8)); - - if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx - elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] - else { &mov ($tmp,$s[3]); - &shr ($tmp,24) } - &xor ($out,&DWP(1,$te,$tmp,8)); - if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } - if ($i==3) { &mov ($s[3],$acc); } - &comment(); -} - -sub enclast() -{ my ($i,$te,@s)=@_; - my $tmp = $key; - my $out = $i==3?$s[0]:$acc; - - if ($i==3) { &mov ($key,$__key); }##%edx - else { &mov ($out,$s[0]); } - &and ($out,0xFF); - if ($i==1) { &shr ($s[0],16); }#%ebx[1] - if ($i==2) { &shr ($s[0],24); }#%ecx[2] - &mov ($out,&DWP(2,$te,$out,8)); - &and ($out,0x000000ff); - - if ($i==3) { $tmp=$s[1]; }##%eax - &movz ($tmp,&HB($s[1])); - &mov ($tmp,&DWP(0,$te,$tmp,8)); - &and ($tmp,0x0000ff00); - &xor ($out,$tmp); - - if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx - else { &mov ($tmp,$s[2]); - &shr ($tmp,16); } - if ($i==2) { &and ($s[1],0xFF); }#%edx[2] - &and ($tmp,0xFF); - &mov ($tmp,&DWP(0,$te,$tmp,8)); - &and ($tmp,0x00ff0000); - &xor ($out,$tmp); - - if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx - elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] - else { &mov ($tmp,$s[3]); - &shr ($tmp,24); } - &mov ($tmp,&DWP(2,$te,$tmp,8)); - &and ($tmp,0xff000000); - &xor ($out,$tmp); - if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } - if ($i==3) { &mov ($s[3],$acc); } -} - -&function_begin_B("_x86_AES_encrypt"); - if ($vertical_spin) { - # I need high parts of volatile registers to be accessible... - &exch ($s1="edi",$key="ebx"); - &mov ($s2="esi",$acc="ecx"); - } - - # note that caller is expected to allocate stack frame for me! - &mov ($__key,$key); # save key - - &xor ($s0,&DWP(0,$key)); # xor with key - &xor ($s1,&DWP(4,$key)); - &xor ($s2,&DWP(8,$key)); - &xor ($s3,&DWP(12,$key)); - - &mov ($acc,&DWP(240,$key)); # load key->rounds - - if ($small_footprint) { - &lea ($acc,&DWP(-2,$acc,$acc)); - &lea ($acc,&DWP(0,$key,$acc,8)); - &mov ($__end,$acc); # end of key schedule - - &set_label("loop",16); - if ($vertical_spin) { - &encvert($tbl,$s0,$s1,$s2,$s3); - } else { - &encstep(0,$tbl,$s0,$s1,$s2,$s3); - &encstep(1,$tbl,$s1,$s2,$s3,$s0); - &encstep(2,$tbl,$s2,$s3,$s0,$s1); - &encstep(3,$tbl,$s3,$s0,$s1,$s2); - } - &add ($key,16); # advance rd_key - &xor ($s0,&DWP(0,$key)); - &xor ($s1,&DWP(4,$key)); - &xor ($s2,&DWP(8,$key)); - &xor ($s3,&DWP(12,$key)); - &cmp ($key,$__end); - &mov ($__key,$key); - &jb (&label("loop")); - } - else { - &cmp ($acc,10); - &jle (&label("10rounds")); - &cmp ($acc,12); - &jle (&label("12rounds")); - - &set_label("14rounds",4); - for ($i=1;$i<3;$i++) { - if ($vertical_spin) { - &encvert($tbl,$s0,$s1,$s2,$s3); - } else { - &encstep(0,$tbl,$s0,$s1,$s2,$s3); - &encstep(1,$tbl,$s1,$s2,$s3,$s0); - &encstep(2,$tbl,$s2,$s3,$s0,$s1); - &encstep(3,$tbl,$s3,$s0,$s1,$s2); - } - &xor ($s0,&DWP(16*$i+0,$key)); - &xor ($s1,&DWP(16*$i+4,$key)); - &xor ($s2,&DWP(16*$i+8,$key)); - &xor ($s3,&DWP(16*$i+12,$key)); - } - &add ($key,32); - &mov ($__key,$key); # advance rd_key - &set_label("12rounds",4); - for ($i=1;$i<3;$i++) { - if ($vertical_spin) { - &encvert($tbl,$s0,$s1,$s2,$s3); - } else { - &encstep(0,$tbl,$s0,$s1,$s2,$s3); - &encstep(1,$tbl,$s1,$s2,$s3,$s0); - &encstep(2,$tbl,$s2,$s3,$s0,$s1); - &encstep(3,$tbl,$s3,$s0,$s1,$s2); - } - &xor ($s0,&DWP(16*$i+0,$key)); - &xor ($s1,&DWP(16*$i+4,$key)); - &xor ($s2,&DWP(16*$i+8,$key)); - &xor ($s3,&DWP(16*$i+12,$key)); - } - &add ($key,32); - &mov ($__key,$key); # advance rd_key - &set_label("10rounds",4); - for ($i=1;$i<10;$i++) { - if ($vertical_spin) { - &encvert($tbl,$s0,$s1,$s2,$s3); - } else { - &encstep(0,$tbl,$s0,$s1,$s2,$s3); - &encstep(1,$tbl,$s1,$s2,$s3,$s0); - &encstep(2,$tbl,$s2,$s3,$s0,$s1); - &encstep(3,$tbl,$s3,$s0,$s1,$s2); - } - &xor ($s0,&DWP(16*$i+0,$key)); - &xor ($s1,&DWP(16*$i+4,$key)); - &xor ($s2,&DWP(16*$i+8,$key)); - &xor ($s3,&DWP(16*$i+12,$key)); - } - } - - if ($vertical_spin) { - # "reincarnate" some registers for "horizontal" spin... - &mov ($s1="ebx",$key="edi"); - &mov ($s2="ecx",$acc="esi"); - } - &enclast(0,$tbl,$s0,$s1,$s2,$s3); - &enclast(1,$tbl,$s1,$s2,$s3,$s0); - &enclast(2,$tbl,$s2,$s3,$s0,$s1); - &enclast(3,$tbl,$s3,$s0,$s1,$s2); - - &add ($key,$small_footprint?16:160); - &xor ($s0,&DWP(0,$key)); - &xor ($s1,&DWP(4,$key)); - &xor ($s2,&DWP(8,$key)); - &xor ($s3,&DWP(12,$key)); - - &ret (); - -&set_label("AES_Te",64); # Yes! I keep it in the code segment! - &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6); - &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591); - &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56); - &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec); - &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa); - &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb); - &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45); - &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b); - &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c); - &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83); - &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9); - &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a); - &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d); - &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f); - &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df); - &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea); - &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34); - &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b); - &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d); - &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413); - &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1); - &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6); - &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972); - &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85); - &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed); - &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511); - &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe); - &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b); - &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05); - &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1); - &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142); - &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf); - &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3); - &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e); - &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a); - &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6); - &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3); - &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b); - &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428); - &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad); - &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14); - &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8); - &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4); - &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2); - &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda); - &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949); - &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf); - &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810); - &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c); - &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697); - &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e); - &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f); - &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc); - &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c); - &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969); - &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27); - &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122); - &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433); - &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9); - &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5); - &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a); - &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0); - &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e); - &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c); - -#Te4 # four copies of Te4 to choose from to avoid L1 aliasing - &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); - &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); - &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); - &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); - &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); - &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); - &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); - &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); - &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); - &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); - &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); - &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); - &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); - &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); - &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); - &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); - &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); - &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); - &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); - &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); - &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); - &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); - &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); - &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); - &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); - &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); - &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); - &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); - &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); - &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); - &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); - &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); - - &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); - &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); - &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); - &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); - &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); - &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); - &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); - &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); - &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); - &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); - &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); - &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); - &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); - &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); - &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); - &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); - &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); - &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); - &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); - &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); - &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); - &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); - &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); - &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); - &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); - &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); - &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); - &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); - &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); - &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); - &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); - &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); - - &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); - &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); - &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); - &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); - &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); - &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); - &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); - &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); - &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); - &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); - &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); - &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); - &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); - &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); - &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); - &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); - &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); - &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); - &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); - &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); - &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); - &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); - &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); - &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); - &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); - &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); - &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); - &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); - &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); - &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); - &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); - &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); - - &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); - &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); - &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); - &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); - &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); - &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); - &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); - &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); - &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); - &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); - &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); - &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); - &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); - &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); - &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); - &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); - &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); - &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); - &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); - &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); - &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); - &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); - &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); - &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); - &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); - &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); - &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); - &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); - &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); - &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); - &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); - &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); -#rcon: - &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008); - &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080); - &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000); - &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000); -&function_end_B("_x86_AES_encrypt"); - -# void AES_encrypt (const void *inp,void *out,const AES_KEY *key); -&function_begin("AES_encrypt"); - &mov ($acc,&wparam(0)); # load inp - &mov ($key,&wparam(2)); # load key - - &mov ($s0,"esp"); - &sub ("esp",36); - &and ("esp",-64); # align to cache-line - - # place stack frame just "above" the key schedule - &lea ($s1,&DWP(-64-63,$key)); - &sub ($s1,"esp"); - &neg ($s1); - &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line - &sub ("esp",$s1); - &add ("esp",4); # 4 is reserved for caller's return address - &mov ($_esp,$s0); # save stack pointer - - &call (&label("pic_point")); # make it PIC! - &set_label("pic_point"); - &blindpop($tbl); - &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only); - &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); - - # pick Te4 copy which can't "overlap" with stack frame or key schedule - &lea ($s1,&DWP(768-4,"esp")); - &sub ($s1,$tbl); - &and ($s1,0x300); - &lea ($tbl,&DWP(2048+128,$tbl,$s1)); - - if (!$x86only) { - &bt (&DWP(0,$s0),25); # check for SSE bit - &jnc (&label("x86")); - - &movq ("mm0",&QWP(0,$acc)); - &movq ("mm4",&QWP(8,$acc)); - &call ("_sse_AES_encrypt_compact"); - &mov ("esp",$_esp); # restore stack pointer - &mov ($acc,&wparam(1)); # load out - &movq (&QWP(0,$acc),"mm0"); # write output data - &movq (&QWP(8,$acc),"mm4"); - &emms (); - &function_end_A(); - } - &set_label("x86",16); - &mov ($_tbl,$tbl); - &mov ($s0,&DWP(0,$acc)); # load input data - &mov ($s1,&DWP(4,$acc)); - &mov ($s2,&DWP(8,$acc)); - &mov ($s3,&DWP(12,$acc)); - &call ("_x86_AES_encrypt_compact"); - &mov ("esp",$_esp); # restore stack pointer - &mov ($acc,&wparam(1)); # load out - &mov (&DWP(0,$acc),$s0); # write output data - &mov (&DWP(4,$acc),$s1); - &mov (&DWP(8,$acc),$s2); - &mov (&DWP(12,$acc),$s3); -&function_end("AES_encrypt"); - -#--------------------------------------------------------------------# - -###################################################################### -# "Compact" block function -###################################################################### - -sub deccompact() -{ my $Fn = \&mov; - while ($#_>5) { pop(@_); $Fn=sub{}; } - my ($i,$td,@s)=@_; - my $tmp = $key; - my $out = $i==3?$s[0]:$acc; - - # $Fn is used in first compact round and its purpose is to - # void restoration of some values from stack, so that after - # 4xdeccompact with extra argument $key, $s0 and $s1 values - # are left there... - if($i==3) { &$Fn ($key,$__key); } - else { &mov ($out,$s[0]); } - &and ($out,0xFF); - &movz ($out,&BP(-128,$td,$out,1)); - - if ($i==3) { $tmp=$s[1]; } - &movz ($tmp,&HB($s[1])); - &movz ($tmp,&BP(-128,$td,$tmp,1)); - &shl ($tmp,8); - &xor ($out,$tmp); - - if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } - else { mov ($tmp,$s[2]); } - &shr ($tmp,16); - &and ($tmp,0xFF); - &movz ($tmp,&BP(-128,$td,$tmp,1)); - &shl ($tmp,16); - &xor ($out,$tmp); - - if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); } - else { &mov ($tmp,$s[3]); } - &shr ($tmp,24); - &movz ($tmp,&BP(-128,$td,$tmp,1)); - &shl ($tmp,24); - &xor ($out,$tmp); - if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } - if ($i==3) { &$Fn ($s[3],$__s0); } -} - -# must be called with 2,3,0,1 as argument sequence!!! -sub dectransform() -{ my @s = ($s0,$s1,$s2,$s3); - my $i = shift; - my $tmp = $key; - my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1); - my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1); - my $tp8 = $tbl; - - &mov ($tmp,0x80808080); - &and ($tmp,$s[$i]); - &mov ($acc,$tmp); - &shr ($tmp,7); - &lea ($tp2,&DWP(0,$s[$i],$s[$i])); - &sub ($acc,$tmp); - &and ($tp2,0xfefefefe); - &and ($acc,0x1b1b1b1b); - &xor ($tp2,$acc); - &mov ($tmp,0x80808080); - - &and ($tmp,$tp2); - &mov ($acc,$tmp); - &shr ($tmp,7); - &lea ($tp4,&DWP(0,$tp2,$tp2)); - &sub ($acc,$tmp); - &and ($tp4,0xfefefefe); - &and ($acc,0x1b1b1b1b); - &xor ($tp2,$s[$i]); # tp2^tp1 - &xor ($tp4,$acc); - &mov ($tmp,0x80808080); - - &and ($tmp,$tp4); - &mov ($acc,$tmp); - &shr ($tmp,7); - &lea ($tp8,&DWP(0,$tp4,$tp4)); - &sub ($acc,$tmp); - &and ($tp8,0xfefefefe); - &and ($acc,0x1b1b1b1b); - &xor ($tp4,$s[$i]); # tp4^tp1 - &rotl ($s[$i],8); # = ROTATE(tp1,8) - &xor ($tp8,$acc); - - &xor ($s[$i],$tp2); - &xor ($tp2,$tp8); - &xor ($s[$i],$tp4); - &xor ($tp4,$tp8); - &rotl ($tp2,24); - &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) - &rotl ($tp4,16); - &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24) - &rotl ($tp8,8); - &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16) - &mov ($s[0],$__s0) if($i==2); #prefetch $s0 - &mov ($s[1],$__s1) if($i==3); #prefetch $s1 - &mov ($s[2],$__s2) if($i==1); - &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8) - - &mov ($s[3],$__s3) if($i==1); - &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2); -} - -&function_begin_B("_x86_AES_decrypt_compact"); - # note that caller is expected to allocate stack frame for me! - &mov ($__key,$key); # save key - - &xor ($s0,&DWP(0,$key)); # xor with key - &xor ($s1,&DWP(4,$key)); - &xor ($s2,&DWP(8,$key)); - &xor ($s3,&DWP(12,$key)); - - &mov ($acc,&DWP(240,$key)); # load key->rounds - - &lea ($acc,&DWP(-2,$acc,$acc)); - &lea ($acc,&DWP(0,$key,$acc,8)); - &mov ($__end,$acc); # end of key schedule - - # prefetch Td4 - &mov ($key,&DWP(0-128,$tbl)); - &mov ($acc,&DWP(32-128,$tbl)); - &mov ($key,&DWP(64-128,$tbl)); - &mov ($acc,&DWP(96-128,$tbl)); - &mov ($key,&DWP(128-128,$tbl)); - &mov ($acc,&DWP(160-128,$tbl)); - &mov ($key,&DWP(192-128,$tbl)); - &mov ($acc,&DWP(224-128,$tbl)); - - &set_label("loop",16); - - &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1); - &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1); - &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1); - &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1); - &dectransform(2); - &dectransform(3); - &dectransform(0); - &dectransform(1); - &mov ($key,$__key); - &mov ($tbl,$__tbl); - &add ($key,16); # advance rd_key - &xor ($s0,&DWP(0,$key)); - &xor ($s1,&DWP(4,$key)); - &xor ($s2,&DWP(8,$key)); - &xor ($s3,&DWP(12,$key)); - - &cmp ($key,$__end); - &mov ($__key,$key); - &jb (&label("loop")); - - &deccompact(0,$tbl,$s0,$s3,$s2,$s1); - &deccompact(1,$tbl,$s1,$s0,$s3,$s2); - &deccompact(2,$tbl,$s2,$s1,$s0,$s3); - &deccompact(3,$tbl,$s3,$s2,$s1,$s0); - - &xor ($s0,&DWP(16,$key)); - &xor ($s1,&DWP(20,$key)); - &xor ($s2,&DWP(24,$key)); - &xor ($s3,&DWP(28,$key)); - - &ret (); -&function_end_B("_x86_AES_decrypt_compact"); - -###################################################################### -# "Compact" SSE block function. -###################################################################### - -sub sse_deccompact() -{ - &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0 - &pshufw ("mm5","mm4",0x09); # 13,12,11,10 - &movd ("eax","mm1"); # 7, 6, 1, 0 - &movd ("ebx","mm5"); # 13,12,11,10 - &mov ($__key,$key); - - &movz ($acc,&LB("eax")); # 0 - &movz ("edx",&HB("eax")); # 1 - &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4 - &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 - &movz ($key,&LB("ebx")); # 10 - &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 - &shr ("eax",16); # 7, 6 - &shl ("edx",8); # 1 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 - &movz ($key,&HB("ebx")); # 11 - &shl ($acc,16); # 10 - &pshufw ("mm6","mm4",0x03); # 9, 8,15,14 - &or ("ecx",$acc); # 10 - &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 - &movz ($key,&HB("eax")); # 7 - &shl ($acc,24); # 11 - &shr ("ebx",16); # 13,12 - &or ("edx",$acc); # 11 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 - &movz ($key,&HB("ebx")); # 13 - &shl ($acc,24); # 7 - &or ("ecx",$acc); # 7 - &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 - &movz ($key,&LB("eax")); # 6 - &shl ($acc,8); # 13 - &movd ("eax","mm2"); # 3, 2, 5, 4 - &or ("ecx",$acc); # 13 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 6 - &movz ($key,&LB("ebx")); # 12 - &shl ($acc,16); # 6 - &movd ("ebx","mm6"); # 9, 8,15,14 - &movd ("mm0","ecx"); # t[0] collected - &movz ("ecx",&BP(-128,$tbl,$key,1)); # 12 - &movz ($key,&LB("eax")); # 4 - &or ("ecx",$acc); # 12 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 - &movz ($key,&LB("ebx")); # 14 - &or ("edx",$acc); # 4 - &movz ($acc,&BP(-128,$tbl,$key,1)); # 14 - &movz ($key,&HB("eax")); # 5 - &shl ($acc,16); # 14 - &shr ("eax",16); # 3, 2 - &or ("edx",$acc); # 14 - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 - &movz ($key,&HB("ebx")); # 15 - &shr ("ebx",16); # 9, 8 - &shl ($acc,8); # 5 - &movd ("mm1","edx"); # t[1] collected - &movz ("edx",&BP(-128,$tbl,$key,1)); # 15 - &movz ($key,&HB("ebx")); # 9 - &shl ("edx",24); # 15 - &and ("ebx",0xff); # 8 - &or ("edx",$acc); # 15 - - &punpckldq ("mm0","mm1"); # t[0,1] collected - - &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 - &movz ($key,&LB("eax")); # 2 - &shl ($acc,8); # 9 - &movz ("eax",&HB("eax")); # 3 - &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8 - &or ("ecx",$acc); # 9 - &movz ($acc,&BP(-128,$tbl,$key,1)); # 2 - &or ("edx","ebx"); # 8 - &shl ($acc,16); # 2 - &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3 - &or ("edx",$acc); # 2 - &shl ("eax",24); # 3 - &or ("ecx","eax"); # 3 - &mov ($key,$__key); - &movd ("mm4","edx"); # t[2] collected - &movd ("mm5","ecx"); # t[3] collected - - &punpckldq ("mm4","mm5"); # t[2,3] collected -} - - if (!$x86only) { -&function_begin_B("_sse_AES_decrypt_compact"); - &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 - &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 - - # note that caller is expected to allocate stack frame for me! - &mov ($acc,&DWP(240,$key)); # load key->rounds - &lea ($acc,&DWP(-2,$acc,$acc)); - &lea ($acc,&DWP(0,$key,$acc,8)); - &mov ($__end,$acc); # end of key schedule - - &mov ($s0,0x1b1b1b1b); # magic constant - &mov (&DWP(8,"esp"),$s0); - &mov (&DWP(12,"esp"),$s0); - - # prefetch Td4 - &mov ($s0,&DWP(0-128,$tbl)); - &mov ($s1,&DWP(32-128,$tbl)); - &mov ($s2,&DWP(64-128,$tbl)); - &mov ($s3,&DWP(96-128,$tbl)); - &mov ($s0,&DWP(128-128,$tbl)); - &mov ($s1,&DWP(160-128,$tbl)); - &mov ($s2,&DWP(192-128,$tbl)); - &mov ($s3,&DWP(224-128,$tbl)); - - &set_label("loop",16); - &sse_deccompact(); - &add ($key,16); - &cmp ($key,$__end); - &ja (&label("out")); - - # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N) - &movq ("mm3","mm0"); &movq ("mm7","mm4"); - &movq ("mm2","mm0",1); &movq ("mm6","mm4",1); - &movq ("mm1","mm0"); &movq ("mm5","mm4"); - &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16) - &pslld ("mm2",8); &pslld ("mm6",8); - &psrld ("mm3",8); &psrld ("mm7",8); - &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8 - &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8 - &pslld ("mm2",16); &pslld ("mm6",16); - &psrld ("mm3",16); &psrld ("mm7",16); - &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24 - &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24 - - &movq ("mm3",&QWP(8,"esp")); - &pxor ("mm2","mm2"); &pxor ("mm6","mm6"); - &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5"); - &pand ("mm2","mm3"); &pand ("mm6","mm3"); - &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); - &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2 - &movq ("mm3","mm1"); &movq ("mm7","mm5"); - &movq ("mm2","mm1"); &movq ("mm6","mm5"); - &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2 - &pslld ("mm3",24); &pslld ("mm7",24); - &psrld ("mm2",8); &psrld ("mm6",8); - &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24 - &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8 - - &movq ("mm2",&QWP(8,"esp")); - &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); - &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); - &pand ("mm3","mm2"); &pand ("mm7","mm2"); - &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); - &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4 - &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1); - &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4 - &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16) - - &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); - &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); - &pand ("mm3","mm2"); &pand ("mm7","mm2"); - &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); - &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8 - &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8 - &movq ("mm3","mm1"); &movq ("mm7","mm5"); - &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1); - &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16) - &pslld ("mm1",8); &pslld ("mm5",8); - &psrld ("mm3",8); &psrld ("mm7",8); - &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); - &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8 - &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8 - &mov ($s0,&DWP(0-128,$tbl)); - &pslld ("mm1",16); &pslld ("mm5",16); - &mov ($s1,&DWP(64-128,$tbl)); - &psrld ("mm3",16); &psrld ("mm7",16); - &mov ($s2,&DWP(128-128,$tbl)); - &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24 - &mov ($s3,&DWP(192-128,$tbl)); - &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24 - - &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); - &jmp (&label("loop")); - - &set_label("out",16); - &pxor ("mm0",&QWP(0,$key)); - &pxor ("mm4",&QWP(8,$key)); - - &ret (); -&function_end_B("_sse_AES_decrypt_compact"); - } - -###################################################################### -# Vanilla block function. -###################################################################### - -sub decstep() -{ my ($i,$td,@s) = @_; - my $tmp = $key; - my $out = $i==3?$s[0]:$acc; - - # no instructions are reordered, as performance appears - # optimal... or rather that all attempts to reorder didn't - # result in better performance [which by the way is not a - # bit lower than encryption]. - if($i==3) { &mov ($key,$__key); } - else { &mov ($out,$s[0]); } - &and ($out,0xFF); - &mov ($out,&DWP(0,$td,$out,8)); - - if ($i==3) { $tmp=$s[1]; } - &movz ($tmp,&HB($s[1])); - &xor ($out,&DWP(3,$td,$tmp,8)); - - if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } - else { &mov ($tmp,$s[2]); } - &shr ($tmp,16); - &and ($tmp,0xFF); - &xor ($out,&DWP(2,$td,$tmp,8)); - - if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } - else { &mov ($tmp,$s[3]); } - &shr ($tmp,24); - &xor ($out,&DWP(1,$td,$tmp,8)); - if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } - if ($i==3) { &mov ($s[3],$__s0); } - &comment(); -} - -sub declast() -{ my ($i,$td,@s)=@_; - my $tmp = $key; - my $out = $i==3?$s[0]:$acc; - - if($i==0) { &lea ($td,&DWP(2048+128,$td)); - &mov ($tmp,&DWP(0-128,$td)); - &mov ($acc,&DWP(32-128,$td)); - &mov ($tmp,&DWP(64-128,$td)); - &mov ($acc,&DWP(96-128,$td)); - &mov ($tmp,&DWP(128-128,$td)); - &mov ($acc,&DWP(160-128,$td)); - &mov ($tmp,&DWP(192-128,$td)); - &mov ($acc,&DWP(224-128,$td)); - &lea ($td,&DWP(-128,$td)); } - if($i==3) { &mov ($key,$__key); } - else { &mov ($out,$s[0]); } - &and ($out,0xFF); - &movz ($out,&BP(0,$td,$out,1)); - - if ($i==3) { $tmp=$s[1]; } - &movz ($tmp,&HB($s[1])); - &movz ($tmp,&BP(0,$td,$tmp,1)); - &shl ($tmp,8); - &xor ($out,$tmp); - - if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } - else { mov ($tmp,$s[2]); } - &shr ($tmp,16); - &and ($tmp,0xFF); - &movz ($tmp,&BP(0,$td,$tmp,1)); - &shl ($tmp,16); - &xor ($out,$tmp); - - if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } - else { &mov ($tmp,$s[3]); } - &shr ($tmp,24); - &movz ($tmp,&BP(0,$td,$tmp,1)); - &shl ($tmp,24); - &xor ($out,$tmp); - if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } - if ($i==3) { &mov ($s[3],$__s0); - &lea ($td,&DWP(-2048,$td)); } -} - -&function_begin_B("_x86_AES_decrypt"); - # note that caller is expected to allocate stack frame for me! - &mov ($__key,$key); # save key - - &xor ($s0,&DWP(0,$key)); # xor wi