summaryrefslogtreecommitdiffstats
path: root/doc/ns-ca.doc
diff options
context:
space:
mode:
Diffstat (limited to 'doc/ns-ca.doc')
-rw-r--r--doc/ns-ca.doc154
1 files changed, 0 insertions, 154 deletions
diff --git a/doc/ns-ca.doc b/doc/ns-ca.doc
deleted file mode 100644
index 836883e1a0..0000000000
--- a/doc/ns-ca.doc
+++ /dev/null
@@ -1,154 +0,0 @@
-The following documentation was supplied by Jeff Barber, who provided the
-patch to the CA program to add this functionality.
-
-eric
---
-Jeff Barber Email: jeffb@issl.atl.hp.com
-
-Hewlett Packard Phone: (404) 648-9503
-Internet and System Security Lab Fax: (404) 648-9516
-
- oo
----------------------cut /\ here for ns-ca.doc ------------------------------
-
-This document briefly describes how to use SSLeay to implement a
-certificate authority capable of dynamically serving up client
-certificates for version 3.0 beta 5 (and presumably later) versions of
-the Netscape Navigator. Before describing how this is done, it's
-important to understand a little about how the browser implements its
-client certificate support. This is documented in some detail in the
-URLs based at <URL:http://home.netscape.com/eng/security/certs.html>.
-Here's a brief overview:
-
-- The Navigator supports a new HTML tag "KEYGEN" which will cause
- the browser to generate an RSA key pair when you submit a form
- containing the tag. The public key, along with an optional
- challenge (supposedly provided for use in certificate revocation
- but I don't use it) is signed, DER-encoded, base-64 encoded
- and sent to the web server as the value of the variable
- whose NAME is provided in the KEYGEN tag. The private key is
- stored by the browser in a local key database.
-
- This "Signed Public Key And Challenge" (SPKAC) arrives formatted
- into 64 character lines (which are of course URL-encoded when
- sent via HTTP -- i.e. spaces, newlines and most punctuatation are
- encoded as "%HH" where HH is the hex equivalent of the ASCII code).
- Note that the SPKAC does not contain the other usual attributes
- of a certificate request, especially the subject name fields.
- These must be otherwise encoded in the form for submission along
- with the SPKAC.
-
-- Either immediately (in response to this form submission), or at
- some later date (a real CA will probably verify your identity in
- some way before issuing the certificate), a web server can send a
- certificate based on the public key and other attributes back to
- the browser by encoding it in DER (the binary form) and sending it
- to the browser as MIME type:
- "Content-type: application/x-x509-user-cert"
-
- The browser uses the public key encoded in the certificate to
- associate the certificate with the appropriate private key in
- its local key database. Now, the certificate is "installed".
-
-- When a server wants to require authentication based on client
- certificates, it uses the right signals via the SSL protocol to
- trigger the Navigator to ask you which certificate you want to
- send. Whether the certificate is accepted is dependent on CA
- certificates and so forth installed in the server and is beyond
- the scope of this document.
-
-
-Now, here's how the SSLeay package can be used to provide client
-certficates:
-
-- You prepare a file for input to the SSLeay ca application.
- The file contains a number of "name = value" pairs that identify
- the subject. The names here are the same subject name component
- identifiers used in the CA section of the lib/ssleay.conf file,
- such as "emailAddress", "commonName" "organizationName" and so
- forth. Both the long version and the short version (e.g. "Email",
- "CN", "O") can be used.
-
- One more name is supported: this one is "SPKAC". Its value
- is simply the value of the base-64 encoded SPKAC sent by the
- browser (with all the newlines and other space charaters
- removed -- and newline escapes are NOT supported).
-
- [ As of SSLeay 0.6.4, multiple lines are supported.
- Put a \ at the end of each line and it will be joined with the
- previous line with the '\n' removed - eay ]
-
- Here's a sample input file:
-
-C = US
-SP = Georgia
-O = Some Organization, Inc.
-OU = Netscape Compatibility Group
-CN = John X. Doe
-Email = jxdoe@someorg.com
-SPKAC = MIG0MGAwXDANBgkqhkiG9w0BAQEFAANLADBIAkEAwmk6FMJ4uAVIYbcvIOx5+bDGTfvL8X5gE+R67ccMk6rCSGbVQz2cetyQtnI+VIs0NwdD6wjuSuVtVFbLoHonowIDAQABFgAwDQYJKoZIhvcNAQEEBQADQQBFZDUWFl6BJdomtN1Bi53mwijy1rRgJ4YirF15yBEDM3DjAQkKXHYOIX+qpz4KXKnl6EYxTnGSFL5wWt8X2iyx
-
-- You execute the ca command (either from a CGI program run out of
- the web server, or as a later manual task) giving it the above
- file as input. For example, if the file were named /tmp/cert.req,
- you'd run:
- $SSLDIR/bin/ca -spkac /tmp/cert.req -out /tmp/cert
-
- The output is in DER format (binary) if a -out argument is
- provided, as above; otherwise, it's in the PEM format (base-64
- encoded DER). Also, the "-batch" switch is implied by the
- "-spkac" so you don't get asked whether to complete the signing
- (probably it shouldn't work this way but I was only interested
- in hacking together an online CA that could be used for issuing
- test certificates).
-
- The "-spkac" capability doesn't support multiple files (I think).
-
- Any CHALLENGE provided in the SPKAC is simply ignored.
-
- The interactions between the identification fields you provide
- and those identified in your lib/ssleay.conf are the same as if
- you did an ordinary "ca -in infile -out outfile" -- that is, if
- something is marked as required in the ssleay.conf file and it
- isn't found in the -spkac file, the certificate won't be issued.
-
-- Now, you pick up the output from /tmp/cert and pass it back to
- the Navigator prepending the Content-type string described earlier.
-
-- In order to run the ca command out of a CGI program, you must
- provide a password to decrypt the CA's private key. You can
- do this by using "echo MyKeyPassword | $SSLDIR/bin/ca ..."
- I think there's a way to not encrypt the key file in the first
- place, but I didn't see how to do that, so I made a small change
- to the library that allows the password to be accepted from a pipe.
- Either way is UTTERLY INSECURE and a real CA would never do that.
-
- [ You can use the 'ssleay rsa' command to remove the password
- from the private key, or you can use the '-key' option to the
- ca command to specify the decryption key on the command line
- or use the -nodes option when generating the key.
- ca will try to clear the command line version of the password
- but for quite a few operating systems, this is not possible.
- - eric ]
-
-So, what do you have to do to make use of this stuff to create an online
-demo CA capability with SSLeay?
-
-1 Create an HTML form for your users. The form should contain
- fields for all of the required or optional fields in ssleay.conf.
- The form must contain a KEYGEN tag somewhere with at least a NAME
- attribute.
-
-2 Create a CGI program to process the form input submitted by the
- browser. The CGI program must URL-decode the variables and create
- the file described above, containing subject identification info
- as well as the SPKAC block. It should then run the the ca program
- with the -spkac option. If it works (check the exit status),
- return the new certificate with the appropriate MIME type. If not,
- return the output of the ca command with MIME type "text/plain".
-
-3 Set up your web server to accept connections signed by your demo
- CA. This probably involves obtaining the PEM-encoded CA certificate
- (ordinarily in $SSLDIR/CA/cacert.pem) and installing it into a
- server database. See your server manual for instructions.
-