summaryrefslogtreecommitdiffstats
path: root/doc/idea.doc
diff options
context:
space:
mode:
Diffstat (limited to 'doc/idea.doc')
-rw-r--r--doc/idea.doc176
1 files changed, 0 insertions, 176 deletions
diff --git a/doc/idea.doc b/doc/idea.doc
deleted file mode 100644
index 68a22a6cae..0000000000
--- a/doc/idea.doc
+++ /dev/null
@@ -1,176 +0,0 @@
-The IDEA library.
-IDEA is a block cipher that operates on 64bit (8 byte) quantities. It
-uses a 128bit (16 byte) key. It can be used in all the modes that DES can
-be used. This library implements the ecb, cbc, cfb64 and ofb64 modes.
-
-For all calls that have an 'input' and 'output' variables, they can be the
-same.
-
-This library requires the inclusion of 'idea.h'.
-
-All of the encryption functions take what is called an IDEA_KEY_SCHEDULE as an
-argument. An IDEA_KEY_SCHEDULE is an expanded form of the idea key.
-For all modes of the IDEA algorithm, the IDEA_KEY_SCHEDULE used for
-decryption is different to the one used for encryption.
-
-The define IDEA_ENCRYPT is passed to specify encryption for the functions
-that require an encryption/decryption flag. IDEA_DECRYPT is passed to
-specify decryption. For some mode there is no encryption/decryption
-flag since this is determined by the IDEA_KEY_SCHEDULE.
-
-So to encrypt you would do the following
-idea_set_encrypt_key(key,encrypt_ks);
-idea_ecb_encrypt(...,encrypt_ks);
-idea_cbc_encrypt(....,encrypt_ks,...,IDEA_ENCRYPT);
-
-To Decrypt
-idea_set_encrypt_key(key,encrypt_ks);
-idea_set_decrypt_key(encrypt_ks,decrypt_ks);
-idea_ecb_encrypt(...,decrypt_ks);
-idea_cbc_encrypt(....,decrypt_ks,...,IDEA_DECRYPT);
-
-Please note that any of the encryption modes specified in my DES library
-could be used with IDEA. I have only implemented ecb, cbc, cfb64 and
-ofb64 for the following reasons.
-- ecb is the basic IDEA encryption.
-- cbc is the normal 'chaining' form for block ciphers.
-- cfb64 can be used to encrypt single characters, therefore input and output
- do not need to be a multiple of 8.
-- ofb64 is similar to cfb64 but is more like a stream cipher, not as
- secure (not cipher feedback) but it does not have an encrypt/decrypt mode.
-- If you want triple IDEA, thats 384 bits of key and you must be totally
- obsessed with security. Still, if you want it, it is simple enough to
- copy the function from the DES library and change the des_encrypt to
- idea_encrypt; an exercise left for the paranoid reader :-).
-
-The functions are as follows:
-
-void idea_set_encrypt_key(
-unsigned char *key;
-IDEA_KEY_SCHEDULE *ks);
- idea_set_encrypt_key converts a 16 byte IDEA key into an
- IDEA_KEY_SCHEDULE. The IDEA_KEY_SCHEDULE is an expanded form of
- the key which can be used to perform IDEA encryption.
- An IDEA_KEY_SCHEDULE is an expanded form of the key which is used to
- perform actual encryption. It can be regenerated from the IDEA key
- so it only needs to be kept when encryption is about
- to occur. Don't save or pass around IDEA_KEY_SCHEDULE's since they
- are CPU architecture dependent, IDEA keys are not.
-
-void idea_set_decrypt_key(
-IDEA_KEY_SCHEDULE *encrypt_ks,
-IDEA_KEY_SCHEDULE *decrypt_ks);
- This functions converts an encryption IDEA_KEY_SCHEDULE into a
- decryption IDEA_KEY_SCHEDULE. For all decryption, this conversion
- of the key must be done. In some modes of IDEA, an
- encryption/decryption flag is also required, this is because these
- functions involve block chaining and the way this is done changes
- depending on which of encryption of decryption is being done.
- Please note that there is no quick way to generate the decryption
- key schedule other than generating the encryption key schedule and
- then converting it.
-
-void idea_encrypt(
-unsigned long *data,
-IDEA_KEY_SCHEDULE *ks);
- This is the IDEA encryption function that gets called by just about
- every other IDEA routine in the library. You should not use this
- function except to implement 'modes' of IDEA. I say this because the
- functions that call this routine do the conversion from 'char *' to
- long, and this needs to be done to make sure 'non-aligned' memory
- access do not occur.
- Data is a pointer to 2 unsigned long's and ks is the
- IDEA_KEY_SCHEDULE to use. Encryption or decryption depends on the
- IDEA_KEY_SCHEDULE.
-
-void idea_ecb_encrypt(
-unsigned char *input,
-unsigned char *output,
-IDEA_KEY_SCHEDULE *ks);
- This is the basic Electronic Code Book form of IDEA (in DES this
- mode is called Electronic Code Book so I'm going to use the term
- for idea as well :-).
- Input is encrypted into output using the key represented by
- ks. Depending on the IDEA_KEY_SCHEDULE, encryption or
- decryption occurs. Input is 8 bytes long and output is 8 bytes.
-
-void idea_cbc_encrypt(
-unsigned char *input,
-unsigned char *output,
-long length,
-IDEA_KEY_SCHEDULE *ks,
-unsigned char *ivec,
-int enc);
- This routine implements IDEA in Cipher Block Chaining mode.
- Input, which should be a multiple of 8 bytes is encrypted
- (or decrypted) to output which will also be a multiple of 8 bytes.
- The number of bytes is in length (and from what I've said above,
- should be a multiple of 8). If length is not a multiple of 8, bad
- things will probably happen. ivec is the initialisation vector.
- This function updates iv after each call so that it can be passed to
- the next call to idea_cbc_encrypt().
-
-void idea_cfb64_encrypt(
-unsigned char *in,
-unsigned char *out,
-long length,
-des_key_schedule ks,
-des_cblock *ivec,
-int *num,
-int enc);
- This is one of the more useful functions in this IDEA library, it
- implements CFB mode of IDEA with 64bit feedback.
- This allows you to encrypt an arbitrary number of bytes,
- you do not require 8 byte padding. Each call to this
- routine will encrypt the input bytes to output and then update ivec
- and num. Num contains 'how far' we are though ivec.
- Enc is used to indicate encryption or decryption.
- One very important thing to remember is that when decrypting, use
- the encryption form of the key.
- CFB64 mode operates by using the cipher to
- generate a stream of bytes which is used to encrypt the plain text.
- The cipher text is then encrypted to generate the next 64 bits to
- be xored (incrementally) with the next 64 bits of plain
- text. As can be seen from this, to encrypt or decrypt,
- the same 'cipher stream' needs to be generated but the way the next
- block of data is gathered for encryption is different for
- encryption and decryption. What this means is that to encrypt
- idea_set_encrypt_key(key,ks);
- idea_cfb64_encrypt(...,ks,..,IDEA_ENCRYPT)
- do decrypt
- idea_set_encrypt_key(key,ks)
- idea_cfb64_encrypt(...,ks,...,IDEA_DECRYPT)
- Note: The same IDEA_KEY_SCHEDULE but different encryption flags.
- For idea_cbc or idea_ecb, idea_set_decrypt_key() would need to be
- used to generate the IDEA_KEY_SCHEDULE for decryption.
- The reason I'm stressing this point is that I just wasted 3 hours
- today trying to decrypt using this mode and the decryption form of
- the key :-(.
-
-void idea_ofb64_encrypt(
-unsigned char *in,
-unsigned char *out,
-long length,
-des_key_schedule ks,
-des_cblock *ivec,
-int *num);
- This functions implements OFB mode of IDEA with 64bit feedback.
- This allows you to encrypt an arbitrary number of bytes,
- you do not require 8 byte padding. Each call to this
- routine will encrypt the input bytes to output and then update ivec
- and num. Num contains 'how far' we are though ivec.
- This is in effect a stream cipher, there is no encryption or
- decryption mode. The same key and iv should be used to
- encrypt and decrypt.
-
-For reading passwords, I suggest using des_read_pw_string() from my DES library.
-To generate a password from a text string, I suggest using MD5 (or MD2) to
-produce a 16 byte message digest that can then be passed directly to
-idea_set_encrypt_key().
-
-=====
-For more information about the specific IDEA modes in this library
-(ecb, cbc, cfb and ofb), read the section entitled 'Modes of DES' from the
-documentation on my DES library. What is said about DES is directly
-applicable for IDEA.
-