summaryrefslogtreecommitdiffstats
path: root/crypto/bn/asm/rsaz-3k-avx512.pl
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/bn/asm/rsaz-3k-avx512.pl')
-rw-r--r--crypto/bn/asm/rsaz-3k-avx512.pl874
1 files changed, 874 insertions, 0 deletions
diff --git a/crypto/bn/asm/rsaz-3k-avx512.pl b/crypto/bn/asm/rsaz-3k-avx512.pl
new file mode 100644
index 0000000000..e294afd294
--- /dev/null
+++ b/crypto/bn/asm/rsaz-3k-avx512.pl
@@ -0,0 +1,874 @@
+# Copyright 2021 The OpenSSL Project Authors. All Rights Reserved.
+# Copyright (c) 2021, Intel Corporation. All Rights Reserved.
+#
+# Licensed under the Apache License 2.0 (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+#
+#
+# Originally written by Sergey Kirillov and Andrey Matyukov
+# Intel Corporation
+#
+# March 2021
+#
+# Initial release.
+#
+# Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
+#
+# IceLake-Client @ 1.3GHz
+# |---------+-----------------------+---------------+-------------|
+# | | OpenSSL 3.0.0-alpha15 | this | Unit |
+# |---------+-----------------------+---------------+-------------|
+# | rsa3072 | 6 397 637 | 2 866 593 | cycles/sign |
+# | | 203.2 | 453.5 / +123% | sign/s |
+# |---------+-----------------------+---------------+-------------|
+#
+
+# $output is the last argument if it looks like a file (it has an extension)
+# $flavour is the first argument if it doesn't look like a file
+$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
+$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
+
+$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
+$avx512ifma=0;
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
+die "can't locate x86_64-xlate.pl";
+
+if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
+ =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
+ $avx512ifma = ($1>=2.26);
+}
+
+if (!$avx512 && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
+ `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
+ $avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
+}
+
+if (!$avx512 && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
+ $avx512ifma = ($2>=7.0);
+}
+
+open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
+ or die "can't call $xlate: $!";
+*STDOUT=*OUT;
+
+if ($avx512ifma>0) {{{
+@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
+
+###############################################################################
+# Almost Montgomery Multiplication (AMM) for 30-digit number in radix 2^52.
+#
+# AMM is defined as presented in the paper [1].
+#
+# The input and output are presented in 2^52 radix domain, i.e.
+# |res|, |a|, |b|, |m| are arrays of 32 64-bit qwords with 12 high bits zeroed
+#
+# NOTE: the function uses zero-padded data - 2 high QWs is a padding.
+#
+# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
+#
+# NB: the AMM implementation does not perform "conditional" subtraction step
+# specified in the original algorithm as according to the Lemma 1 from the paper
+# [2], the result will be always < 2*m and can be used as a direct input to
+# the next AMM iteration. This post-condition is true, provided the correct
+# parameter |s| (notion of the Lemma 1 from [2]) is choosen, i.e. s >= n + 2 * k,
+# which matches our case: 1560 > 1536 + 2 * 1.
+#
+# [1] Gueron, S. Efficient software implementations of modular exponentiation.
+# DOI: 10.1007/s13389-012-0031-5
+# [2] Gueron, S. Enhanced Montgomery Multiplication.
+# DOI: 10.1007/3-540-36400-5_5
+#
+# void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res,
+# const BN_ULONG *a,
+# const BN_ULONG *b,
+# const BN_ULONG *m,
+# BN_ULONG k0);
+###############################################################################
+{
+# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
+my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
+
+my $mask52 = "%rax";
+my $acc0_0 = "%r9";
+my $acc0_0_low = "%r9d";
+my $acc0_1 = "%r15";
+my $acc0_1_low = "%r15d";
+my $b_ptr = "%r11";
+
+my $iter = "%ebx";
+
+my $zero = "%ymm0";
+my $Bi = "%ymm1";
+my $Yi = "%ymm2";
+my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h) = map("%ymm$_",(3..10));
+my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h) = map("%ymm$_",(11..18));
+
+# Registers mapping for normalization
+my ($T0,$T0h,$T1,$T1h,$T2,$T2h,$T3,$T3h) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (19..23)));
+
+sub amm52x30_x1() {
+# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
+# of data for corresponding AMM operation;
+# _b_offset - offset in the |b| array pointing to the next qword digit;
+my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h,$_k0) = @_;
+my $_R0_xmm = $_R0;
+$_R0_xmm =~ s/%y/%x/;
+$code.=<<___;
+ movq $_b_offset($b_ptr), %r13 # b[i]
+
+ vpbroadcastq %r13, $Bi # broadcast b[i]
+ movq $_data_offset($a), %rdx
+ mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
+ addq %r13, $_acc # acc += t0
+ movq %r12, %r10
+ adcq \$0, %r10 # t2 += CF
+
+ movq $_k0, %r13
+ imulq $_acc, %r13 # acc * k0
+ andq $mask52, %r13 # yi = (acc * k0) & mask52
+
+ vpbroadcastq %r13, $Yi # broadcast y[i]
+ movq $_data_offset($m), %rdx
+ mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
+ addq %r13, $_acc # acc += t0
+ adcq %r12, %r10 # t2 += (t1 + CF)
+
+ shrq \$52, $_acc
+ salq \$12, %r10
+ or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
+
+ vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
+ vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
+ vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
+ vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
+ vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
+ vpmadd52luq `$_data_offset+64*2+32`($a), $Bi, $_R2h
+ vpmadd52luq `$_data_offset+64*3`($a), $Bi, $_R3
+ vpmadd52luq `$_data_offset+64*3+32`($a), $Bi, $_R3h
+
+ vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
+ vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
+ vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
+ vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
+ vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
+ vpmadd52luq `$_data_offset+64*2+32`($m), $Yi, $_R2h
+ vpmadd52luq `$_data_offset+64*3`($m), $Yi, $_R3
+ vpmadd52luq `$_data_offset+64*3+32`($m), $Yi, $_R3h
+
+ # Shift accumulators right by 1 qword, zero extending the highest one
+ valignq \$1, $_R0, $_R0h, $_R0
+ valignq \$1, $_R0h, $_R1, $_R0h
+ valignq \$1, $_R1, $_R1h, $_R1
+ valignq \$1, $_R1h, $_R2, $_R1h
+ valignq \$1, $_R2, $_R2h, $_R2
+ valignq \$1, $_R2h, $_R3, $_R2h
+ valignq \$1, $_R3, $_R3h, $_R3
+ valignq \$1, $_R3h, $zero, $_R3h
+
+ vmovq $_R0_xmm, %r13
+ addq %r13, $_acc # acc += R0[0]
+
+ vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
+ vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
+ vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
+ vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
+ vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
+ vpmadd52huq `$_data_offset+64*2+32`($a), $Bi, $_R2h
+ vpmadd52huq `$_data_offset+64*3`($a), $Bi, $_R3
+ vpmadd52huq `$_data_offset+64*3+32`($a), $Bi, $_R3h
+
+ vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
+ vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
+ vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
+ vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
+ vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
+ vpmadd52huq `$_data_offset+64*2+32`($m), $Yi, $_R2h
+ vpmadd52huq `$_data_offset+64*3`($m), $Yi, $_R3
+ vpmadd52huq `$_data_offset+64*3+32`($m), $Yi, $_R3h
+___
+}
+
+# Normalization routine: handles carry bits and gets bignum qwords to normalized
+# 2^52 representation.
+#
+# Uses %r8-14,%e[abcd]x
+sub amm52x30_x1_norm {
+my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h) = @_;
+$code.=<<___;
+ # Put accumulator to low qword in R0
+ vpbroadcastq $_acc, $T0
+ vpblendd \$3, $T0, $_R0, $_R0
+
+ # Extract "carries" (12 high bits) from each QW of the bignum
+ # Save them to LSB of QWs in T0..Tn
+ vpsrlq \$52, $_R0, $T0
+ vpsrlq \$52, $_R0h, $T0h
+ vpsrlq \$52, $_R1, $T1
+ vpsrlq \$52, $_R1h, $T1h
+ vpsrlq \$52, $_R2, $T2
+ vpsrlq \$52, $_R2h, $T2h
+ vpsrlq \$52, $_R3, $T3
+ vpsrlq \$52, $_R3h, $T3h
+
+ # "Shift left" T0..Tn by 1 QW
+ valignq \$3, $T3, $T3h, $T3h
+ valignq \$3, $T2h, $T3, $T3
+ valignq \$3, $T2, $T2h, $T2h
+ valignq \$3, $T1h, $T2, $T2
+ valignq \$3, $T1, $T1h, $T1h
+ valignq \$3, $T0h, $T1, $T1
+ valignq \$3, $T0, $T0h, $T0h
+ valignq \$3, .Lzeros(%rip), $T0, $T0
+
+ # Drop "carries" from R0..Rn QWs
+ vpandq .Lmask52x4(%rip), $_R0, $_R0
+ vpandq .Lmask52x4(%rip), $_R0h, $_R0h
+ vpandq .Lmask52x4(%rip), $_R1, $_R1
+ vpandq .Lmask52x4(%rip), $_R1h, $_R1h
+ vpandq .Lmask52x4(%rip), $_R2, $_R2
+ vpandq .Lmask52x4(%rip), $_R2h, $_R2h
+ vpandq .Lmask52x4(%rip), $_R3, $_R3
+ vpandq .Lmask52x4(%rip), $_R3h, $_R3h
+
+ # Sum R0..Rn with corresponding adjusted carries
+ vpaddq $T0, $_R0, $_R0
+ vpaddq $T0h, $_R0h, $_R0h
+ vpaddq $T1, $_R1, $_R1
+ vpaddq $T1h, $_R1h, $_R1h
+ vpaddq $T2, $_R2, $_R2
+ vpaddq $T2h, $_R2h, $_R2h
+ vpaddq $T3, $_R3, $_R3
+ vpaddq $T3h, $_R3h, $_R3h
+
+ # Now handle carry bits from this addition
+ # Get mask of QWs whose 52-bit parts overflow
+ vpcmpuq \$6,.Lmask52x4(%rip),${_R0},%k1 # OP=nle (i.e. gt)
+ vpcmpuq \$6,.Lmask52x4(%rip),${_R0h},%k2
+ kmovb %k1,%r14d
+ kmovb %k2,%r13d
+ shl \$4,%r13b
+ or %r13b,%r14b
+
+ vpcmpuq \$6,.Lmask52x4(%rip),${_R1},%k1
+ vpcmpuq \$6,.Lmask52x4(%rip),${_R1h},%k2
+ kmovb %k1,%r13d
+ kmovb %k2,%r12d
+ shl \$4,%r12b
+ or %r12b,%r13b
+
+ vpcmpuq \$6,.Lmask52x4(%rip),${_R2},%k1
+ vpcmpuq \$6,.Lmask52x4(%rip),${_R2h},%k2
+ kmovb %k1,%r12d
+ kmovb %k2,%r11d
+ shl \$4,%r11b
+ or %r11b,%r12b
+
+ vpcmpuq \$6,.Lmask52x4(%rip),${_R3},%k1
+ vpcmpuq \$6,.Lmask52x4(%rip),${_R3h},%k2
+ kmovb %k1,%r11d
+ kmovb %k2,%r10d
+ shl \$4,%r10b
+ or %r10b,%r11b
+
+ addb %r14b,%r14b
+ adcb %r13b,%r13b
+ adcb %r12b,%r12b
+ adcb %r11b,%r11b
+
+ # Get mask of QWs whose 52-bit parts saturated
+ vpcmpuq \$0,.Lmask52x4(%rip),${_R0},%k1 # OP=eq
+ vpcmpuq \$0,.Lmask52x4(%rip),${_R0h},%k2
+ kmovb %k1,%r9d
+ kmovb %k2,%r8d
+ shl \$4,%r8b
+ or %r8b,%r9b
+
+ vpcmpuq \$0,.Lmask52x4(%rip),${_R1},%k1
+ vpcmpuq \$0,.Lmask52x4(%rip),${_R1h},%k2
+ kmovb %k1,%r8d
+ kmovb %k2,%edx
+ shl \$4,%dl
+ or %dl,%r8b
+
+ vpcmpuq \$0,.Lmask52x4(%rip),${_R2},%k1
+ vpcmpuq \$0,.Lmask52x4(%rip),${_R2h},%k2
+ kmovb %k1,%edx
+ kmovb %k2,%ecx
+ shl \$4,%cl
+ or %cl,%dl
+
+ vpcmpuq \$0,.Lmask52x4(%rip),${_R3},%k1
+ vpcmpuq \$0,.Lmask52x4(%rip),${_R3h},%k2
+ kmovb %k1,%ecx
+ kmovb %k2,%ebx
+ shl \$4,%bl
+ or %bl,%cl
+
+ addb %r9b,%r14b
+ adcb %r8b,%r13b
+ adcb %dl,%r12b
+ adcb %cl,%r11b
+
+ xor %r9b,%r14b
+ xor %r8b,%r13b
+ xor %dl,%r12b
+ xor %cl,%r11b
+
+ kmovb %r14d,%k1
+ shr \$4,%r14b
+ kmovb %r14d,%k2
+ kmovb %r13d,%k3
+ shr \$4,%r13b
+ kmovb %r13d,%k4
+ kmovb %r12d,%k5
+ shr \$4,%r12b
+ kmovb %r12d,%k6
+ kmovb %r11d,%k7
+
+ vpsubq .Lmask52x4(%rip), $_R0, ${_R0}{%k1}
+ vpsubq .Lmask52x4(%rip), $_R0h, ${_R0h}{%k2}
+ vpsubq .Lmask52x4(%rip), $_R1, ${_R1}{%k3}
+ vpsubq .Lmask52x4(%rip), $_R1h, ${_R1h}{%k4}
+ vpsubq .Lmask52x4(%rip), $_R2, ${_R2}{%k5}
+ vpsubq .Lmask52x4(%rip), $_R2h, ${_R2h}{%k6}
+ vpsubq .Lmask52x4(%rip), $_R3, ${_R3}{%k7}
+
+ vpandq .Lmask52x4(%rip), $_R0, $_R0
+ vpandq .Lmask52x4(%rip), $_R0h, $_R0h
+ vpandq .Lmask52x4(%rip), $_R1, $_R1
+ vpandq .Lmask52x4(%rip), $_R1h, $_R1h
+ vpandq .Lmask52x4(%rip), $_R2, $_R2
+ vpandq .Lmask52x4(%rip), $_R2h, $_R2h
+ vpandq .Lmask52x4(%rip), $_R3, $_R3
+
+ shr \$4,%r11b
+ kmovb %r11d,%k1
+
+ vpsubq .Lmask52x4(%rip), $_R3h, ${_R3h}{%k1}
+
+ vpandq .Lmask52x4(%rip), $_R3h, $_R3h
+___
+}
+
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x30_x1_ifma256
+.type ossl_rsaz_amm52x30_x1_ifma256,\@function,5
+.align 32
+ossl_rsaz_amm52x30_x1_ifma256:
+.cfi_startproc
+ endbranch
+ push %rbx
+.cfi_push %rbx
+ push %rbp
+.cfi_push %rbp
+ push %r12
+.cfi_push %r12
+ push %r13
+.cfi_push %r13
+ push %r14
+.cfi_push %r14
+ push %r15
+.cfi_push %r15
+___
+$code.=<<___ if ($win64);
+ lea -168(%rsp),%rsp # 16*10 + (8 bytes to get correct 16-byte SIMD alignment)
+ vmovdqa64 %xmm6, `0*16`(%rsp) # save non-volatile registers
+ vmovdqa64 %xmm7, `1*16`(%rsp)
+ vmovdqa64 %xmm8, `2*16`(%rsp)
+ vmovdqa64 %xmm9, `3*16`(%rsp)
+ vmovdqa64 %xmm10,`4*16`(%rsp)
+ vmovdqa64 %xmm11,`5*16`(%rsp)
+ vmovdqa64 %xmm12,`6*16`(%rsp)
+ vmovdqa64 %xmm13,`7*16`(%rsp)
+ vmovdqa64 %xmm14,`8*16`(%rsp)
+ vmovdqa64 %xmm15,`9*16`(%rsp)
+.Lossl_rsaz_amm52x30_x1_ifma256_body:
+___
+$code.=<<___;
+ # Zeroing accumulators
+ vpxord $zero, $zero, $zero
+ vmovdqa64 $zero, $R0_0
+ vmovdqa64 $zero, $R0_0h
+ vmovdqa64 $zero, $R1_0
+ vmovdqa64 $zero, $R1_0h
+ vmovdqa64 $zero, $R2_0
+ vmovdqa64 $zero, $R2_0h
+ vmovdqa64 $zero, $R3_0
+ vmovdqa64 $zero, $R3_0h
+
+ xorl $acc0_0_low, $acc0_0_low
+
+ movq $b, $b_ptr # backup address of b
+ movq \$0xfffffffffffff, $mask52 # 52-bit mask
+
+ # Loop over 30 digits unrolled by 4
+ mov \$7, $iter
+
+.align 32
+.Lloop7:
+___
+ foreach my $idx (0..3) {
+ &amm52x30_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$k0);
+ }
+$code.=<<___;
+ lea `4*8`($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop7
+___
+ &amm52x30_x1(0,8*0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$k0);
+ &amm52x30_x1(0,8*1,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$k0);
+
+ &amm52x30_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h);
+$code.=<<___;
+
+ vmovdqu64 $R0_0, `0*32`($res)
+ vmovdqu64 $R0_0h, `1*32`($res)
+ vmovdqu64 $R1_0, `2*32`($res)
+ vmovdqu64 $R1_0h, `3*32`($res)
+ vmovdqu64 $R2_0, `4*32`($res)
+ vmovdqu64 $R2_0h, `5*32`($res)
+ vmovdqu64 $R3_0, `6*32`($res)
+ vmovdqu64 $R3_0h, `7*32`($res)
+
+ vzeroupper
+ lea (%rsp),%rax
+.cfi_def_cfa_register %rax
+___
+$code.=<<___ if ($win64);
+ vmovdqa64 `0*16`(%rax),%xmm6
+ vmovdqa64 `1*16`(%rax),%xmm7
+ vmovdqa64 `2*16`(%rax),%xmm8
+ vmovdqa64 `3*16`(%rax),%xmm9
+ vmovdqa64 `4*16`(%rax),%xmm10
+ vmovdqa64 `5*16`(%rax),%xmm11
+ vmovdqa64 `6*16`(%rax),%xmm12
+ vmovdqa64 `7*16`(%rax),%xmm13
+ vmovdqa64 `8*16`(%rax),%xmm14
+ vmovdqa64 `9*16`(%rax),%xmm15
+ lea 168(%rsp),%rax
+___
+$code.=<<___;
+ mov 0(%rax),%r15
+.cfi_restore %r15
+ mov 8(%rax),%r14
+.cfi_restore %r14
+ mov 16(%rax),%r13
+.cfi_restore %r13
+ mov 24(%rax),%r12
+.cfi_restore %r12
+ mov 32(%rax),%rbp
+.cfi_restore %rbp
+ mov 40(%rax),%rbx
+.cfi_restore %rbx
+ lea 48(%rax),%rsp # restore rsp
+.cfi_def_cfa %rsp,8
+.Lossl_rsaz_amm52x30_x1_ifma256_epilogue:
+ ret
+.cfi_endproc
+.size ossl_rsaz_amm52x30_x1_ifma256, .-ossl_rsaz_amm52x30_x1_ifma256
+___
+
+$code.=<<___;
+.data
+.align 32
+.Lmask52x4:
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+___
+
+###############################################################################
+# Dual Almost Montgomery Multiplication for 30-digit number in radix 2^52
+#
+# See description of ossl_rsaz_amm52x30_x1_ifma256() above for details about Almost
+# Montgomery Multiplication algorithm and function input parameters description.
+#
+# This function does two AMMs for two independent inputs, hence dual.
+#
+# NOTE: the function uses zero-padded data - 2 high QWs is a padding.
+#
+# void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG out[2][32],
+# const BN_ULONG a[2][32],
+# const BN_ULONG b[2][32],
+# const BN_ULONG m[2][32],
+# const BN_ULONG k0[2]);
+###############################################################################
+
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x30_x2_ifma256
+.type ossl_rsaz_amm52x30_x2_ifma256,\@function,5
+.align 32
+ossl_rsaz_amm52x30_x2_ifma256:
+.cfi_startproc
+ endbranch
+ push %rbx
+.cfi_push %rbx
+ push %rbp
+.cfi_push %rbp
+ push %r12
+.cfi_push %r12
+ push %r13
+.cfi_push %r13
+ push %r14
+.cfi_push %r14
+ push %r15
+.cfi_push %r15
+___
+$code.=<<___ if ($win64);
+ lea -168(%rsp),%rsp
+ vmovdqa64 %xmm6, `0*16`(%rsp) # save non-volatile registers
+ vmovdqa64 %xmm7, `1*16`(%rsp)
+ vmovdqa64 %xmm8, `2*16`(%rsp)
+ vmovdqa64 %xmm9, `3*16`(%rsp)
+ vmovdqa64 %xmm10,`4*16`(%rsp)
+ vmovdqa64 %xmm11,`5*16`(%rsp)
+ vmovdqa64 %xmm12,`6*16`(%rsp)
+ vmovdqa64 %xmm13,`7*16`(%rsp)
+ vmovdqa64 %xmm14,`8*16`(%rsp)
+ vmovdqa64 %xmm15,`9*16`(%rsp)
+.Lossl_rsaz_amm52x30_x2_ifma256_body:
+___
+$code.=<<___;
+ # Zeroing accumulators
+ vpxord $zero, $zero, $zero
+ vmovdqa64 $zero, $R0_0
+ vmovdqa64 $zero, $R0_0h
+ vmovdqa64 $zero, $R1_0
+ vmovdqa64 $zero, $R1_0h
+ vmovdqa64 $zero, $R2_0
+ vmovdqa64 $zero, $R2_0h
+ vmovdqa64 $zero, $R3_0
+ vmovdqa64 $zero, $R3_0h
+
+ vmovdqa64 $zero, $R0_1
+ vmovdqa64 $zero, $R0_1h
+ vmovdqa64 $zero, $R1_1
+ vmovdqa64 $zero, $R1_1h
+ vmovdqa64 $zero, $R2_1
+ vmovdqa64 $zero, $R2_1h
+ vmovdqa64 $zero, $R3_1
+ vmovdqa64 $zero, $R3_1h
+
+
+ xorl $acc0_0_low, $acc0_0_low
+ xorl $acc0_1_low, $acc0_1_low
+
+ movq $b, $b_ptr # backup address of b
+ movq \$0xfffffffffffff, $mask52 # 52-bit mask
+
+ mov \$30, $iter
+
+.align 32
+.Lloop30:
+___
+ &amm52x30_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,"($k0)");
+ # 32*8 = offset of the next dimension in two-dimension array
+ &amm52x30_x1(32*8,32*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h,"8($k0)");
+$code.=<<___;
+ lea 8($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop30
+___
+ &amm52x30_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h);
+ &amm52x30_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h);
+$code.=<<___;
+
+ vmovdqu64 $R0_0, `0*32`($res)
+ vmovdqu64 $R0_0h, `1*32`($res)
+ vmovdqu64 $R1_0, `2*32`($res)
+ vmovdqu64 $R1_0h, `3*32`($res)
+ vmovdqu64 $R2_0, `4*32`($res)
+ vmovdqu64 $R2_0h, `5*32`($res)
+ vmovdqu64 $R3_0, `6*32`($res)
+ vmovdqu64 $R3_0h, `7*32`($res)
+
+ vmovdqu64 $R0_1, `8*32`($res)
+ vmovdqu64 $R0_1h, `9*32`($res)
+ vmovdqu64 $R1_1, `10*32`($res)
+ vmovdqu64 $R1_1h, `11*32`($res)
+ vmovdqu64 $R2_1, `12*32`($res)
+ vmovdqu64 $R2_1h, `13*32`($res)
+ vmovdqu64 $R3_1, `14*32`($res)
+ vmovdqu64 $R3_1h, `15*32`($res)
+
+ vzeroupper
+ lea (%rsp),%rax
+.cfi_def_cfa_register %rax
+___
+$code.=<<___ if ($win64);
+ vmovdqa64 `0*16`(%rax),%xmm6
+ vmovdqa64 `1*16`(%rax),%xmm7
+ vmovdqa64 `2*16`(%rax),%xmm8
+ vmovdqa64 `3*16`(%rax),%xmm9
+ vmovdqa64 `4*16`(%rax),%xmm10
+ vmovdqa64 `5*16`(%rax),%xmm11
+ vmovdqa64 `6*16`(%rax),%xmm12
+ vmovdqa64 `7*16`(%rax),%xmm13
+ vmovdqa64 `8*16`(%rax),%xmm14
+ vmovdqa64 `9*16`(%rax),%xmm15
+ lea 168(%rsp),%rax
+___
+$code.=<<___;
+ mov 0(%rax),%r15
+.cfi_restore %r15
+ mov 8(%rax),%r14
+.cfi_restore %r14
+ mov 16(%rax),%r13
+.cfi_restore %r13
+ mov 24(%rax),%r12
+.cfi_restore %r12
+ mov 32(%rax),%rbp
+.cfi_restore %rbp
+ mov 40(%rax),%rbx
+.cfi_restore %rbx
+ lea 48(%rax),%rsp
+.cfi_def_cfa %rsp,8
+.Lossl_rsaz_amm52x30_x2_ifma256_epilogue:
+ ret
+.cfi_endproc
+.size ossl_rsaz_amm52x30_x2_ifma256, .-ossl_rsaz_amm52x30_x2_ifma256
+___
+}
+
+###############################################################################
+# Constant time extraction from the precomputed table of powers base^i, where
+# i = 0..2^EXP_WIN_SIZE-1
+#
+# The input |red_table| contains precomputations for two independent base values.
+# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
+#
+# Extracted value (output) is 2 (30 + 2) digits numbers in 2^52 radix.
+# (2 high QW is zero padding)
+#
+# void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y,
+# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][32],
+# int red_table_idx1, int red_table_idx2);
+#
+# EXP_WIN_SIZE = 5
+###############################################################################
+{
+# input parameters
+my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
+ ("%rdi","%rsi","%rdx","%rcx"); # Unix order
+
+my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
+my ($t6,$t7,$t8,$t9,$t10,$t11,$t12,$t13,$t14,$t15) = map("%ymm$_", (16..25));
+my ($tmp,$cur_idx,$idx1,$idx2,$ones) = map("%ymm$_", (26..30));
+
+my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9,$t10,$t11,$t12,$t13,$t14,$t15);
+my $t0xmm = $t0;
+$t0xmm =~ s/%y/%x/;
+
+$code.=<<___;
+.text
+
+.align 32
+.globl ossl_extract_multiplier_2x30_win5
+.type ossl_extract_multiplier_2x30_win5,\@abi-omnipotent
+ossl_extract_multiplier_2x30_win5:
+.cfi_startproc
+ endbranch
+ vmovdqa64 .Lones(%rip), $ones # broadcast ones
+ vpbroadcastq $red_tbl_idx1, $idx1
+ vpbroadcastq $red_tbl_idx2, $idx2
+ leaq `(1<<5)*2*32*8`($red_tbl), %rax # holds end of the tbl
+
+ # zeroing t0..n, cur_idx
+ vpxor $t0xmm, $t0xmm, $t0xmm
+ vmovdqa64 $t0, $cur_idx
+___
+foreach (1..15) {
+ $code.="vmovdqa64 $t0, $t[$_] \n";
+}
+$code.=<<___;
+
+.align 32
+.Lloop:
+ vpcmpq \$0, $cur_idx, $idx1, %k1 # mask of (idx1 == cur_idx)
+ vpcmpq \$0, $cur_idx, $idx2, %k2 # mask of (idx2 == cur_idx)
+___
+foreach (0..15) {
+ my $mask = $_<8?"%k1":"%k2";
+$code.=<<___;
+ vmovdqu64 `${_}*32`($red_tbl), $tmp # load data from red_tbl
+ vpblendmq $tmp, $t[$_], ${t[$_]}{$mask} # extract data when mask is not zero
+___
+}
+$code.=<<___;
+ vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
+ addq \$`2*32*8`, $red_tbl
+ cmpq $red_tbl, %rax
+ jne .Lloop
+___
+# store t0..n
+foreach (0..15) {
+ $code.="vmovdqu64 $t[$_], `${_}*32`($out) \n";
+}
+$code.=<<___;
+
+ ret
+.cfi_endproc
+.size ossl_extract_multiplier_2x30_win5, .-ossl_extract_multiplier_2x30_win5
+___
+$code.=<<___;
+.data
+.align 32
+.Lones:
+ .quad 1,1,1,1
+.Lzeros:
+ .quad 0,0,0,0
+___
+}
+
+if ($win64) {
+$rec="%rcx";
+$frame="%rdx";
+$context="%r8";
+$disp="%r9";
+
+$code.=<<___;
+.extern __imp_RtlVirtualUnwind
+.type rsaz_avx_handler,\@abi-omnipotent
+.align 16
+rsaz_avx_handler:
+ push %rsi
+ push %rdi
+ push %rbx
+ push %rbp
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+ pushfq
+ sub \$64,%rsp
+
+ mov 120($context),%rax # pull context->Rax
+ mov 248($context),%rbx # pull context->Rip
+
+ mov 8($disp),%rsi # disp->ImageBase
+ mov 56($disp),%r11 # disp->HandlerData
+
+ mov 0(%r11),%r10d # HandlerData[0]
+ lea (%rsi,%r10),%r10 # prologue label
+ cmp %r10,%rbx # context->Rip<.Lprologue
+ jb .Lcommon_seh_tail
+
+ mov 4(%r11),%r10d # HandlerData[1]
+ lea (%rsi,%r10),%r10 # epilogue label
+ cmp %r10,%rbx # context->Rip>=.Lepilogue
+ jae .Lcommon_seh_tail
+
+ mov 152($context),%rax # pull context->Rsp
+
+ lea (%rax),%rsi # %xmm save area
+ lea 512($context),%rdi # & context.Xmm6
+ mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
+ .long 0xa548f3fc # cld; rep movsq
+
+ lea `48+168`(%rax),%rax
+
+ mov -8(%rax),%rbx
+ mov -16(%rax),%rbp
+ mov -24(%rax),%r12
+ mov -32(%rax),%r13
+ mov -40(%rax),%r14
+ mov -48(%rax),%r15
+ mov %rbx,144($context) # restore context->Rbx
+ mov %rbp,160($context) # restore context->Rbp
+ mov %r12,216($context) # restore context->R12
+ mov %r13,224($context) # restore context->R13
+ mov %r14,232($context) # restore context->R14
+ mov %r15,240($context) # restore context->R14
+
+.Lcommon_seh_tail:
+ mov 8(%rax),%rdi
+ mov 16(%rax),%rsi
+ mov %rax,152($context) # restore context->Rsp
+ mov %rsi,168($context) # restore context->Rsi
+ mov %rdi,176($context) # restore context->Rdi
+
+ mov 40($disp),%rdi # disp->ContextRecord
+ mov $context,%rsi # context
+ mov \$154,%ecx # sizeof(CONTEXT)
+ .long 0xa548f3fc # cld; rep movsq
+
+ mov $disp,%rsi
+ xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
+ mov 8(%rsi),%rdx # arg2, disp->ImageBase
+ mov 0(%rsi),%r8 # arg3, disp->ControlPc
+ mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
+ mov 40(%rsi),%r10 # disp->ContextRecord
+ lea 56(%rsi),%r11 # &disp->HandlerData
+ lea 24(%rsi),%r12 # &disp->EstablisherFrame
+ mov %r10,32(%rsp) # arg5
+ mov %r11,40(%rsp) # arg6
+ mov %r12,48(%rsp) # arg7
+ mov %rcx,56(%rsp) # arg8, (NULL)
+ call *__imp_RtlVirtualUnwind(%rip)
+
+ mov \$1,%eax # ExceptionContinueSearch
+ add \$64,%rsp
+ popfq
+ pop %r15
+ pop %r14
+ pop %r13
+ pop %r12
+ pop %rbp
+ pop %rbx
+ pop %rdi
+ pop %rsi
+ ret
+.size rsaz_avx_handler,.-rsaz_avx_handler
+
+.section .pdata
+.align 4
+ .rva .LSEH_begin_ossl_rsaz_amm52x30_x1_ifma256
+ .rva .LSEH_end_ossl_rsaz_amm52x30_x1_ifma256
+ .rva .LSEH_info_ossl_rsaz_amm52x30_x1_ifma256
+
+ .rva .LSEH_begin_ossl_rsaz_amm52x30_x2_ifma256
+ .rva .LSEH_end_ossl_rsaz_amm52x30_x2_ifma256
+ .rva .LSEH_info_ossl_rsaz_amm52x30_x2_ifma256
+
+.section .xdata
+.align 8
+.LSEH_info_ossl_rsaz_amm52x30_x1_ifma256:
+ .byte 9,0,0,0
+ .rva rsaz_avx_handler
+ .rva .Lossl_rsaz_amm52x30_x1_ifma256_body,.Lossl_rsaz_amm52x30_x1_ifma256_epilogue
+.LSEH_info_ossl_rsaz_amm52x30_x2_ifma256:
+ .byte 9,0,0,0
+ .rva rsaz_avx_handler
+ .rva .Lossl_rsaz_amm52x30_x2_ifma256_body,.Lossl_rsaz_amm52x30_x2_ifma256_epilogue
+___
+}
+}}} else {{{ # fallback for old assembler
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x30_x1_ifma256
+.globl ossl_rsaz_amm52x30_x2_ifma256
+.globl ossl_extract_multiplier_2x30_win5
+.type ossl_rsaz_amm52x30_x1_ifma256,\@abi-omnipotent
+ossl_rsaz_amm52x30_x1_ifma256:
+ossl_rsaz_amm52x30_x2_ifma256:
+ossl_extract_multiplier_2x30_win5:
+ .byte 0x0f,0x0b # ud2
+ ret
+.size ossl_rsaz_amm52x30_x1_ifma256, .-ossl_rsaz_amm52x30_x1_ifma256
+___
+}}}
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+print $code;
+close STDOUT or die "error closing STDOUT: $!";