summaryrefslogtreecommitdiffstats
path: root/crypto
diff options
context:
space:
mode:
authorRich Salz <rsalz@openssl.org>2016-05-20 16:16:07 -0400
committerRich Salz <rsalz@openssl.org>2016-06-01 11:29:57 -0400
commitb8a9af68819f1cc51155cdeabe8bbf8242e8b3ee (patch)
tree15f0024f3772763a4d8d0789b1464f9666460864 /crypto
parent44c8a5e2b9af8909844cc002c53049311634b314 (diff)
Remove/rename some old files.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Diffstat (limited to 'crypto')
-rw-r--r--crypto/bf/COPYRIGHT46
-rw-r--r--crypto/bf/INSTALL14
-rw-r--r--crypto/bf/VERSION6
-rw-r--r--crypto/bf/bfs.cpp67
-rw-r--r--crypto/cast/casts.cpp70
-rw-r--r--crypto/des/COPYRIGHT50
-rw-r--r--crypto/des/asm/readme131
-rw-r--r--crypto/dh/example50
-rw-r--r--crypto/dh/generate65
-rw-r--r--crypto/dsa/fips186a.txt122
-rw-r--r--crypto/dso/README22
-rw-r--r--crypto/idea/version12
-rw-r--r--crypto/md4/md4s.cpp78
-rw-r--r--crypto/md5/md5s.cpp78
-rw-r--r--crypto/objects/README (renamed from crypto/objects/objects.README)0
-rw-r--r--crypto/pem/message16
-rw-r--r--crypto/pem/pkcs7.lis22
-rw-r--r--crypto/perlasm/README (renamed from crypto/perlasm/readme)0
-rw-r--r--crypto/rc2/rrc2.doc219
-rw-r--r--crypto/rc2/version22
-rw-r--r--crypto/rc5/rc5s.cpp70
-rw-r--r--crypto/sha/asm/README1
22 files changed, 0 insertions, 1161 deletions
diff --git a/crypto/bf/COPYRIGHT b/crypto/bf/COPYRIGHT
deleted file mode 100644
index 6857223506..0000000000
--- a/crypto/bf/COPYRIGHT
+++ /dev/null
@@ -1,46 +0,0 @@
-Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
-All rights reserved.
-
-This package is an Blowfish implementation written
-by Eric Young (eay@cryptsoft.com).
-
-This library is free for commercial and non-commercial use as long as
-the following conditions are aheared to. The following conditions
-apply to all code found in this distribution.
-
-Copyright remains Eric Young's, and as such any Copyright notices in
-the code are not to be removed.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions
-are met:
-1. Redistributions of source code must retain the copyright
- notice, this list of conditions and the following disclaimer.
-2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-3. All advertising materials mentioning features or use of this software
- must display the following acknowledgement:
- This product includes software developed by Eric Young (eay@cryptsoft.com)
-
-THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
-OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
-HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGE.
-
-The license and distribution terms for any publically available version or
-derivative of this code cannot be changed. i.e. this code cannot simply be
-copied and put under another distrubution license
-[including the GNU Public License.]
-
-The reason behind this being stated in this direct manner is past
-experience in code simply being copied and the attribution removed
-from it and then being distributed as part of other packages. This
-implementation was a non-trivial and unpaid effort.
diff --git a/crypto/bf/INSTALL b/crypto/bf/INSTALL
deleted file mode 100644
index 3b25923532..0000000000
--- a/crypto/bf/INSTALL
+++ /dev/null
@@ -1,14 +0,0 @@
-This Eric Young's blowfish implementation, taken from his SSLeay library
-and made available as a separate library.
-
-The version number (0.7.2m) is the SSLeay version that this library was
-taken from.
-
-To build, just unpack and type make.
-If you are not using gcc, edit the Makefile.
-If you are compiling for an x86 box, try the assembler (it needs improving).
-There are also some compile time options that can improve performance,
-these are documented in the Makefile.
-
-eric 15-Apr-1997
-
diff --git a/crypto/bf/VERSION b/crypto/bf/VERSION
deleted file mode 100644
index be995855e4..0000000000
--- a/crypto/bf/VERSION
+++ /dev/null
@@ -1,6 +0,0 @@
-The version numbers will follow my SSL implementation
-
-0.7.2r - Some reasonable default compiler options from
- Peter Gutman <pgut001@cs.auckland.ac.nz>
-
-0.7.2m - the first release
diff --git a/crypto/bf/bfs.cpp b/crypto/bf/bfs.cpp
deleted file mode 100644
index d74c457760..0000000000
--- a/crypto/bf/bfs.cpp
+++ /dev/null
@@ -1,67 +0,0 @@
-//
-// gettsc.inl
-//
-// gives access to the Pentium's (secret) cycle counter
-//
-// This software was written by Leonard Janke (janke@unixg.ubc.ca)
-// in 1996-7 and is entered, by him, into the public domain.
-
-#if defined(__WATCOMC__)
-void GetTSC(unsigned long&);
-#pragma aux GetTSC = 0x0f 0x31 "mov [edi], eax" parm [edi] modify [edx eax];
-#elif defined(__GNUC__)
-inline
-void GetTSC(unsigned long& tsc)
-{
- asm volatile(".byte 15, 49\n\t"
- : "=eax" (tsc)
- :
- : "%edx", "%eax");
-}
-#elif defined(_MSC_VER)
-inline
-void GetTSC(unsigned long& tsc)
-{
- unsigned long a;
- __asm _emit 0fh
- __asm _emit 31h
- __asm mov a, eax;
- tsc=a;
-}
-#endif
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <openssl/blowfish.h>
-
-void main(int argc,char *argv[])
- {
- BF_KEY key;
- unsigned long s1,s2,e1,e2;
- unsigned long data[2];
- int i,j;
-
- for (j=0; j<6; j++)
- {
- for (i=0; i<1000; i++) /**/
- {
- BF_encrypt(&data[0],&key);
- GetTSC(s1);
- BF_encrypt(&data[0],&key);
- BF_encrypt(&data[0],&key);
- BF_encrypt(&data[0],&key);
- GetTSC(e1);
- GetTSC(s2);
- BF_encrypt(&data[0],&key);
- BF_encrypt(&data[0],&key);
- BF_encrypt(&data[0],&key);
- BF_encrypt(&data[0],&key);
- GetTSC(e2);
- BF_encrypt(&data[0],&key);
- }
-
- printf("blowfish %d %d (%d)\n",
- e1-s1,e2-s2,((e2-s2)-(e1-s1)));
- }
- }
-
diff --git a/crypto/cast/casts.cpp b/crypto/cast/casts.cpp
deleted file mode 100644
index 8d7bd468d2..0000000000
--- a/crypto/cast/casts.cpp
+++ /dev/null
@@ -1,70 +0,0 @@
-//
-// gettsc.inl
-//
-// gives access to the Pentium's (secret) cycle counter
-//
-// This software was written by Leonard Janke (janke@unixg.ubc.ca)
-// in 1996-7 and is entered, by him, into the public domain.
-
-#if defined(__WATCOMC__)
-void GetTSC(unsigned long&);
-#pragma aux GetTSC = 0x0f 0x31 "mov [edi], eax" parm [edi] modify [edx eax];
-#elif defined(__GNUC__)
-inline
-void GetTSC(unsigned long& tsc)
-{
- asm volatile(".byte 15, 49\n\t"
- : "=eax" (tsc)
- :
- : "%edx", "%eax");
-}
-#elif defined(_MSC_VER)
-inline
-void GetTSC(unsigned long& tsc)
-{
- unsigned long a;
- __asm _emit 0fh
- __asm _emit 31h
- __asm mov a, eax;
- tsc=a;
-}
-#endif
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <openssl/cast.h>
-
-void main(int argc,char *argv[])
- {
- CAST_KEY key;
- unsigned long s1,s2,e1,e2;
- unsigned long data[2];
- int i,j;
- static unsigned char d[16]={0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF};
-
- CAST_set_key(&key, 16,d);
-
- for (j=0; j<6; j++)
- {
- for (i=0; i<1000; i++) /**/
- {
- CAST_encrypt(&data[0],&key);
- GetTSC(s1);
- CAST_encrypt(&data[0],&key);
- CAST_encrypt(&data[0],&key);
- CAST_encrypt(&data[0],&key);
- GetTSC(e1);
- GetTSC(s2);
- CAST_encrypt(&data[0],&key);
- CAST_encrypt(&data[0],&key);
- CAST_encrypt(&data[0],&key);
- CAST_encrypt(&data[0],&key);
- GetTSC(e2);
- CAST_encrypt(&data[0],&key);
- }
-
- printf("cast %d %d (%d)\n",
- e1-s1,e2-s2,((e2-s2)-(e1-s1)));
- }
- }
-
diff --git a/crypto/des/COPYRIGHT b/crypto/des/COPYRIGHT
deleted file mode 100644
index 5469e1e469..0000000000
--- a/crypto/des/COPYRIGHT
+++ /dev/null
@@ -1,50 +0,0 @@
-Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
-All rights reserved.
-
-This package is an DES implementation written by Eric Young (eay@cryptsoft.com).
-The implementation was written so as to conform with MIT's libdes.
-
-This library is free for commercial and non-commercial use as long as
-the following conditions are aheared to. The following conditions
-apply to all code found in this distribution.
-
-Copyright remains Eric Young's, and as such any Copyright notices in
-the code are not to be removed.
-If this package is used in a product, Eric Young should be given attribution
-as the author of that the SSL library. This can be in the form of a textual
-message at program startup or in documentation (online or textual) provided
-with the package.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions
-are met:
-1. Redistributions of source code must retain the copyright
- notice, this list of conditions and the following disclaimer.
-2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-3. All advertising materials mentioning features or use of this software
- must display the following acknowledgement:
- This product includes software developed by Eric Young (eay@cryptsoft.com)
-
-THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
-OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
-HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGE.
-
-The license and distribution terms for any publically available version or
-derivative of this code cannot be changed. i.e. this code cannot simply be
-copied and put under another distrubution license
-[including the GNU Public License.]
-
-The reason behind this being stated in this direct manner is past
-experience in code simply being copied and the attribution removed
-from it and then being distributed as part of other packages. This
-implementation was a non-trivial and unpaid effort.
diff --git a/crypto/des/asm/readme b/crypto/des/asm/readme
deleted file mode 100644
index 1beafe253b..0000000000
--- a/crypto/des/asm/readme
+++ /dev/null
@@ -1,131 +0,0 @@
-First up, let me say I don't like writing in assembler. It is not portable,
-dependant on the particular CPU architecture release and is generally a pig
-to debug and get right. Having said that, the x86 architecture is probably
-the most important for speed due to number of boxes and since
-it appears to be the worst architecture to to get
-good C compilers for. So due to this, I have lowered myself to do
-assembler for the inner DES routines in libdes :-).
-
-The file to implement in assembler is des_enc.c. Replace the following
-4 functions
-des_encrypt1(DES_LONG data[2],des_key_schedule ks, int encrypt);
-des_encrypt2(DES_LONG data[2],des_key_schedule ks, int encrypt);
-des_encrypt3(DES_LONG data[2],des_key_schedule ks1,ks2,ks3);
-des_decrypt3(DES_LONG data[2],des_key_schedule ks1,ks2,ks3);
-
-They encrypt/decrypt the 64 bits held in 'data' using
-the 'ks' key schedules. The only difference between the 4 functions is that
-des_encrypt2() does not perform IP() or FP() on the data (this is an
-optimization for when doing triple DES and des_encrypt3() and des_decrypt3()
-perform triple des. The triple DES routines are in here because it does
-make a big difference to have them located near the des_encrypt2 function
-at link time..
-
-Now as we all know, there are lots of different operating systems running on
-x86 boxes, and unfortunately they normally try to make sure their assembler
-formating is not the same as the other peoples.
-The 4 main formats I know of are
-Microsoft Windows 95/Windows NT
-Elf Includes Linux and FreeBSD(?).
-a.out The older Linux.
-Solaris Same as Elf but different comments :-(.
-
-Now I was not overly keen to write 4 different copies of the same code,
-so I wrote a few perl routines to output the correct assembler, given
-a target assembler type. This code is ugly and is just a hack.
-The libraries are x86unix.pl and x86ms.pl.
-des586.pl, des686.pl and des-som[23].pl are the programs to actually
-generate the assembler.
-
-So to generate elf assembler
-perl des-som3.pl elf >dx86-elf.s
-For Windows 95/NT
-perl des-som2.pl win32 >win32.asm
-
-[ update 4 Jan 1996 ]
-I have added another way to do things.
-perl des-som3.pl cpp >dx86-cpp.s
-generates a file that will be included by dx86unix.cpp when it is compiled.
-To build for elf, a.out, solaris, bsdi etc,
-cc -E -DELF asm/dx86unix.cpp | as -o asm/dx86-elf.o
-cc -E -DSOL asm/dx86unix.cpp | as -o asm/dx86-sol.o
-cc -E -DOUT asm/dx86unix.cpp | as -o asm/dx86-out.o
-cc -E -DBSDI asm/dx86unix.cpp | as -o asm/dx86bsdi.o
-This was done to cut down the number of files in the distribution.
-
-Now the ugly part. I acquired my copy of Intels
-"Optimization's For Intel's 32-Bit Processors" and found a few interesting
-things. First, the aim of the exersize is to 'extract' one byte at a time
-from a word and do an array lookup. This involves getting the byte from
-the 4 locations in the word and moving it to a new word and doing the lookup.
-The most obvious way to do this is
-xor eax, eax # clear word
-movb al, cl # get low byte
-xor edi DWORD PTR 0x100+des_SP[eax] # xor in word
-movb al, ch # get next byte
-xor edi DWORD PTR 0x300+des_SP[eax] # xor in word
-shr ecx 16
-which seems ok. For the pentium, this system appears to be the best.
-One has to do instruction interleaving to keep both functional units
-operating, but it is basically very efficient.
-
-Now the crunch. When a full register is used after a partial write, eg.
-mov al, cl
-xor edi, DWORD PTR 0x100+des_SP[eax]
-386 - 1 cycle stall
-486 - 1 cycle stall
-586 - 0 cycle stall
-686 - at least 7 cycle stall (page 22 of the above mentioned document).
-
-So the technique that produces the best results on a pentium, according to
-the documentation, will produce hideous results on a pentium pro.
-
-To get around this, des686.pl will generate code that is not as fast on
-a pentium, should be very good on a pentium pro.
-mov eax, ecx # copy word
-shr ecx, 8 # line up next byte
-and eax, 0fch # mask byte
-xor edi DWORD PTR 0x100+des_SP[eax] # xor in array lookup
-mov eax, ecx # get word
-shr ecx 8 # line up next byte
-and eax, 0fch # mask byte
-xor edi DWORD PTR 0x300+des_SP[eax] # xor in array lookup
-
-Due to the execution units in the pentium, this actually works quite well.
-For a pentium pro it should be very good. This is the type of output
-Visual C++ generates.
-
-There is a third option. instead of using
-mov al, ch
-which is bad on the pentium pro, one may be able to use
-movzx eax, ch
-which may not incur the partial write penalty. On the pentium,
-this instruction takes 4 cycles so is not worth using but on the
-pentium pro it appears it may be worth while. I need access to one to
-experiment :-).
-
-eric (20 Oct 1996)
-
-22 Nov 1996 - I have asked people to run the 2 different version on pentium
-pros and it appears that the intel documentation is wrong. The
-mov al,bh is still faster on a pentium pro, so just use the des586.pl
-install des686.pl
-
-3 Dec 1996 - I added des_encrypt3/des_decrypt3 because I have moved these
-functions into des_enc.c because it does make a massive performance
-difference on some boxes to have the functions code located close to
-the des_encrypt2() function.
-
-9 Jan 1997 - des-som2.pl is now the correct perl script to use for
-pentiums. It contains an inner loop from
-Svend Olaf Mikkelsen <svolaf@inet.uni-c.dk> which does raw ecb DES calls at
-273,000 per second. He had a previous version at 250,000 and the best
-I was able to get was 203,000. The content has not changed, this is all
-due to instruction sequencing (and actual instructions choice) which is able
-to keep both functional units of the pentium going.
-We may have lost the ugly register usage restrictions when x86 went 32 bit
-but for the pentium it has been replaced by evil instruction ordering tricks.
-
-13 Jan 1997 - des-som3.pl, more optimizations from Svend Olaf.
-raw DES at 281,000 per second on a pentium 100.
-
diff --git a/crypto/dh/example b/crypto/dh/example
deleted file mode 100644
index 16a33d2910..0000000000
--- a/crypto/dh/example
+++ /dev/null
@@ -1,50 +0,0 @@
-From owner-cypherpunks@toad.com Mon Sep 25 10:50:51 1995
-Received: from minbne.mincom.oz.au by orb.mincom.oz.au with SMTP id AA10562
- (5.65c/IDA-1.4.4 for eay); Wed, 27 Sep 1995 19:41:55 +1000
-Received: by minbne.mincom.oz.au id AA19958
- (5.65c/IDA-1.4.4 for eay@orb.mincom.oz.au); Wed, 27 Sep 1995 19:34:59 +1000
-Received: from relay3.UU.NET by bunyip.cc.uq.oz.au with SMTP (PP);
- Wed, 27 Sep 1995 19:13:05 +1000
-Received: from toad.com by relay3.UU.NET with SMTP id QQzizb16156;
- Wed, 27 Sep 1995 04:48:46 -0400
-Received: by toad.com id AA07905; Tue, 26 Sep 95 06:31:45 PDT
-Received: from by toad.com id AB07851; Tue, 26 Sep 95 06:31:40 PDT
-Received: from servo.qualcomm.com (servo.qualcomm.com [129.46.128.14])
- by cygnus.com (8.6.12/8.6.9) with ESMTP id RAA18442
- for <cypherpunks@toad.com>; Mon, 25 Sep 1995 17:52:47 -0700
-Received: (karn@localhost) by servo.qualcomm.com (8.6.12/QC-BSD-2.5.1)
- id RAA14732; Mon, 25 Sep 1995 17:50:51 -0700
-Date: Mon, 25 Sep 1995 17:50:51 -0700
-From: Phil Karn <karn@qualcomm.com>
-Message-Id: <199509260050.RAA14732@servo.qualcomm.com>
-To: cypherpunks@toad.com, ipsec-dev@eit.com
-Subject: Primality verification needed
-Sender: owner-cypherpunks@toad.com
-Precedence: bulk
-Status: RO
-X-Status:
-
-Hi. I've generated a 2047-bit "strong" prime number that I would like to
-use with Diffie-Hellman key exchange. I assert that not only is this number
-'p' prime, but so is (p-1)/2.
-
-I've used the mpz_probab_prime() function in the Gnu Math Package (GMP) version
-1.3.2 to test this number. This function uses the Miller-Rabin primality test.
-However, to increase my confidence that this number really is a strong prime,
-I'd like to ask others to confirm it with other tests. Here's the number in hex:
-
-72a925f760b2f954ed287f1b0953f3e6aef92e456172f9fe86fdd8822241b9c9788fbc289982743e
-fbcd2ccf062b242d7a567ba8bbb40d79bca7b8e0b6c05f835a5b938d985816bc648985adcff5402a
-a76756b36c845a840a1d059ce02707e19cf47af0b5a882f32315c19d1b86a56c5389c5e9bee16b65
-fde7b1a8d74a7675de9b707d4c5a4633c0290c95ff30a605aeb7ae864ff48370f13cf01d49adb9f2
-3d19a439f753ee7703cf342d87f431105c843c78ca4df639931f3458fae8a94d1687e99a76ed99d0
-ba87189f42fd31ad8262c54a8cf5914ae6c28c540d714a5f6087a171fb74f4814c6f968d72386ef3
-56a05180c3bec7ddd5ef6fe76b1f717b
-
-The generator, g, for this prime is 2.
-
-Thanks!
-
-Phil Karn
-
-
diff --git a/crypto/dh/generate b/crypto/dh/generate
deleted file mode 100644
index 5d407231df..0000000000
--- a/crypto/dh/generate
+++ /dev/null
@@ -1,65 +0,0 @@
-From: stewarts@ix.netcom.com (Bill Stewart)
-Newsgroups: sci.crypt
-Subject: Re: Diffie-Hellman key exchange
-Date: Wed, 11 Oct 1995 23:08:28 GMT
-Organization: Freelance Information Architect
-Lines: 32
-Message-ID: <45hir2$7l8@ixnews7.ix.netcom.com>
-References: <458rhn$76m$1@mhadf.production.compuserve.com>
-NNTP-Posting-Host: ix-pl4-16.ix.netcom.com
-X-NETCOM-Date: Wed Oct 11 4:09:22 PM PDT 1995
-X-Newsreader: Forte Free Agent 1.0.82
-
-Kent Briggs <72124.3234@CompuServe.COM> wrote:
-
->I have a copy of the 1976 IEEE article describing the
->Diffie-Hellman public key exchange algorithm: y=a^x mod q. I'm
->looking for sources that give examples of secure a,q pairs and
->possible some source code that I could examine.
-
-q should be prime, and ideally should be a "strong prime",
-which means it's of the form 2n+1 where n is also prime.
-q also needs to be long enough to prevent the attacks LaMacchia and
-Odlyzko described (some variant on a factoring attack which generates
-a large pile of simultaneous equations and then solves them);
-long enough is about the same size as factoring, so 512 bits may not
-be secure enough for most applications. (The 192 bits used by
-"secure NFS" was certainly not long enough.)
-
-a should be a generator for q, which means it needs to be
-relatively prime to q-1. Usually a small prime like 2, 3 or 5 will
-work.
-
-....
-
-Date: Tue, 26 Sep 1995 13:52:36 MST
-From: "Richard Schroeppel" <rcs@cs.arizona.edu>
-To: karn
-Cc: ho@cs.arizona.edu
-Subject: random large primes
-
-Since your prime is really random, proving it is hard.
-My personal limit on rigorously proved primes is ~350 digits.
-If you really want a proof, we should talk to Francois Morain,
-or the Australian group.
-
-If you want 2 to be a generator (mod P), then you need it
-to be a non-square. If (P-1)/2 is also prime, then
-non-square == primitive-root for bases << P.
-
-In the case at hand, this means 2 is a generator iff P = 11 (mod 24).
-If you want this, you should restrict your sieve accordingly.
-
-3 is a generator iff P = 5 (mod 12).
-
-5 is a generator iff P = 3 or 7 (mod 10).
-
-2 is perfectly usable as a base even if it's a non-generator, since
-it still covers half the space of possible residues. And an
-eavesdropper can always determine the low-bit of your exponent for
-a generator anyway.
-
-Rich rcs@cs.arizona.edu
-
-
-
diff --git a/crypto/dsa/fips186a.txt b/crypto/dsa/fips186a.txt
deleted file mode 100644
index 974f255070..0000000000
--- a/crypto/dsa/fips186a.txt
+++ /dev/null
@@ -1,122 +0,0 @@
-The original FIPE 180 used SHA-0 (FIPS 180) for its appendix 5
-examples. This is an updated version that uses SHA-1 (FIPS 180-1)
-supplied to me by Wei Dai
---
- APPENDIX 5. EXAMPLE OF THE DSA
-
-
-This appendix is for informational purposes only and is not required to meet
-the standard.
-
-Let L = 512 (size of p). The values in this example are expressed in
-hexadecimal notation. The p and q given here were generated by the prime
-generation standard described in appendix 2 using the 160-bit SEED:
-
- d5014e4b 60ef2ba8 b6211b40 62ba3224 e0427dd3
-
-With this SEED, the algorithm found p and q when the counter was at 105.
-
-x was generated by the algorithm described in appendix 3, section 3.1, using
-the SHA to construct G (as in appendix 3, section 3.3) and a 160-bit XSEED:
-
-XSEED =
-
- bd029bbe 7f51960b cf9edb2b 61f06f0f eb5a38b6
-
-t =
- 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0
-
-x = G(t,XSEED) mod q
-
-k was generated by the algorithm described in appendix 3, section 3.2, using
-the SHA to construct G (as in appendix 3, section 3.3) and a 160-bit KSEED:
-
-KSEED =
-
- 687a66d9 0648f993 867e121f 4ddf9ddb 01205584
-
-t =
- EFCDAB89 98BADCFE 10325476 C3D2E1F0 67452301
-
-k = G(t,KSEED) mod q
-
-Finally:
-
-h = 2
-
-p =
- 8df2a494 492276aa 3d25759b b06869cb eac0d83a fb8d0cf7
- cbb8324f 0d7882e5 d0762fc5 b7210eaf c2e9adac 32ab7aac
- 49693dfb f83724c2 ec0736ee 31c80291
-
-
-q =
- c773218c 737ec8ee 993b4f2d ed30f48e dace915f
-
-
-g =
- 626d0278 39ea0a13 413163a5 5b4cb500 299d5522 956cefcb
- 3bff10f3 99ce2c2e 71cb9de5 fa24babf 58e5b795 21925c9c
- c42e9f6f 464b088c c572af53 e6d78802
-
-
-x =
- 2070b322 3dba372f de1c0ffc 7b2e3b49 8b260614
-
-
-k =
- 358dad57 1462710f 50e254cf 1a376b2b deaadfbf
-
-
-kinv =
-
- 0d516729 8202e49b 4116ac10 4fc3f415 ae52f917
-
-M = ASCII form of "abc" (See FIPS PUB 180-1, Appendix A)
-
-SHA(M) =
-
- a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d
-
-
-y =
-
- 19131871 d75b1612 a819f29d 78d1b0d7 346f7aa7 7bb62a85
- 9bfd6c56 75da9d21 2d3a36ef 1672ef66 0b8c7c25 5cc0ec74
- 858fba33 f44c0669 9630a76b 030ee333
-
-
-r =
- 8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0
-
-s =
- 41e2345f 1f56df24 58f426d1 55b4ba2d b6dcd8c8
-
-
-w =
- 9df4ece5 826be95f ed406d41 b43edc0b 1c18841b
-
-
-u1 =
- bf655bd0 46f0b35e c791b004 804afcbb 8ef7d69d
-
-
-u2 =
- 821a9263 12e97ade abcc8d08 2b527897 8a2df4b0
-
-
-gu1 mod p =
-
- 51b1bf86 7888e5f3 af6fb476 9dd016bc fe667a65 aafc2753
- 9063bd3d 2b138b4c e02cc0c0 2ec62bb6 7306c63e 4db95bbf
- 6f96662a 1987a21b e4ec1071 010b6069
-
-
-yu2 mod p =
-
- 8b510071 2957e950 50d6b8fd 376a668e 4b0d633c 1e46e665
- 5c611a72 e2b28483 be52c74d 4b30de61 a668966e dc307a67
- c19441f4 22bf3c34 08aeba1f 0a4dbec7
-
-v =
- 8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0
diff --git a/crypto/dso/README b/crypto/dso/README
deleted file mode 100644
index d0bc9a89fb..0000000000
--- a/crypto/dso/README
+++ /dev/null
@@ -1,22 +0,0 @@
-NOTES
------
-
-I've checked out HPUX (well, version 11 at least) and shl_t is
-a pointer type so it's safe to use in the way it has been in
-dso_dl.c. On the other hand, HPUX11 support dlfcn too and
-according to their man page, prefer developers to move to that.
-I'll leave Richard's changes there as I guess dso_dl is needed
-for HPUX10.20.
-
-There is now a callback scheme in place where filename conversion can
-(a) be turned off altogether through the use of the
- DSO_FLAG_NO_NAME_TRANSLATION flag,
-(b) be handled by default using the default DSO_METHOD's converter
-(c) overriden per-DSO by setting the override callback
-(d) a mix of (b) and (c) - eg. implement an override callback that;
- (i) checks if we're win32 (if(strstr(dso->meth->name, "win32")....)
- and if so, convert "blah" into "blah32.dll" (the default is
- otherwise to make it "blah.dll").
- (ii) default to the normal behaviour - we're not on win32, eg.
- finish with (return dso->meth->dso_name_converter(dso,NULL)).
-
diff --git a/crypto/idea/version b/crypto/idea/version
deleted file mode 100644
index 3f22293795..0000000000
--- a/crypto/idea/version
+++ /dev/null
@@ -1,12 +0,0 @@
-1.1 07/12/95 - eay
- Many thanks to Rhys Weatherley <rweather@us.oracle.com>
- for pointing out that I was assuming little endian byte
- order for all quantities what idea actually used
- bigendian. No where in the spec does it mention
- this, it is all in terms of 16 bit numbers and even the example
- does not use byte streams for the input example :-(.
- If you byte swap each pair of input, keys and iv, the functions
- would produce the output as the old version :-(.
-
-1.0 ??/??/95 - eay
- First version.
diff --git a/crypto/md4/md4s.cpp b/crypto/md4/md4s.cpp
deleted file mode 100644
index c0ec97fc9f..0000000000
--- a/crypto/md4/md4s.cpp
+++ /dev/null
@@ -1,78 +0,0 @@
-//
-// gettsc.inl
-//
-// gives access to the Pentium's (secret) cycle counter
-//
-// This software was written by Leonard Janke (janke@unixg.ubc.ca)
-// in 1996-7 and is entered, by him, into the public domain.
-
-#if defined(__WATCOMC__)
-void GetTSC(unsigned long&);
-#pragma aux GetTSC = 0x0f 0x31 "mov [edi], eax" parm [edi] modify [edx eax];
-#elif defined(__GNUC__)
-inline
-void GetTSC(unsigned long& tsc)
-{
- asm volatile(".byte 15, 49\n\t"
- : "=eax" (tsc)
- :
- : "%edx", "%eax");
-}
-#elif defined(_MSC_VER)
-inline
-void GetTSC(unsigned long& tsc)
-{
- unsigned long a;
- __asm _emit 0fh
- __asm _emit 31h
- __asm mov a, eax;
- tsc=a;
-}
-#endif
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <openssl/md4.h>
-
-extern "C" {
-void md4_block_x86(MD4_CTX *ctx, unsigned char *buffer,int num);
-}
-
-void main(int argc,char *argv[])
- {
- unsigned char buffer[64*256];
- MD4_CTX ctx;
- unsigned long s1,s2,e1,e2;
- unsigned char k[16];
- unsigned long data[2];
- unsigned char iv[8];
- int i,num=0,numm;
- int j=0;
-
- if (argc >= 2)
- num=atoi(argv[1]);
-
- if (num == 0) num=16;
- if (num > 250) num=16;
- numm=num+2;
- num*=64;
- numm*=64;
-
- for (j=0; j<6; j++)
- {
- for (i=0; i<10; i++) /**/
- {
- md4_block_x86(&ctx,buffer,numm);
- GetTSC(s1);
- md4_block_x86(&ctx,buffer,numm);
- GetTSC(e1);
- GetTSC(s2);
- md4_block_x86(&ctx,buffer,num);
- GetTSC(e2);
- md4_block_x86(&ctx,buffer,num);
- }
- printf("md4 (%d bytes) %d %d (%.2f)\n",num,
- e1-s1,e2-s2,(double)((e1-s1)-(e2-s2))/2);
- }
- }
-
diff --git a/crypto/md5/md5s.cpp b/crypto/md5/md5s.cpp
deleted file mode 100644
index dd343fd4e6..0000000000
--- a/crypto/md5/md5s.cpp
+++ /dev/null
@@ -1,78 +0,0 @@
-//
-// gettsc.inl
-//
-// gives access to the Pentium's (secret) cycle counter
-//
-// This software was written by Leonard Janke (janke@unixg.ubc.ca)
-// in 1996-7 and is entered, by him, into the public domain.
-
-#if defined(__WATCOMC__)
-void GetTSC(unsigned long&);
-#pragma aux GetTSC = 0x0f 0x31 "mov [edi], eax" parm [edi] modify [edx eax];
-#elif defined(__GNUC__)
-inline
-void GetTSC(unsigned long& tsc)
-{
- asm volatile(".byte 15, 49\n\t"
- : "=eax" (tsc)
- :
- : "%edx", "%eax");
-}
-#elif defined(_MSC_VER)
-inline
-void GetTSC(unsigned long& tsc)
-{
- unsigned long a;
- __asm _emit 0fh
- __asm _emit 31h
- __asm mov a, eax;
- tsc=a;
-}
-#endif
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <openssl/md5.h>
-
-extern "C" {
-void md5_block_x86(MD5_CTX *ctx, unsigned char *buffer,int num)