summaryrefslogtreecommitdiffstats
path: root/crypto/sparse_array.c
diff options
context:
space:
mode:
authorPauli <paul.dale@oracle.com>2019-01-24 12:15:54 +1000
committerPauli <paul.dale@oracle.com>2019-02-12 21:07:29 +1000
commita40f0f6475711f01d32c4cdc39e54311b7e9c876 (patch)
tree789541f8410570ae1c278a33123dd9a261e4378a /crypto/sparse_array.c
parentdff298135b9b8bbaac1f452a219bb446e50728d1 (diff)
Add sparse array data type.
This commit adds a space and time efficient sparse array data structure. The structure's raw API is wrapped by inline functions which provide type safety. Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com> (Merged from https://github.com/openssl/openssl/pull/8197)
Diffstat (limited to 'crypto/sparse_array.c')
-rw-r--r--crypto/sparse_array.c213
1 files changed, 213 insertions, 0 deletions
diff --git a/crypto/sparse_array.c b/crypto/sparse_array.c
new file mode 100644
index 0000000000..8b56b257cf
--- /dev/null
+++ b/crypto/sparse_array.c
@@ -0,0 +1,213 @@
+/*
+ * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <openssl/crypto.h>
+#include "internal/sparse_array.h"
+
+/*
+ * How many bits are used to index each level in the tree structre?
+ * This setting determines the number of pointers stored in each node of the
+ * tree used to represent the sparse array. Having more pointers reduces the
+ * depth of the tree but potentially wastes more memory. That is, this is a
+ * direct space versus time tradeoff.
+ *
+ * The large memory model uses twelve bits which means that the are 4096
+ * pointers in each tree node. This is more than sufficient to hold the
+ * largest defined NID (as of Feb 2019). This means that using a NID to
+ * index a sparse array becomes a constant time single array look up.
+ *
+ * The small memory model uses four bits which means the tree nodes contain
+ * sixteen pointers. This reduces the amount of unused space significantly
+ * at a cost in time.
+ *
+ * The library builder is also permitted to define other sizes in the closed
+ * interval [2, sizeof(size_t) * 8].
+ */
+#ifndef OPENSSL_SA_BLOCK_BITS
+# ifdef OPENSSL_SMALL_FOOTPRINT
+# define OPENSSL_SA_BLOCK_BITS 4
+# else
+# define OPENSSL_SA_BLOCK_BITS 12
+# endif
+#elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > BN_BITS2
+# error OPENSSL_SA_BLOCK_BITS is out of range
+#endif
+
+/*
+ * From the number of bits, work out:
+ * the number of pointers in a tree node;
+ * a bit mask to quickly extra an index and
+ * the maximum depth of the tree structure.
+ */
+#define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS)
+#define SA_BLOCK_MASK (SA_BLOCK_MAX - 1)
+#define SA_BLOCK_MAX_LEVELS (((int)sizeof(size_t) * 8 \
+ + OPENSSL_SA_BLOCK_BITS - 1) \
+ / OPENSSL_SA_BLOCK_BITS)
+
+struct sparse_array_st {
+ int levels;
+ size_t top;
+ size_t nelem;
+ void **nodes;
+};
+
+OPENSSL_SA *OPENSSL_SA_new(void)
+{
+ OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res));
+
+ return res;
+}
+
+static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **),
+ void (*leaf)(void *, void *), void *arg)
+{
+ int i[SA_BLOCK_MAX_LEVELS];
+ void *nodes[SA_BLOCK_MAX_LEVELS];
+ int l = 0;
+
+ i[0] = 0;
+ nodes[0] = sa->nodes;
+ while (l >= 0) {
+ const int n = i[l];
+ void ** const p = nodes[l];
+
+ if (n >= SA_BLOCK_MAX) {
+ if (p != NULL && node != NULL)
+ (*node)(p);
+ l--;
+ } else {
+ i[l] = n + 1;
+ if (p != NULL && p[n] != NULL) {
+ if (l < sa->levels - 1) {
+ i[++l] = 0;
+ nodes[l] = p[n];
+ } else if (leaf != NULL) {
+ (*leaf)(p[n], arg);
+ }
+ }
+ }
+ }
+}
+
+static void sa_free_node(void **p)
+{
+ OPENSSL_free(p);
+}
+
+static void sa_free_leaf(void *p, void *arg)
+{
+ OPENSSL_free(p);
+}
+
+void OPENSSL_SA_free(OPENSSL_SA *sa)
+{
+ sa_doall(sa, &sa_free_node, NULL, NULL);
+ OPENSSL_free(sa);
+}
+
+void OPENSSL_SA_free_leaves(OPENSSL_SA *sa)
+{
+ sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL);
+ OPENSSL_free(sa);
+}
+
+/* Wrap this in a structure to avoid compiler warnings */
+struct trampoline_st {
+ void (*func)(void *);
+};
+
+static void trampoline(void *l, void *arg)
+{
+ ((const struct trampoline_st *)arg)->func(l);
+}
+
+void OPENSSL_SA_doall(const OPENSSL_SA *sa, void (*leaf)(void *))
+{
+ struct trampoline_st tramp;
+
+ tramp.func = leaf;
+ if (sa != NULL)
+ sa_doall(sa, NULL, &trampoline, &tramp);
+}
+
+void OPENSSL_SA_doall_arg(const OPENSSL_SA *sa, void (*leaf)(void *, void *),
+ void *arg)
+{
+ if (sa != NULL)
+ sa_doall(sa, NULL, leaf, arg);
+}
+
+size_t OPENSSL_SA_num(const OPENSSL_SA *sa)
+{
+ return sa == NULL ? 0 : sa->nelem;
+}
+
+void *OPENSSL_SA_get(const OPENSSL_SA *sa, size_t n)
+{
+ int level;
+ void **p, *r = NULL;
+
+ if (sa == NULL)
+ return NULL;
+
+ if (n <= sa->top) {
+ p = sa->nodes;
+ for (level = sa->levels - 1; p != NULL && level > 0; level--)
+ p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level))
+ & SA_BLOCK_MASK];
+ r = p == NULL ? NULL : p[n & SA_BLOCK_MASK];
+ }
+ return r;
+}
+
+static ossl_inline void **alloc_node(void)
+{
+ return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *));
+}
+
+int OPENSSL_SA_set(OPENSSL_SA *sa, size_t posn, void *val)
+{
+ int i, level = 1;
+ size_t n = posn;
+ void **p;
+
+ if (sa == NULL)
+ return 0;
+
+ for (level = 1; level <= SA_BLOCK_MAX_LEVELS; level++)
+ if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0)
+ break;
+
+ for (;sa->levels < level; sa->levels++) {
+ p = alloc_node();
+ if (p == NULL)
+ return 0;
+ p[0] = sa->nodes;
+ sa->nodes = p;
+ }
+ if (sa->top < posn)
+ sa->top = posn;
+
+ p = sa->nodes;
+ for (level = sa->levels - 1; level > 0; level--) {
+ i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK;
+ if (p[i] == NULL && (p[i] = alloc_node()) == NULL)
+ return 0;
+ p = p[i];
+ }
+ p += posn & SA_BLOCK_MASK;
+ if (val == NULL && *p != NULL)
+ sa->nelem--;
+ else if (val != NULL && *p == NULL)
+ sa->nelem++;
+ *p = val;
+ return 1;
+}