summaryrefslogtreecommitdiffstats
path: root/crypto/rc4
diff options
context:
space:
mode:
authorAndy Polyakov <appro@openssl.org>2011-05-27 09:51:09 +0000
committerAndy Polyakov <appro@openssl.org>2011-05-27 09:51:09 +0000
commit0ca9a483afab59f56ae4412454feac01d96c38ba (patch)
tree6bcbaab9d159bdaadb691aa873284c386b0ffb41 /crypto/rc4
parent0dff8ba2483520130cc8281b7dab604e9e6ca6da (diff)
rc4-x86_64.pl: major optimization for contemporary Intel CPUs.
Diffstat (limited to 'crypto/rc4')
-rwxr-xr-xcrypto/rc4/asm/rc4-x86_64.pl254
1 files changed, 208 insertions, 46 deletions
diff --git a/crypto/rc4/asm/rc4-x86_64.pl b/crypto/rc4/asm/rc4-x86_64.pl
index 23fe4d9996..b08cc25656 100755
--- a/crypto/rc4/asm/rc4-x86_64.pl
+++ b/crypto/rc4/asm/rc4-x86_64.pl
@@ -7,6 +7,8 @@
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
+# July 2004
+#
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
# "hand-coded assembler"] doesn't stand for the whole improvement
# coefficient. It turned out that eliminating RC4_CHAR from config
@@ -19,6 +21,8 @@
# to operate on partial registers, it turned out to be the best bet.
# At least for AMD... How IA32E would perform remains to be seen...
+# November 2004
+#
# As was shown by Marc Bevand reordering of couple of load operations
# results in even higher performance gain of 3.3x:-) At least on
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
@@ -26,6 +30,8 @@
# Latter means that if you want to *estimate* what to expect from
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
+# November 2004
+#
# Intel P4 EM64T core was found to run the AMD64 code really slow...
# The only way to achieve comparable performance on P4 was to keep
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
@@ -33,10 +39,14 @@
# on either AMD and Intel platforms, I implement both cases. See
# rc4_skey.c for further details...
+# April 2005
+#
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
# those with add/sub results in 50% performance improvement of folded
# loop...
+# May 2005
+#
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
# performance by >30% [unlike P4 32-bit case that is]. But this is
# provided that loads are reordered even more aggressively! Both code
@@ -50,6 +60,8 @@
# is not implemented, then this final RC4_CHAR code-path should be
# preferred, as it provides better *all-round* performance].
+# March 2007
+#
# Intel Core2 was observed to perform poorly on both code paths:-( It
# apparently suffers from some kind of partial register stall, which
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
@@ -58,10 +70,32 @@
# fit for Core2 and therefore the code was modified to skip cloop8 on
# this CPU.
+# May 2010
+#
# Intel Westmere was observed to perform suboptimally. Adding yet
# another movzb to cloop1 improved performance by almost 50%! Core2
# performance is improved too, but nominally...
+# May 2011
+#
+# The only code path that was not modified is P4-specific one. New
+# AMD code path is inspired by and Intel optimization is heavily
+# based on submission from Maxim Locktyukhin of Intel. Current
+# performance in cycles per processed byte (less is better) and
+# improvement coefficients relative to previous version of this
+# module are:
+#
+# Opteron 5.3/+0%
+# P4 6.5
+# Core2 6.2/+15%(*)
+# Westmere 4.2/+60%
+# Sandy Bridge 4.2/+120%
+# Atom 9.3/+80%
+#
+# (*) Note that this result is ~15% lower than result for 32-bit
+# code, meaning that it's possible to improve it, but it's
+# more than likely at the cost of the others...
+
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
@@ -80,11 +114,7 @@ $len="%rsi"; # arg2
$inp="%rdx"; # arg3
$out="%rcx"; # arg4
-@XX=("%r8","%r10");
-@TX=("%r9","%r11");
-$YY="%r12";
-$TY="%r13";
-
+{
$code=<<___;
.text
@@ -99,48 +129,173 @@ RC4: or $len,$len
push %r12
push %r13
.Lprologue:
+ mov $len,%r11
+ mov $inp,%r12
+ mov $out,%r13
+___
+my $len="%r11"; # reassign input arguments
+my $inp="%r12";
+my $out="%r13";
+
+my @XX=("%r10","%rsi");
+my @TX=("%rax","%rbx");
+my $YY="%rcx";
+my $TY="%rdx";
- add \$8,$dat
- movl -8($dat),$XX[0]#d
- movl -4($dat),$YY#d
+$code.=<<___;
+ xor $XX[0],$XX[0]
+ xor $YY,$YY
+
+ lea 8($dat),$dat
+ mov -8($dat),$XX[0]#b
+ mov -4($dat),$YY#b
cmpl \$-1,256($dat)
je .LRC4_CHAR
+ mov OPENSSL_ia32cap_P(%rip),%r8d
+ xor $TX[1],$TX[1]
inc $XX[0]#b
+ sub $XX[0],$TX[1]
+ sub $inp,$out
movl ($dat,$XX[0],4),$TX[0]#d
- test \$-8,$len
+ test \$-16,$len
jz .Lloop1
- jmp .Lloop8
+ bt \$30,%r8d # Intel CPU Family 6
+ jc .L16x
+ and \$7,$TX[1]
+ lea 1($XX[0]),$XX[1]
+ jz .Loop8
+ sub $TX[1],$len
+.Loop8_warmup:
+ add $TX[0]#b,$YY#b
+ movl ($dat,$YY,4),$TY#d
+ movl $TX[0]#d,($dat,$YY,4)
+ movl $TY#d,($dat,$XX[0],4)
+ add $TY#b,$TX[0]#b
+ inc $XX[0]#b
+ movl ($dat,$TX[0],4),$TY#d
+ movl ($dat,$XX[0],4),$TX[0]#d
+ xorb ($inp),$TY#b
+ movb $TY#b,($out,$inp)
+ lea 1($inp),$inp
+ dec $TX[1]
+ jnz .Loop8_warmup
+
+ lea 1($XX[0]),$XX[1]
+ jmp .Loop8
.align 16
-.Lloop8:
+.Loop8:
___
for ($i=0;$i<8;$i++) {
+$code.=<<___ if ($i==7);
+ add \$8,$XX[1]#b
+___
$code.=<<___;
add $TX[0]#b,$YY#b
- mov $XX[0],$XX[1]
movl ($dat,$YY,4),$TY#d
- ror \$8,%rax # ror is redundant when $i=0
- inc $XX[1]#b
- movl ($dat,$XX[1],4),$TX[1]#d
- cmp $XX[1],$YY
movl $TX[0]#d,($dat,$YY,4)
- cmove $TX[0],$TX[1]
- movl $TY#d,($dat,$XX[0],4)
+ movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
+ ror \$8,%r8 # ror is redundant when $i=0
+ movl $TY#d,4*$i($dat,$XX[0],4)
add $TX[0]#b,$TY#b
- movb ($dat,$TY,4),%al
+ movb ($dat,$TY,4),%r8b
___
-push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
+push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
- ror \$8,%rax
+ add \$8,$XX[0]#b
+ ror \$8,%r8
sub \$8,$len
- xor ($inp),%rax
- add \$8,$inp
- mov %rax,($out)
- add \$8,$out
+ xor ($inp),%r8
+ mov %r8,($out,$inp)
+ lea 8($inp),$inp
test \$-8,$len
- jnz .Lloop8
+ jnz .Loop8
+ cmp \$0,$len
+ jne .Lloop1
+ jmp .Lexit
+
+.align 16
+.L16x:
+ test \$-32,$len
+ jz .Lloop1
+ and \$15,$TX[1]
+ jz .Loop16_is_hot
+ sub $TX[1],$len
+.Loop16_warmup:
+ add $TX[0]#b,$YY#b
+ movl ($dat,$YY,4),$TY#d
+ movl $TX[0]#d,($dat,$YY,4)
+ movl $TY#d,($dat,$XX[0],4)
+ add $TY#b,$TX[0]#b
+ inc $XX[0]#b
+ movl ($dat,$TX[0],4),$TY#d
+ movl ($dat,$XX[0],4),$TX[0]#d
+ xorb ($inp),$TY#b
+ movb $TY#b,($out,$inp)
+ lea 1($inp),$inp
+ dec $TX[1]
+ jnz .Loop16_warmup
+
+ mov $YY,$TX[1]
+ xor $YY,$YY
+ mov $TX[1]#b,$YY#b
+
+.Loop16_is_hot:
+ lea ($dat,$XX[0],4),$XX[1]
+___
+sub RC4_loop {
+ my $i=shift;
+ my $j=$i<0?0:$i;
+ my $xmm="%xmm".($j&1);
+
+ $code.=" add \$16,$XX[0]#b\n" if ($i==15);
+ $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
+ $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
+ $code.=" movl ($dat,$YY,4),$TY#d\n";
+ $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
+ $code.=" psllq \$8,%xmm1\n" if ($i==0);
+ $code.=" pxor $xmm,$xmm\n" if ($i<=1);
+ $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
+ $code.=" add $TY#b,$TX[0]#b\n";
+ $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
+ $code.=" movz $TX[0]#b,$TX[0]#d\n";
+ $code.=" movl $TY#d,4*$j($XX[1])\n";
+ $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
+ $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
+ $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
+ $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
+ $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
+ $code.=" lea 16($inp),$inp\n" if ($i==0);
+ $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
+}
+ RC4_loop(-1);
+$code.=<<___;
+ jmp .Loop16_enter
+.align 16
+.Loop16:
+___
+
+for ($i=0;$i<16;$i++) {
+ $code.=".Loop16_enter:\n" if ($i==1);
+ RC4_loop($i);
+ push(@TX,shift(@TX)); # "rotate" registers
+}
+$code.=<<___;
+ mov $YY,$TX[1]
+ xor $YY,$YY # keyword to partial register
+ sub \$16,$len
+ mov $TX[1]#b,$YY#b
+ test \$-16,$len
+ jnz .Loop16
+
+ psllq \$8,%xmm1
+ pxor %xmm0,%xmm2
+ pxor %xmm1,%xmm2
+ movdqu %xmm2,($out,$inp)
+ lea 16($inp),$inp
+
cmp \$0,$len
jne .Lloop1
jmp .Lexit
@@ -156,9 +311,8 @@ $code.=<<___;
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
- inc $inp
- movb $TY#b,($out)
- inc $out
+ movb $TY#b,($out,$inp)
+ lea 1($inp),$inp
dec $len
jnz .Lloop1
jmp .Lexit
@@ -169,13 +323,11 @@ $code.=<<___;
movzb ($dat,$XX[0]),$TX[0]#d
test \$-8,$len
jz .Lcloop1
- cmpl \$0,260($dat)
- jnz .Lcloop1
jmp .Lcloop8
.align 16
.Lcloop8:
- mov ($inp),%eax
- mov 4($inp),%ebx
+ mov ($inp),%r8d
+ mov 4($inp),%r9d
___
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
for ($i=0;$i<4;$i++) {
@@ -192,8 +344,8 @@ $code.=<<___;
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
- xor ($dat,$TY),%al
- ror \$8,%eax
+ xor ($dat,$TY),%r8b
+ ror \$8,%r8d
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
@@ -211,16 +363,16 @@ $code.=<<___;
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
- xor ($dat,$TY),%bl
- ror \$8,%ebx
+ xor ($dat,$TY),%r9b
+ ror \$8,%r9d
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
lea -8($len),$len
- mov %eax,($out)
+ mov %r8d,($out)
lea 8($inp),$inp
- mov %ebx,4($out)
+ mov %r9d,4($out)
lea 8($out),$out
test \$-8,$len
@@ -265,6 +417,7 @@ $code.=<<___;
ret
.size RC4,.-RC4
___
+}
$idx="%r8";
$ido="%r9";
@@ -285,12 +438,11 @@ RC4_set_key:
xor %r11,%r11
mov OPENSSL_ia32cap_P(%rip),$idx#d
- bt \$20,$idx#d
+ bt \$20,$idx#d # Intel CPU
jnc .Lw1stloop
- bt \$30,$idx#d
- setc $ido#b
- mov $ido#d,260($dat)
- jmp .Lc1stloop
+ bt \$30,$idx#d # Intel CPU Family 6
+ jnc .Lc1stloop
+ jmp .Lw1stloop
.align 16
.Lw1stloop:
@@ -364,7 +516,7 @@ RC4_options:
.Lopts:
.asciz "rc4(8x,int)"
.asciz "rc4(8x,char)"
-.asciz "rc4(1x,char)"
+.asciz "rc4(16x,int)"
.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align 64
.size RC4_options,.-RC4_options
@@ -502,7 +654,17 @@ key_se_handler:
___
}
-$code =~ s/#([bwd])/$1/gm;
+sub reg_part {
+my ($reg,$conv)=@_;
+ if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
+ elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
+ elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
+ elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
+ return $reg;
+}
+
+$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;