summaryrefslogtreecommitdiffstats
path: root/crypto/ec/curve448/curve448.c
diff options
context:
space:
mode:
authorMatt Caswell <matt@openssl.org>2017-11-28 14:56:43 +0000
committerMatt Caswell <matt@openssl.org>2018-02-20 12:59:30 +0000
commitbb6e60adc5d02d903cbbf92cf7b1d7152fb4a905 (patch)
tree89a7c746ef765fabd553582fa9f0967d1d642785 /crypto/ec/curve448/curve448.c
parentc4148792cf643677839096742ee090fe6f4ac910 (diff)
Rename the decaf files to curve448 files
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/5105)
Diffstat (limited to 'crypto/ec/curve448/curve448.c')
-rw-r--r--crypto/ec/curve448/curve448.c726
1 files changed, 726 insertions, 0 deletions
diff --git a/crypto/ec/curve448/curve448.c b/crypto/ec/curve448/curve448.c
new file mode 100644
index 0000000000..d5b684b3bd
--- /dev/null
+++ b/crypto/ec/curve448/curve448.c
@@ -0,0 +1,726 @@
+/**
+ * @file ed448goldilocks/decaf.c
+ * @author Mike Hamburg
+ *
+ * @copyright
+ * Copyright (c) 2015-2016 Cryptography Research, Inc. \n
+ * Released under the MIT License. See LICENSE.txt for license information.
+ *
+ * @brief Decaf high-level functions.
+ *
+ * @warning This file was automatically generated in Python.
+ * Please do not edit it.
+ */
+#include <openssl/crypto.h>
+#include "word.h"
+#include "field.h"
+
+#include "point_448.h"
+#include "ed448.h"
+#include "curve448_lcl.h"
+
+#define COFACTOR 4
+
+/* Comb config: number of combs, n, t, s. */
+#define COMBS_N 5
+#define COMBS_T 5
+#define COMBS_S 18
+#define DECAF_WINDOW_BITS 5
+#define DECAF_WNAF_FIXED_TABLE_BITS 5
+#define DECAF_WNAF_VAR_TABLE_BITS 3
+
+static const int EDWARDS_D = -39081;
+static const curve448_scalar_t precomputed_scalarmul_adjustment = {{{
+ SC_LIMB(0xc873d6d54a7bb0cf), SC_LIMB(0xe933d8d723a70aad), SC_LIMB(0xbb124b65129c96fd), SC_LIMB(0x00000008335dc163)
+}}};
+
+const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES] = { 0x05 };
+
+#define RISTRETTO_FACTOR DECAF_448_RISTRETTO_FACTOR
+const gf RISTRETTO_FACTOR = {{{
+ 0x42ef0f45572736, 0x7bf6aa20ce5296, 0xf4fd6eded26033, 0x968c14ba839a66, 0xb8d54b64a2d780, 0x6aa0a1f1a7b8a5, 0x683bf68d722fa2, 0x22d962fbeb24f7
+}}};
+
+
+#define TWISTED_D ((EDWARDS_D)-1)
+
+#define EFF_D (-(TWISTED_D))
+#define NEG_D 1
+
+/* End of template stuff */
+
+#define WBITS DECAF_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */
+
+/* Projective Niels coordinates */
+typedef struct { gf a, b, c; } niels_s, niels_t[1];
+typedef struct { niels_t n; gf z; } VECTOR_ALIGNED pniels_s, pniels_t[1];
+
+/* Precomputed base */
+struct curve448_precomputed_s { niels_t table [COMBS_N<<(COMBS_T-1)]; };
+
+extern const gf curve448_precomputed_base_as_fe[];
+const curve448_precomputed_s *curve448_precomputed_base =
+ (const curve448_precomputed_s *) &curve448_precomputed_base_as_fe;
+
+/** Inverse. */
+static void
+gf_invert(gf y, const gf x, int assert_nonzero) {
+ gf t1, t2;
+ gf_sqr(t1, x); // o^2
+ mask_t ret = gf_isr(t2, t1); // +-1/sqrt(o^2) = +-1/o
+ (void)ret;
+ if (assert_nonzero) assert(ret);
+ gf_sqr(t1, t2);
+ gf_mul(t2, t1, x); // not direct to y in case of alias.
+ gf_copy(y, t2);
+}
+
+/** identity = (0,1) */
+const curve448_point_t curve448_point_identity = {{{{{0}}},{{{1}}},{{{1}}},{{{0}}}}};
+
+static void
+point_double_internal (
+ curve448_point_t p,
+ const curve448_point_t q,
+ int before_double
+) {
+ gf a, b, c, d;
+ gf_sqr ( c, q->x );
+ gf_sqr ( a, q->y );
+ gf_add_nr ( d, c, a ); /* 2+e */
+ gf_add_nr ( p->t, q->y, q->x ); /* 2+e */
+ gf_sqr ( b, p->t );
+ gf_subx_nr ( b, b, d, 3 ); /* 4+e */
+ gf_sub_nr ( p->t, a, c ); /* 3+e */
+ gf_sqr ( p->x, q->z );
+ gf_add_nr ( p->z, p->x, p->x ); /* 2+e */
+ gf_subx_nr ( a, p->z, p->t, 4 ); /* 6+e */
+ if (GF_HEADROOM == 5) gf_weak_reduce(a); /* or 1+e */
+ gf_mul ( p->x, a, b );
+ gf_mul ( p->z, p->t, a );
+ gf_mul ( p->y, p->t, d );
+ if (!before_double) gf_mul ( p->t, b, d );
+}
+
+void curve448_point_double(curve448_point_t p, const curve448_point_t q) {
+ point_double_internal(p,q,0);
+}
+
+/* Operations on [p]niels */
+static ossl_inline void
+cond_neg_niels (
+ niels_t n,
+ mask_t neg
+) {
+ gf_cond_swap(n->a, n->b, neg);
+ gf_cond_neg(n->c, neg);
+}
+
+static void pt_to_pniels (
+ pniels_t b,
+ const curve448_point_t a
+) {
+ gf_sub ( b->n->a, a->y, a->x );
+ gf_add ( b->n->b, a->x, a->y );
+ gf_mulw ( b->n->c, a->t, 2*TWISTED_D );
+ gf_add ( b->z, a->z, a->z );
+}
+
+static void pniels_to_pt (
+ curve448_point_t e,
+ const pniels_t d
+) {
+ gf eu;
+ gf_add ( eu, d->n->b, d->n->a );
+ gf_sub ( e->y, d->n->b, d->n->a );
+ gf_mul ( e->t, e->y, eu);
+ gf_mul ( e->x, d->z, e->y );
+ gf_mul ( e->y, d->z, eu );
+ gf_sqr ( e->z, d->z );
+}
+
+static void
+niels_to_pt (
+ curve448_point_t e,
+ const niels_t n
+) {
+ gf_add ( e->y, n->b, n->a );
+ gf_sub ( e->x, n->b, n->a );
+ gf_mul ( e->t, e->y, e->x );
+ gf_copy ( e->z, ONE );
+}
+
+static void
+add_niels_to_pt (
+ curve448_point_t d,
+ const niels_t e,
+ int before_double
+) {
+ gf a, b, c;
+ gf_sub_nr ( b, d->y, d->x ); /* 3+e */
+ gf_mul ( a, e->a, b );
+ gf_add_nr ( b, d->x, d->y ); /* 2+e */
+ gf_mul ( d->y, e->b, b );
+ gf_mul ( d->x, e->c, d->t );
+ gf_add_nr ( c, a, d->y ); /* 2+e */
+ gf_sub_nr ( b, d->y, a ); /* 3+e */
+ gf_sub_nr ( d->y, d->z, d->x ); /* 3+e */
+ gf_add_nr ( a, d->x, d->z ); /* 2+e */
+ gf_mul ( d->z, a, d->y );
+ gf_mul ( d->x, d->y, b );
+ gf_mul ( d->y, a, c );
+ if (!before_double) gf_mul ( d->t, b, c );
+}
+
+static void
+sub_niels_from_pt (
+ curve448_point_t d,
+ const niels_t e,
+ int before_double
+) {
+ gf a, b, c;
+ gf_sub_nr ( b, d->y, d->x ); /* 3+e */
+ gf_mul ( a, e->b, b );
+ gf_add_nr ( b, d->x, d->y ); /* 2+e */
+ gf_mul ( d->y, e->a, b );
+ gf_mul ( d->x, e->c, d->t );
+ gf_add_nr ( c, a, d->y ); /* 2+e */
+ gf_sub_nr ( b, d->y, a ); /* 3+e */
+ gf_add_nr ( d->y, d->z, d->x ); /* 2+e */
+ gf_sub_nr ( a, d->z, d->x ); /* 3+e */
+ gf_mul ( d->z, a, d->y );
+ gf_mul ( d->x, d->y, b );
+ gf_mul ( d->y, a, c );
+ if (!before_double) gf_mul ( d->t, b, c );
+}
+
+static void
+add_pniels_to_pt (
+ curve448_point_t p,
+ const pniels_t pn,
+ int before_double
+) {
+ gf L0;
+ gf_mul ( L0, p->z, pn->z );
+ gf_copy ( p->z, L0 );
+ add_niels_to_pt( p, pn->n, before_double );
+}
+
+static void
+sub_pniels_from_pt (
+ curve448_point_t p,
+ const pniels_t pn,
+ int before_double
+) {
+ gf L0;
+ gf_mul ( L0, p->z, pn->z );
+ gf_copy ( p->z, L0 );
+ sub_niels_from_pt( p, pn->n, before_double );
+}
+
+decaf_bool_t curve448_point_eq ( const curve448_point_t p, const curve448_point_t q ) {
+ /* equality mod 2-torsion compares x/y */
+ gf a, b;
+ gf_mul ( a, p->y, q->x );
+ gf_mul ( b, q->y, p->x );
+ mask_t succ = gf_eq(a,b);
+
+ return mask_to_bool(succ);
+}
+
+decaf_bool_t curve448_point_valid (
+ const curve448_point_t p
+) {
+ gf a,b,c;
+ gf_mul(a,p->x,p->y);
+ gf_mul(b,p->z,p->t);
+ mask_t out = gf_eq(a,b);
+ gf_sqr(a,p->x);
+ gf_sqr(b,p->y);
+ gf_sub(a,b,a);
+ gf_sqr(b,p->t);
+ gf_mulw(c,b,TWISTED_D);
+ gf_sqr(b,p->z);
+ gf_add(b,b,c);
+ out &= gf_eq(a,b);
+ out &= ~gf_eq(p->z,ZERO);
+ return mask_to_bool(out);
+}
+
+static ossl_inline void
+constant_time_lookup_niels (
+ niels_s *__restrict__ ni,
+ const niels_t *table,
+ int nelts,
+ int idx
+) {
+ constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
+}
+
+void curve448_precomputed_scalarmul (
+ curve448_point_t out,
+ const curve448_precomputed_s *table,
+ const curve448_scalar_t scalar
+) {
+ int i;
+ unsigned j,k;
+ const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
+
+ curve448_scalar_t scalar1x;
+ curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
+ curve448_scalar_halve(scalar1x,scalar1x);
+
+ niels_t ni;
+
+ for (i=s-1; i>=0; i--) {
+ if (i != (int)s-1) point_double_internal(out,out,0);
+
+ for (j=0; j<n; j++) {
+ int tab = 0;
+
+ for (k=0; k<t; k++) {
+ unsigned int bit = i + s*(k + j*t);
+ if (bit < DECAF_448_SCALAR_BITS) {
+ tab |= (scalar1x->limb[bit/WBITS] >> (bit%WBITS) & 1) << k;
+ }
+ }
+
+ mask_t invert = (tab>>(t-1))-1;
+ tab ^= invert;
+ tab &= (1<<(t-1)) - 1;
+
+ constant_time_lookup_niels(ni, &table->table[j<<(t-1)], 1<<(t-1), tab);
+
+ cond_neg_niels(ni, invert);
+ if ((i!=(int)s-1)||j) {
+ add_niels_to_pt(out, ni, j==n-1 && i);
+ } else {
+ niels_to_pt(out, ni);
+ }
+ }
+ }
+
+ OPENSSL_cleanse(ni,sizeof(ni));
+ OPENSSL_cleanse(scalar1x,sizeof(scalar1x));
+}
+
+void curve448_point_mul_by_ratio_and_encode_like_eddsa (
+ uint8_t enc[DECAF_EDDSA_448_PUBLIC_BYTES],
+ const curve448_point_t p
+) {
+
+ /* The point is now on the twisted curve. Move it to untwisted. */
+ gf x, y, z, t;
+ curve448_point_t q;
+ curve448_point_copy(q,p);
+
+ {
+ /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
+ gf u;
+ gf_sqr ( x, q->x );
+ gf_sqr ( t, q->y );
+ gf_add( u, x, t );
+ gf_add( z, q->y, q->x );
+ gf_sqr ( y, z);
+ gf_sub ( y, y, u );
+ gf_sub ( z, t, x );
+ gf_sqr ( x, q->z );
+ gf_add ( t, x, x);
+ gf_sub ( t, t, z);
+ gf_mul ( x, t, y );
+ gf_mul ( y, z, u );
+ gf_mul ( z, u, t );
+ OPENSSL_cleanse(u,sizeof(u));
+ }
+
+ /* Affinize */
+ gf_invert(z,z,1);
+ gf_mul(t,x,z);
+ gf_mul(x,y,z);
+
+ /* Encode */
+ enc[DECAF_EDDSA_448_PRIVATE_BYTES-1] = 0;
+ gf_serialize(enc, x, 1);
+ enc[DECAF_EDDSA_448_PRIVATE_BYTES-1] |= 0x80 & gf_lobit(t);
+
+ OPENSSL_cleanse(x,sizeof(x));
+ OPENSSL_cleanse(y,sizeof(y));
+ OPENSSL_cleanse(z,sizeof(z));
+ OPENSSL_cleanse(t,sizeof(t));
+ curve448_point_destroy(q);
+}
+
+
+decaf_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio (
+ curve448_point_t p,
+ const uint8_t enc[DECAF_EDDSA_448_PUBLIC_BYTES]
+) {
+ uint8_t enc2[DECAF_EDDSA_448_PUBLIC_BYTES];
+ memcpy(enc2,enc,sizeof(enc2));
+
+ mask_t low = ~word_is_zero(enc2[DECAF_EDDSA_448_PRIVATE_BYTES-1] & 0x80);
+ enc2[DECAF_EDDSA_448_PRIVATE_BYTES-1] &= ~0x80;
+
+ mask_t succ = gf_deserialize(p->y, enc2, 1, 0);
+#if 0 == 0
+ succ &= word_is_zero(enc2[DECAF_EDDSA_448_PRIVATE_BYTES-1]);
+#endif
+
+ gf_sqr(p->x,p->y);
+ gf_sub(p->z,ONE,p->x); /* num = 1-y^2 */
+ gf_mulw(p->t,p->x,EDWARDS_D); /* dy^2 */
+ gf_sub(p->t,ONE,p->t); /* denom = 1-dy^2 or 1-d + dy^2 */
+
+ gf_mul(p->x,p->z,p->t);
+ succ &= gf_isr(p->t,p->x); /* 1/sqrt(num * denom) */
+
+ gf_mul(p->x,p->t,p->z); /* sqrt(num / denom) */
+ gf_cond_neg(p->x,gf_lobit(p->x)^low);
+ gf_copy(p->z,ONE);
+
+ {
+ /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
+ gf a, b, c, d;
+ gf_sqr ( c, p->x );
+ gf_sqr ( a, p->y );
+ gf_add ( d, c, a );
+ gf_add ( p->t, p->y, p->x );
+ gf_sqr ( b, p->t );
+ gf_sub ( b, b, d );
+ gf_sub ( p->t, a, c );
+ gf_sqr ( p->x, p->z );
+ gf_add ( p->z, p->x, p->x );
+ gf_sub ( a, p->z, d );
+ gf_mul ( p->x, a, b );
+ gf_mul ( p->z, p->t, a );
+ gf_mul ( p->y, p->t, d );
+ gf_mul ( p->t, b, d );
+ OPENSSL_cleanse(a,sizeof(a));
+ OPENSSL_cleanse(b,sizeof(b));
+ OPENSSL_cleanse(c,sizeof(c));
+ OPENSSL_cleanse(d,sizeof(d));
+ }
+
+ OPENSSL_cleanse(enc2,sizeof(enc2));
+ assert(curve448_point_valid(p) || ~succ);
+
+ return decaf_succeed_if(mask_to_bool(succ));
+}
+
+decaf_error_t decaf_x448 (
+ uint8_t out[X_PUBLIC_BYTES],
+ const uint8_t base[X_PUBLIC_BYTES],
+ const uint8_t scalar[X_PRIVATE_BYTES]
+) {
+ gf x1, x2, z2, x3, z3, t1, t2;
+ ignore_result(gf_deserialize(x1,base,1,0));
+ gf_copy(x2,ONE);
+ gf_copy(z2,ZERO);
+ gf_copy(x3,x1);
+ gf_copy(z3,ONE);
+
+ int t;
+ mask_t swap = 0;
+
+ for (t = X_PRIVATE_BITS-1; t>=0; t--) {
+ uint8_t sb = scalar[t/8];
+
+ /* Scalar conditioning */
+ if (t/8==0) sb &= -(uint8_t)COFACTOR;
+ else if (t == X_PRIVATE_BITS-1) sb = -1;
+
+ mask_t k_t = (sb>>(t%8)) & 1;
+ k_t = -k_t; /* set to all 0s or all 1s */
+
+ swap ^= k_t;
+ gf_cond_swap(x2,x3,swap);
+ gf_cond_swap(z2,z3,swap);
+ swap = k_t;
+
+ gf_add_nr(t1,x2,z2); /* A = x2 + z2 */ /* 2+e */
+ gf_sub_nr(t2,x2,z2); /* B = x2 - z2 */ /* 3+e */
+ gf_sub_nr(z2,x3,z3); /* D = x3 - z3 */ /* 3+e */
+ gf_mul(x2,t1,z2); /* DA */
+ gf_add_nr(z2,z3,x3); /* C = x3 + z3 */ /* 2+e */
+ gf_mul(x3,t2,z2); /* CB */
+ gf_sub_nr(z3,x2,x3); /* DA-CB */ /* 3+e */
+ gf_sqr(z2,z3); /* (DA-CB)^2 */
+ gf_mul(z3,x1,z2); /* z3 = x1(DA-CB)^2 */
+ gf_add_nr(z2,x2,x3); /* (DA+CB) */ /* 2+e */
+ gf_sqr(x3,z2); /* x3 = (DA+CB)^2 */
+
+ gf_sqr(z2,t1); /* AA = A^2 */
+ gf_sqr(t1,t2); /* BB = B^2 */
+ gf_mul(x2,z2,t1); /* x2 = AA*BB */
+ gf_sub_nr(t2,z2,t1); /* E = AA-BB */ /* 3+e */
+
+ gf_mulw(t1,t2,-EDWARDS_D); /* E*-d = a24*E */
+ gf_add_nr(t1,t1,z2); /* AA + a24*E */ /* 2+e */
+ gf_mul(z2,t2,t1); /* z2 = E(AA+a24*E) */
+ }
+
+ /* Finish */
+ gf_cond_swap(x2,x3,swap);
+ gf_cond_swap(z2,z3,swap);
+ gf_invert(z2,z2,0);
+ gf_mul(x1,x2,z2);
+ gf_serialize(out,x1,1);
+ mask_t nz = ~gf_eq(x1,ZERO);
+
+ OPENSSL_cleanse(x1,sizeof(x1));
+ OPENSSL_cleanse(x2,sizeof(x2));
+ OPENSSL_cleanse(z2,sizeof(z2));
+ OPENSSL_cleanse(x3,sizeof(x3));
+ OPENSSL_cleanse(z3,sizeof(z3));
+ OPENSSL_cleanse(t1,sizeof(t1));
+ OPENSSL_cleanse(t2,sizeof(t2));
+
+ return decaf_succeed_if(mask_to_bool(nz));
+}
+
+/* Thanks Johan Pascal */
+void decaf_ed448_convert_public_key_to_x448 (
+ uint8_t x[DECAF_X448_PUBLIC_BYTES],
+ const uint8_t ed[DECAF_EDDSA_448_PUBLIC_BYTES]
+) {
+ gf y;
+ const uint8_t mask = (uint8_t)(0xFE<<(7));
+ ignore_result(gf_deserialize(y, ed, 1, mask));
+
+ {
+ gf n,d;
+
+ /* u = y^2 * (1-dy^2) / (1-y^2) */
+ gf_sqr(n,y); /* y^2*/
+ gf_sub(d,ONE,n); /* 1-y^2*/
+ gf_invert(d,d,0); /* 1/(1-y^2)*/
+ gf_mul(y,n,d); /* y^2 / (1-y^2) */
+ gf_mulw(d,n,EDWARDS_D); /* dy^2*/
+ gf_sub(d, ONE, d); /* 1-dy^2*/
+ gf_mul(n, y, d); /* y^2 * (1-dy^2) / (1-y^2) */
+ gf_serialize(x,n,1);
+
+ OPENSSL_cleanse(y,sizeof(y));
+ OPENSSL_cleanse(n,sizeof(n));
+ OPENSSL_cleanse(d,sizeof(d));
+ }
+}
+
+void curve448_point_mul_by_ratio_and_encode_like_x448 (
+ uint8_t out[X_PUBLIC_BYTES],
+ const curve448_point_t p
+) {
+ curve448_point_t q;
+ curve448_point_copy(q,p);
+ gf_invert(q->t,q->x,0); /* 1/x */
+ gf_mul(q->z,q->t,q->y); /* y/x */
+ gf_sqr(q->y,q->z); /* (y/x)^2 */
+ gf_serialize(out,q->y,1);
+ curve448_point_destroy(q);
+}
+
+void decaf_x448_derive_public_key (
+ uint8_t out[X_PUBLIC_BYTES],
+ const uint8_t scalar[X_PRIVATE_BYTES]
+) {
+ /* Scalar conditioning */
+ uint8_t scalar2[X_PRIVATE_BYTES];
+ memcpy(scalar2,scalar,sizeof(scalar2));
+ scalar2[0] &= -(uint8_t)COFACTOR;
+
+ scalar2[X_PRIVATE_BYTES-1] &= ~(-1u<<((X_PRIVATE_BITS+7)%8));
+ scalar2[X_PRIVATE_BYTES-1] |= 1<<((X_PRIVATE_BITS+7)%8);
+
+ curve448_scalar_t the_scalar;
+ curve448_scalar_decode_long(the_scalar,scalar2,sizeof(scalar2));
+
+ /* Compensate for the encoding ratio */
+ for (unsigned i=1; i<DECAF_X448_ENCODE_RATIO; i<<=1) {
+ curve448_scalar_halve(the_scalar,the_scalar);
+ }
+ curve448_point_t p;
+ curve448_precomputed_scalarmul(p,curve448_precomputed_base,the_scalar);
+ curve448_point_mul_by_ratio_and_encode_like_x448(out,p);
+ curve448_point_destroy(p);
+}
+
+/**
+ * @cond internal
+ * Control for variable-time scalar multiply algorithms.
+ */
+struct smvt_control {
+ int power, addend;
+};
+
+static int recode_wnaf (
+ struct smvt_control *control, /* [nbits/(table_bits+1) + 3] */
+ const curve448_scalar_t scalar,
+ unsigned int table_bits
+) {
+ unsigned int table_size = DECAF_448_SCALAR_BITS/(table_bits+1) + 3;
+ int position = table_size - 1; /* at the end */
+
+ /* place the end marker */
+ control[position].power = -1;
+ control[position].addend = 0;
+ position--;
+
+ /* PERF: Could negate scalar if it's large. But then would need more cases
+ * in the actual code that uses it, all for an expected reduction of like 1/5 op.
+ * Probably not worth it.
+ */
+
+ uint64_t current = scalar->limb[0] & 0xFFFF;
+ uint32_t mask = (1<<(table_bits+1))-1;
+
+ unsigned int w;
+ const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
+ for (w = 1; w<(DECAF_448_SCALAR_BITS-1)/16+3; w++) {
+ if (w < (DECAF_448_SCALAR_BITS-1)/16+1) {
+ /* Refill the 16 high bits of current */
+ current += (uint32_t)((scalar->limb[w/B_OVER_16]>>(16*(w%B_OVER_16)))<<16);
+ }
+
+ while (current & 0xFFFF) {
+ assert(position >= 0);
+ uint32_t pos = __builtin_ctz((uint32_t)current), odd = (uint32_t)current >> pos;
+ int32_t delta = odd & mask;
+ if (odd & 1<<(table_bits+1)) delta -= (1<<(table_bits+1));
+ current -= delta << pos;
+ control[position].power = pos + 16*(w-1);
+ control[position].addend = delta;
+ position--;
+ }
+ current >>= 16;
+ }
+ assert(current==0);
+
+ position++;
+ unsigned int n = table_size - position;
+ unsigned int i;
+ for (i=0; i<n; i++) {
+ control[i] = control[i+position];
+ }
+ return n-1;
+}
+
+static void
+prepare_wnaf_table(
+ pniels_t *output,
+ const curve448_point_t working,
+ unsigned int tbits
+) {
+ curve448_point_t tmp;
+ int i;
+ pt_to_pniels(output[0], working);
+
+ if (tbits == 0) return;
+
+ curve448_point_double(tmp,working);
+ pniels_t twop;
+ pt_to_pniels(twop, tmp);
+
+ add_pniels_to_pt(tmp, output[0],0);
+ pt_to_pniels(output[1], tmp);
+
+ for (i=2; i < 1<<tbits; i++) {
+ add_pniels_to_pt(tmp, twop,0);
+ pt_to_pniels(output[i], tmp);
+ }
+
+ curve448_point_destroy(tmp);
+ OPENSSL_cleanse(twop,sizeof(twop));
+}
+
+extern const gf curve448_precomputed_wnaf_as_fe[];
+static const niels_t *curve448_wnaf_base = (const niels_t *)curve448_precomputed_wnaf_as_fe;
+
+void curve448_base_double_scalarmul_non_secret (
+ curve448_point_t combo,
+ const curve448_scalar_t scalar1,
+ const curve448_point_t base2,
+ const curve448_scalar_t scalar2
+) {
+ const int table_bits_var = DECAF_WNAF_VAR_TABLE_BITS,
+ table_bits_pre = DECAF_WNAF_FIXED_TABLE_BITS;
+ struct smvt_control control_var[DECAF_448_SCALAR_BITS/(table_bits_var+1)+3];
+ struct smvt_control control_pre[DECAF_448_SCALAR_BITS/(table_bits_pre+1)+3];
+
+ int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
+ int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
+
+ pniels_t precmp_var[1<<table_bits_var];
+ prepare_wnaf_table(precmp_var, base2, table_bits_var);
+
+ int contp=0, contv=0, i = control_var[0].power;
+
+ if (i < 0) {
+ curve448_point_copy(combo, curve448_point_identity);
+ return;
+ } else if (i > control_pre[0].power) {
+ pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
+ contv++;
+ } else if (i == control_pre[0].power && i >=0 ) {
+ pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
+ add_niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1], i);
+ contv++; contp++;
+ } else {
+ i = control_pre[0].power;
+ niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1]);
+ contp++;
+ }
+
+ for (i--; i >= 0; i--) {
+ int cv = (i==control_var[contv].power), cp = (i==control_pre[contp].power);
+ point_double_internal(combo,combo,i && !(cv||cp));
+
+ if (cv) {
+ assert(control_var[contv].addend);
+
+ if (control_var[contv].addend > 0) {
+ add_pniels_to_pt(combo, precmp_var[control_var[contv].addend >> 1], i&&!cp);
+ } else {
+ sub_pniels_from_pt(combo, precmp_var[(-control_var[contv].addend) >> 1], i&&!cp);
+ }
+ contv++;
+ }
+
+ if (cp) {
+ assert(control_pre[contp].addend);
+
+ if (control_pre[contp].addend > 0) {
+ add_niels_to_pt(combo, curve448_wnaf_base[control_pre[contp].addend >> 1], i);
+ } else {
+ sub_niels_from_pt(combo, curve448_wnaf_base[(-control_pre[contp].addend) >> 1], i);
+ }
+ contp++;
+ }
+ }
+
+ /* This function is non-secret, but whatever this is cheap. */
+ OPENSSL_cleanse(control_var,sizeof(control_var));
+ OPENSSL_cleanse(control_pre,sizeof(control_pre));
+ OPENSSL_cleanse(precmp_var,sizeof(precmp_var));
+
+ assert(contv == ncb_var); (void)ncb_var;
+ assert(contp == ncb_pre); (void)ncb_pre;
+}
+
+void curve448_point_destroy (
+ curve448_point_t point
+) {
+ OPENSSL_cleanse(point, sizeof(curve448_point_t));
+}
+
+int X448(uint8_t out_shared_key[56], const uint8_t private_key[56],
+ const uint8_t peer_public_value[56])
+{
+ return decaf_x448(out_shared_key, peer_public_value, private_key)
+ == DECAF_SUCCESS;
+}
+
+void X448_public_from_private(uint8_t out_public_value[56],
+ const uint8_t private_key[56])
+{
+ decaf_x448_derive_public_key(out_public_value, private_key);
+}