summaryrefslogtreecommitdiffstats
path: root/crypto/bn
diff options
context:
space:
mode:
authorAndy Polyakov <appro@openssl.org>2011-05-16 17:46:45 +0000
committerAndy Polyakov <appro@openssl.org>2011-05-16 17:46:45 +0000
commitafebe623c52d2067d1c34d4461ee92924371621d (patch)
tree96e677f78ce827b6af6f288c6025919e60e0623e /crypto/bn
parentb5c6aab57e71015c00d5149f1cf6d03dab1d67ec (diff)
x86_64 assembler pack: add x86_64-gf2m module.
Diffstat (limited to 'crypto/bn')
-rw-r--r--crypto/bn/Makefile2
-rw-r--r--crypto/bn/asm/x86_64-gf2m.pl281
2 files changed, 283 insertions, 0 deletions
diff --git a/crypto/bn/Makefile b/crypto/bn/Makefile
index 61b6b702b2..74f1ac4b10 100644
--- a/crypto/bn/Makefile
+++ b/crypto/bn/Makefile
@@ -96,6 +96,8 @@ x86_64-gcc.o: asm/x86_64-gcc.c
$(CC) $(CFLAGS) -c -o $@ asm/x86_64-gcc.c
x86_64-mont.s: asm/x86_64-mont.pl
$(PERL) asm/x86_64-mont.pl $(PERLASM_SCHEME) > $@
+x86_64-gf2m.s: asm/x86_64-gf2m.pl
+ $(PERL) asm/x86_64-gf2m.pl $(PERLASM_SCHEME) > $@
bn-ia64.s: asm/ia64.S
$(CC) $(CFLAGS) -E asm/ia64.S > $@
diff --git a/crypto/bn/asm/x86_64-gf2m.pl b/crypto/bn/asm/x86_64-gf2m.pl
new file mode 100644
index 0000000000..dfbb17772c
--- /dev/null
+++ b/crypto/bn/asm/x86_64-gf2m.pl
@@ -0,0 +1,281 @@
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# May 2011
+#
+# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
+# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
+# the time being... Except that it has two code paths: code suitable
+# for any x86_64 CPU and PCLMULQDQ one suitable for Westmere and
+# later. Improvement varies from one benchmark and µ-arch to another.
+# Vanilla code path is at most 20% faster than compiler-generated code
+# [not very impressive], while PCLMULQDQ - whole 85%-160% better on
+# 163- and 571-bit ECDH benchmarks on Intel CPUs. Keep in mind that
+# these coefficients are not ones for bn_GF2m_mul_2x2 itself, as not
+# all CPU time is burnt in it...
+
+$flavour = shift;
+$output = shift;
+if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
+
+$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
+die "can't locate x86_64-xlate.pl";
+
+open STDOUT,"| $^X $xlate $flavour $output";
+
+($lo,$hi)=("%rax","%rdx"); $a=$lo;
+($i0,$i1)=("%rsi","%rdi");
+($t0,$t1)=("%rbx","%rcx");
+($b,$mask)=("%rbp","%r8");
+($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(9..15));
+($R,$Tx)=("%xmm0","%xmm1");
+
+$code.=<<___;
+.text
+
+.type _mul_1x1,\@abi-omnipotent
+.align 16
+_mul_1x1:
+ sub \$128+8,%rsp
+ mov \$-1,$a1
+ lea ($a,$a),$i0
+ shr \$3,$a1
+ lea (,$a,4),$i1
+ and $a,$a1 # a1=a&0x1fffffffffffffff
+ lea (,$a,8),$a8
+ sar \$63,$a # broadcast 63rd bit
+ lea ($a1,$a1),$a2
+ sar \$63,$i0 # broadcast 62nd bit
+ lea (,$a1,4),$a4
+ and $b,$a
+ sar \$63,$i1 # boardcast 61st bit
+ mov $a,$hi # $a is $lo
+ shl \$63,$lo
+ and $b,$i0
+ shr \$1,$hi
+ mov $i0,$t1
+ shl \$62,$i0
+ and $b,$i1
+ shr \$2,$t1
+ xor $i0,$lo
+ mov $i1,$t0
+ shl \$61,$i1
+ xor $t1,$hi
+ shr \$3,$t0
+ xor $i1,$lo
+ xor $t0,$hi
+
+ mov $a1,$a12
+ movq \$0,0(%rsp) # tab[0]=0
+ xor $a2,$a12 # a1^a2
+ mov $a1,8(%rsp) # tab[1]=a1
+ mov $a4,$a48
+ mov $a2,16(%rsp) # tab[2]=a2
+ xor $a8,$a48 # a4^a8
+ mov $a12,24(%rsp) # tab[3]=a1^a2
+
+ xor $a4,$a1
+ mov $a4,32(%rsp) # tab[4]=a4
+ xor $a4,$a2
+ mov $a1,40(%rsp) # tab[5]=a1^a4
+ xor $a4,$a12
+ mov $a2,48(%rsp) # tab[6]=a2^a4
+ xor $a48,$a1 # a1^a4^a4^a8=a1^a8
+ mov $a12,56(%rsp) # tab[7]=a1^a2^a4
+ xor $a48,$a2 # a2^a4^a4^a8=a1^a8
+
+ mov $a8,64(%rsp) # tab[8]=a8
+ xor $a48,$a12 # a1^a2^a4^a4^a8=a1^a2^a8
+ mov $a1,72(%rsp) # tab[9]=a1^a8
+ xor $a4,$a1 # a1^a8^a4
+ mov $a2,80(%rsp) # tab[10]=a2^a8
+ xor $a4,$a2 # a2^a8^a4
+ mov $a12,88(%rsp) # tab[11]=a1^a2^a8
+
+ xor $a4,$a12 # a1^a2^a8^a4
+ mov $a48,96(%rsp) # tab[12]=a4^a8
+ mov $mask,$i0
+ mov $a1,104(%rsp) # tab[13]=a1^a4^a8
+ and $b,$i0
+ mov $a2,112(%rsp) # tab[14]=a2^a4^a8
+ shr \$4,$b
+ mov $a12,120(%rsp) # tab[15]=a1^a2^a4^a8
+ mov $mask,$i1
+ and $b,$i1
+ shr \$4,$b
+
+ movq (%rsp,$i0,8),$R # half of calculations is done in SSE2
+ mov $mask,$i0
+ and $b,$i0
+ shr \$4,$b
+___
+ for ($n=1;$n<8;$n++) {
+ $code.=<<___;
+ mov (%rsp,$i1,8),$t1
+ mov $mask,$i1
+ mov $t1,$t0
+ shl \$`8*$n-4`,$t1
+ and $b,$i1
+ movq (%rsp,$i0,8),$Tx
+ shr \$`64-(8*$n-4)`,$t0
+ xor $t1,$lo
+ pslldq \$$n,$Tx
+ mov $mask,$i0
+ shr \$4,$b
+ xor $t0,$hi
+ and $b,$i0
+ shr \$4,$b
+ pxor $Tx,$R
+___
+ }
+$code.=<<___;
+ mov (%rsp,$i1,8),$t1
+ mov $t1,$t0
+ shl \$`8*$n-4`,$t1
+ movq $R,$i0
+ shr \$`64-(8*$n-4)`,$t0
+ xor $t1,$lo
+ psrldq \$8,$R
+ xor $t0,$hi
+ movq $R,$i1
+ xor $i0,$lo
+ xor $i1,$hi
+
+ add \$128+8,%rsp
+ ret
+.size _mul_1x1,.-_mul_1x1
+___
+
+($rp,$a1,$a0,$b1,$b0) = $win64? ("%rcx","%rdx","%r8", "%r9","%r10") : # Win64 order
+ ("%rdi","%rsi","%rdx","%rcx","%r8"); # Unix order
+
+$code.=<<___;
+.extern OPENSSL_ia32cap_P
+.globl bn_GF2m_mul_2x2
+.type bn_GF2m_mul_2x2,\@abi-omnipotent
+.align 16
+bn_GF2m_mul_2x2:
+ mov OPENSSL_ia32cap_P(%rip),%rax
+ bt \$33,%rax
+ jnc .Lvanilla
+
+ movq $a1,%xmm0
+ movq $b1,%xmm1
+ movq $a0,%xmm2
+___
+$code.=<<___ if ($win64);
+ movq 40(%rsp),%xmm3
+___
+$code.=<<___ if (!$win64);
+ movq $b0,%xmm3
+___
+$code.=<<___;
+ movdqa %xmm0,%xmm4
+ movdqa %xmm1,%xmm5
+ pclmulqdq \$0,%xmm1,%xmm0 # a1·b1
+ pxor %xmm2,%xmm4
+ pxor %xmm3,%xmm5
+ pclmulqdq \$0,%xmm3,%xmm2 # a0·b0
+ pclmulqdq \$0,%xmm5,%xmm4 # (a0+a1)·(b0+b1)
+ xorps %xmm0,%xmm4
+ xorps %xmm2,%xmm4
+ movdqa %xmm4,%xmm5
+ pslldq \$8,%xmm4
+ psrldq \$8,%xmm5
+ pxor %xmm4,%xmm2
+ pxor %xmm5,%xmm0
+ movdqu %xmm2,0($rp)
+ movdqu %xmm0,16($rp)
+ ret
+
+.align 16
+.Lvanilla:
+ lea -8*17(%rsp),%rsp
+___
+$code.=<<___ if ($win64);
+ mov `8*17+40`(%rsp),$b0
+ mov %rdi,8*15(%rsp)
+ mov %rsi,8*16(%rsp)
+___
+$code.=<<___;
+ mov %r14,8*10(%rsp)
+ mov %r13,8*11(%rsp)
+ mov %r12,8*12(%rsp)
+ mov %rbp,8*13(%rsp)
+ mov %rbx,8*14(%rsp)
+.Lbody:
+ mov $rp,32(%rsp) # save the arguments
+ mov $a1,40(%rsp)
+ mov $a0,48(%rsp)
+ mov $b1,56(%rsp)
+ mov $b0,64(%rsp)
+
+ mov \$0xf,$mask
+ mov $a1,$a
+ mov $b1,$b
+ call _mul_1x1 # a1·b1
+ mov $lo,16(%rsp)
+ mov $hi,24(%rsp)
+
+ mov 48(%rsp),$a
+ mov 64(%rsp),$b
+ call _mul_1x1 # a0·b0
+ mov $lo,0(%rsp)
+ mov $hi,8(%rsp)
+
+ mov 40(%rsp),$a
+ mov 56(%rsp),$b
+ xor 48(%rsp),$a
+ xor 64(%rsp),$b
+ call _mul_1x1 # (a0+a1)·(b0+b1)
+___
+ @r=("%rbx","%rcx","%rdi","%rsi");
+$code.=<<___;
+ mov 0(%rsp),@r[0]
+ mov 8(%rsp),@r[1]
+ mov 16(%rsp),@r[2]
+ mov 24(%rsp),@r[3]
+ mov 32(%rsp),%rbp
+
+ xor $hi,$lo
+ xor @r[1],$hi
+ xor @r[0],$lo
+ mov @r[0],0(%rbp)
+ xor @r[2],$hi
+ mov @r[3],24(%rbp)
+ xor @r[3],$lo
+ xor @r[3],$hi
+ xor $hi,$lo
+ mov $hi,16(%rbp)
+ mov $lo,8(%rbp)
+
+ mov 8*10(%rsp),%r14
+ mov 8*11(%rsp),%r13
+ mov 8*12(%rsp),%r12
+ mov 8*13(%rsp),%rbp
+ mov 8*14(%rsp),%rbx
+___
+$code.=<<___ if ($win64);
+ mov 8*15(%rsp),%rdi
+ mov 8*16(%rsp),%rsi
+___
+$code.=<<___;
+ lea 8*17(%rsp),%rsp
+ ret
+.size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
+.asciz "GF(2^m) Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
+___
+
+$code =~ s/\`([^\`]*)\`/eval($1)/gem;
+print $code;
+close STDOUT;