summaryrefslogtreecommitdiffstats
path: root/crypto/bn/bn_sqrt.c
diff options
context:
space:
mode:
authorBodo Möller <bodo@openssl.org>2000-12-07 08:48:58 +0000
committerBodo Möller <bodo@openssl.org>2000-12-07 08:48:58 +0000
commit80d89e6a6aa6d9520336c78877c3cccb54c881cd (patch)
treecade543f271b28bf56ba601bc9f993dc2f5e8e95 /crypto/bn/bn_sqrt.c
parentbc5f2740d2a427d5e16bfb12aa8b70d5a5adcfc8 (diff)
Sign-related fixes (and tests).
BN_mod_exp_mont does not work properly yet if modulus m is negative (we want computations to be carried out modulo |m|).
Diffstat (limited to 'crypto/bn/bn_sqrt.c')
-rw-r--r--crypto/bn/bn_sqrt.c29
1 files changed, 14 insertions, 15 deletions
diff --git a/crypto/bn/bn_sqrt.c b/crypto/bn/bn_sqrt.c
index 6959cc5f6f..6e70e5c541 100644
--- a/crypto/bn/bn_sqrt.c
+++ b/crypto/bn/bn_sqrt.c
@@ -133,21 +133,16 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
e = 1;
while (!BN_is_bit_set(p, e))
e++;
- if (e > 2)
- {
- /* we don't need this q if e = 1 or 2 */
- if (!BN_rshift(q, p, e)) goto end;
- q->neg = 0;
- }
+ /* we'll set q later (if needed) */
if (e == 1)
{
- /* The easy case: (p-1)/2 is odd, so 2 has an inverse
- * modulo (p-1)/2, and square roots can be computed
+ /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
+ * modulo (|p|-1)/2, and square roots can be computed
* directly by modular exponentiation.
* We have
- * 2 * (p+1)/4 == 1 (mod (p-1)/2),
- * so we can use exponent (p+1)/4, i.e. (p-3)/4 + 1.
+ * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
+ * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
*/
if (!BN_rshift(q, p, 2)) goto end;
q->neg = 0;
@@ -159,16 +154,16 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
if (e == 2)
{
- /* p == 5 (mod 8)
+ /* |p| == 5 (mod 8)
*
* In this case 2 is always a non-square since
* Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
* So if a really is a square, then 2*a is a non-square.
* Thus for
- * b := (2*a)^((p-5)/8),
+ * b := (2*a)^((|p|-5)/8),
* i := (2*a)*b^2
* we have
- * i^2 = (2*a)^((1 + (p-5)/4)*2)
+ * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
* = (2*a)^((p-1)/2)
* = -1;
* so if we set
@@ -195,7 +190,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
/* t := 2*a */
if (!BN_mod_lshift1_quick(t, a, p)) goto end;
- /* b := (2*a)^((p-5)/8) */
+ /* b := (2*a)^((|p|-5)/8) */
if (!BN_rshift(q, p, 3)) goto end;
q->neg = 0;
if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
@@ -218,6 +213,8 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
* First, find some y that is not a square. */
+ if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
+ q->neg = 0;
i = 2;
do
{
@@ -240,7 +237,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
if (!BN_set_word(y, i)) goto end;
}
- r = BN_kronecker(y, p, ctx);
+ r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
if (r < -1) goto end;
if (r == 0)
{
@@ -262,6 +259,8 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
goto end;
}
+ /* Here's our actual 'q': */
+ if (!BN_rshift(q, q, e)) goto end;
/* Now that we have some non-square, we can find an element
* of order 2^e by computing its q'th power. */