summaryrefslogtreecommitdiffstats
path: root/crypto/bn/bn_prime.c
diff options
context:
space:
mode:
authorMatt Caswell <matt@openssl.org>2015-01-22 03:40:55 +0000
committerMatt Caswell <matt@openssl.org>2015-01-22 09:20:09 +0000
commit0f113f3ee4d629ef9a4a30911b22b224772085e5 (patch)
treee014603da5aed1d0751f587a66d6e270b6bda3de /crypto/bn/bn_prime.c
parent22b52164aaed31d6e93dbd2d397ace041360e6aa (diff)
Run util/openssl-format-source -v -c .
Reviewed-by: Tim Hudson <tjh@openssl.org>
Diffstat (limited to 'crypto/bn/bn_prime.c')
-rw-r--r--crypto/bn/bn_prime.c1058
1 files changed, 538 insertions, 520 deletions
diff --git a/crypto/bn/bn_prime.c b/crypto/bn/bn_prime.c
index 9f390054e3..39dc9b577c 100644
--- a/crypto/bn/bn_prime.c
+++ b/crypto/bn/bn_prime.c
@@ -5,21 +5,21 @@
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
- *
+ *
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
+ *
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
- *
+ *
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
@@ -34,10 +34,10 @@
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
+ * 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
+ *
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
@@ -49,7 +49,7 @@
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
- *
+ *
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
@@ -63,7 +63,7 @@
* are met:
*
* 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
+ * notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
@@ -115,547 +115,565 @@
#include "bn_lcl.h"
#include <openssl/rand.h>
-/* NB: these functions have been "upgraded", the deprecated versions (which are
- * compatibility wrappers using these functions) are in bn_depr.c.
- * - Geoff
+/*
+ * NB: these functions have been "upgraded", the deprecated versions (which
+ * are compatibility wrappers using these functions) are in bn_depr.c. -
+ * Geoff
*/
-/* The quick sieve algorithm approach to weeding out primes is
- * Philip Zimmermann's, as implemented in PGP. I have had a read of
- * his comments and implemented my own version.
+/*
+ * The quick sieve algorithm approach to weeding out primes is Philip
+ * Zimmermann's, as implemented in PGP. I have had a read of his comments
+ * and implemented my own version.
*/
#include "bn_prime.h"
static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
- const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
+ const BIGNUM *a1_odd, int k, BN_CTX *ctx,
+ BN_MONT_CTX *mont);
static int probable_prime(BIGNUM *rnd, int bits);
static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
- const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
+ const BIGNUM *add, const BIGNUM *rem,
+ BN_CTX *ctx);
static const int prime_offsets[480] = {
- 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
- 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
- 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229,
- 233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293,
- 299, 307, 311, 313, 317, 323, 331, 337, 347, 349, 353, 359, 361, 367,
- 373, 377, 379, 383, 389, 391, 397, 401, 403, 409, 419, 421, 431, 433,
- 437, 439, 443, 449, 457, 461, 463, 467, 479, 481, 487, 491, 493, 499,
- 503, 509, 521, 523, 527, 529, 533, 541, 547, 551, 557, 559, 563, 569,
- 571, 577, 587, 589, 593, 599, 601, 607, 611, 613, 617, 619, 629, 631,
- 641, 643, 647, 653, 659, 661, 667, 673, 677, 683, 689, 691, 697, 701,
- 703, 709, 713, 719, 727, 731, 733, 739, 743, 751, 757, 761, 767, 769,
- 773, 779, 787, 793, 797, 799, 809, 811, 817, 821, 823, 827, 829, 839,
- 841, 851, 853, 857, 859, 863, 871, 877, 881, 883, 887, 893, 899, 901,
- 907, 911, 919, 923, 929, 937, 941, 943, 947, 949, 953, 961, 967, 971,
- 977, 983, 989, 991, 997, 1003, 1007, 1009, 1013, 1019, 1021, 1027, 1031,
- 1033, 1037, 1039, 1049, 1051, 1061, 1063, 1069, 1073, 1079, 1081, 1087,
- 1091, 1093, 1097, 1103, 1109, 1117, 1121, 1123, 1129, 1139, 1147, 1151,
- 1153, 1157, 1159, 1163, 1171, 1181, 1187, 1189, 1193, 1201, 1207, 1213,
- 1217, 1219, 1223, 1229, 1231, 1237, 1241, 1247, 1249, 1259, 1261, 1271,
- 1273, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1313, 1319,
- 1321, 1327, 1333, 1339, 1343, 1349, 1357, 1361, 1363, 1367, 1369, 1373,
- 1381, 1387, 1391, 1399, 1403, 1409, 1411, 1417, 1423, 1427, 1429, 1433,
- 1439, 1447, 1451, 1453, 1457, 1459, 1469, 1471, 1481, 1483, 1487, 1489,
- 1493, 1499, 1501, 1511, 1513, 1517, 1523, 1531, 1537, 1541, 1543, 1549,
- 1553, 1559, 1567, 1571, 1577, 1579, 1583, 1591, 1597, 1601, 1607, 1609,
- 1613, 1619, 1621, 1627, 1633, 1637, 1643, 1649, 1651, 1657, 1663, 1667,
- 1669, 1679, 1681, 1691, 1693, 1697, 1699, 1703, 1709, 1711, 1717, 1721,
- 1723, 1733, 1739, 1741, 1747, 1751, 1753, 1759, 1763, 1769, 1777, 1781,
- 1783, 1787, 1789, 1801, 1807, 1811, 1817, 1819, 1823, 1829, 1831, 1843,
- 1847, 1849, 1853, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1891, 1901,
- 1907, 1909, 1913, 1919, 1921, 1927, 1931, 1933, 1937, 1943, 1949, 1951,
- 1957, 1961, 1963, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017,
- 2021, 2027, 2029, 2033, 2039, 2041, 2047, 2053, 2059, 2063, 2069, 2071,
- 2077, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2117, 2119, 2129, 2131,
- 2137, 2141, 2143, 2147, 2153, 2159, 2161, 2171, 2173, 2179, 2183, 2197,
- 2201, 2203, 2207, 2209, 2213, 2221, 2227, 2231, 2237, 2239, 2243, 2249,
- 2251, 2257, 2263, 2267, 2269, 2273, 2279, 2281, 2287, 2291, 2293, 2297,
- 2309, 2311 };
+ 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+ 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
+ 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229,
+ 233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293,
+ 299, 307, 311, 313, 317, 323, 331, 337, 347, 349, 353, 359, 361, 367,
+ 373, 377, 379, 383, 389, 391, 397, 401, 403, 409, 419, 421, 431, 433,
+ 437, 439, 443, 449, 457, 461, 463, 467, 479, 481, 487, 491, 493, 499,
+ 503, 509, 521, 523, 527, 529, 533, 541, 547, 551, 557, 559, 563, 569,
+ 571, 577, 587, 589, 593, 599, 601, 607, 611, 613, 617, 619, 629, 631,
+ 641, 643, 647, 653, 659, 661, 667, 673, 677, 683, 689, 691, 697, 701,
+ 703, 709, 713, 719, 727, 731, 733, 739, 743, 751, 757, 761, 767, 769,
+ 773, 779, 787, 793, 797, 799, 809, 811, 817, 821, 823, 827, 829, 839,
+ 841, 851, 853, 857, 859, 863, 871, 877, 881, 883, 887, 893, 899, 901,
+ 907, 911, 919, 923, 929, 937, 941, 943, 947, 949, 953, 961, 967, 971,
+ 977, 983, 989, 991, 997, 1003, 1007, 1009, 1013, 1019, 1021, 1027, 1031,
+ 1033, 1037, 1039, 1049, 1051, 1061, 1063, 1069, 1073, 1079, 1081, 1087,
+ 1091, 1093, 1097, 1103, 1109, 1117, 1121, 1123, 1129, 1139, 1147, 1151,
+ 1153, 1157, 1159, 1163, 1171, 1181, 1187, 1189, 1193, 1201, 1207, 1213,
+ 1217, 1219, 1223, 1229, 1231, 1237, 1241, 1247, 1249, 1259, 1261, 1271,
+ 1273, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1313, 1319,
+ 1321, 1327, 1333, 1339, 1343, 1349, 1357, 1361, 1363, 1367, 1369, 1373,
+ 1381, 1387, 1391, 1399, 1403, 1409, 1411, 1417, 1423, 1427, 1429, 1433,
+ 1439, 1447, 1451, 1453, 1457, 1459, 1469, 1471, 1481, 1483, 1487, 1489,
+ 1493, 1499, 1501, 1511, 1513, 1517, 1523, 1531, 1537, 1541, 1543, 1549,
+ 1553, 1559, 1567, 1571, 1577, 1579, 1583, 1591, 1597, 1601, 1607, 1609,
+ 1613, 1619, 1621, 1627, 1633, 1637, 1643, 1649, 1651, 1657, 1663, 1667,
+ 1669, 1679, 1681, 1691, 1693, 1697, 1699, 1703, 1709, 1711, 1717, 1721,
+ 1723, 1733, 1739, 1741, 1747, 1751, 1753, 1759, 1763, 1769, 1777, 1781,
+ 1783, 1787, 1789, 1801, 1807, 1811, 1817, 1819, 1823, 1829, 1831, 1843,
+ 1847, 1849, 1853, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1891, 1901,
+ 1907, 1909, 1913, 1919, 1921, 1927, 1931, 1933, 1937, 1943, 1949, 1951,
+ 1957, 1961, 1963, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017,
+ 2021, 2027, 2029, 2033, 2039, 2041, 2047, 2053, 2059, 2063, 2069, 2071,
+ 2077, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2117, 2119, 2129, 2131,
+ 2137, 2141, 2143, 2147, 2153, 2159, 2161, 2171, 2173, 2179, 2183, 2197,
+ 2201, 2203, 2207, 2209, 2213, 2221, 2227, 2231, 2237, 2239, 2243, 2249,
+ 2251, 2257, 2263, 2267, 2269, 2273, 2279, 2281, 2287, 2291, 2293, 2297,
+ 2309, 2311
+};
+
static const int prime_offset_count = 480;
static const int prime_multiplier = 2310;
-static const int prime_multiplier_bits = 11; /* 2^|prime_multiplier_bits|
- <= |prime_multiplier| */
+static const int prime_multiplier_bits = 11; /* 2^|prime_multiplier_bits| <=
+ * |prime_multiplier| */
static const int first_prime_index = 5;
int BN_GENCB_call(BN_GENCB *cb, int a, int b)
- {
- /* No callback means continue */
- if(!cb) return 1;
- switch(cb->ver)
- {
- case 1:
- /* Deprecated-style callbacks */
- if(!cb->cb.cb_1)
- return 1;
- cb->cb.cb_1(a, b, cb->arg);
- return 1;
- case 2:
- /* New-style callbacks */
- return cb->cb.cb_2(a, b, cb);
- default:
- break;
- }
- /* Unrecognised callback type */
- return 0;
- }
+{
+ /* No callback means continue */
+ if (!cb)
+ return 1;
+ switch (cb->ver) {
+ case 1:
+ /* Deprecated-style callbacks */
+ if (!cb->cb.cb_1)
+ return 1;
+ cb->cb.cb_1(a, b, cb->arg);
+ return 1;
+ case 2:
+ /* New-style callbacks */
+ return cb->cb.cb_2(a, b, cb);
+ default:
+ break;
+ }
+ /* Unrecognised callback type */
+ return 0;
+}
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
- const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
- {
- BIGNUM *t;
- int found=0;
- int i,j,c1=0;
- BN_CTX *ctx;
- int checks = BN_prime_checks_for_size(bits);
-
- if (bits < 2)
- {
- /* There are no prime numbers this small. */
- BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
- return 0;
- }
- else if (bits == 2 && safe)
- {
- /* The smallest safe prime (7) is three bits. */
- BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
- return 0;
- }
-
- ctx=BN_CTX_new();
- if (ctx == NULL) goto err;
- BN_CTX_start(ctx);
- t = BN_CTX_get(ctx);
- if(!t) goto err;
-loop:
- /* make a random number and set the top and bottom bits */
- if (add == NULL)
- {
- if (!probable_prime(ret,bits)) goto err;
- }
- else
- {
- if (safe)
- {
- if (!probable_prime_dh_safe(ret,bits,add,rem,ctx))
- goto err;
- }
- else
- {
- if (!bn_probable_prime_dh(ret,bits,add,rem,ctx))
- goto err;
- }
- }
- /* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
- if(!BN_GENCB_call(cb, 0, c1++))
- /* aborted */
- goto err;
-
- if (!safe)
- {
- i=BN_is_prime_fasttest_ex(ret,checks,ctx,0,cb);
- if (i == -1) goto err;
- if (i == 0) goto loop;
- }
- else
- {
- /* for "safe prime" generation,
- * check that (p-1)/2 is prime.
- * Since a prime is odd, We just
- * need to divide by 2 */
- if (!BN_rshift1(t,ret)) goto err;
-
- for (i=0; i<checks; i++)
- {
- j=BN_is_prime_fasttest_ex(ret,1,ctx,0,cb);
- if (j == -1) goto err;
- if (j == 0) goto loop;
-
- j=BN_is_prime_fasttest_ex(t,1,ctx,0,cb);
- if (j == -1) goto err;
- if (j == 0) goto loop;
-
- if(!BN_GENCB_call(cb, 2, c1-1))
- goto err;
- /* We have a safe prime test pass */
- }
- }
- /* we have a prime :-) */
- found = 1;
-err:
- if (ctx != NULL)
- {
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- }
- bn_check_top(ret);
- return found;
- }
-
-int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb)
- {
- return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
- }
+ const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
+{
+ BIGNUM *t;
+ int found = 0;
+ int i, j, c1 = 0;
+ BN_CTX *ctx;
+ int checks = BN_prime_checks_for_size(bits);
+
+ if (bits < 2) {
+ /* There are no prime numbers this small. */
+ BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
+ return 0;
+ } else if (bits == 2 && safe) {
+ /* The smallest safe prime (7) is three bits. */
+ BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
+ return 0;
+ }
+
+ ctx = BN_CTX_new();
+ if (ctx == NULL)
+ goto err;
+ BN_CTX_start(ctx);
+ t = BN_CTX_get(ctx);
+ if (!t)
+ goto err;
+ loop:
+ /* make a random number and set the top and bottom bits */
+ if (add == NULL) {
+ if (!probable_prime(ret, bits))
+ goto err;
+ } else {
+ if (safe) {
+ if (!probable_prime_dh_safe(ret, bits, add, rem, ctx))
+ goto err;
+ } else {
+ if (!bn_probable_prime_dh(ret, bits, add, rem, ctx))
+ goto err;
+ }
+ }
+ /* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
+ if (!BN_GENCB_call(cb, 0, c1++))
+ /* aborted */
+ goto err;
+
+ if (!safe) {
+ i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
+ if (i == -1)
+ goto err;
+ if (i == 0)
+ goto loop;
+ } else {
+ /*
+ * for "safe prime" generation, check that (p-1)/2 is prime. Since a
+ * prime is odd, We just need to divide by 2
+ */
+ if (!BN_rshift1(t, ret))
+ goto err;
+
+ for (i = 0; i < checks; i++) {
+ j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
+ if (j == -1)
+ goto err;
+ if (j == 0)
+ goto loop;
+
+ j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
+ if (j == -1)
+ goto err;
+ if (j == 0)
+ goto loop;
+
+ if (!BN_GENCB_call(cb, 2, c1 - 1))
+ goto err;
+ /* We have a safe prime test pass */
+ }
+ }
+ /* we have a prime :-) */
+ found = 1;
+ err:
+ if (ctx != NULL) {
+ BN_CTX_end(ctx);
+ BN_CTX_free(ctx);
+ }
+ bn_check_top(ret);
+ return found;
+}
+
+int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
+ BN_GENCB *cb)
+{
+ return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
+}
int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
- int do_trial_division, BN_GENCB *cb)
- {
- int i, j, ret = -1;
- int k;
- BN_CTX *ctx = NULL;
- BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
- BN_MONT_CTX *mont = NULL;
- const BIGNUM *A = NULL;
-
- if (BN_cmp(a, BN_value_one()) <= 0)
- return 0;
-
- if (checks == BN_prime_checks)
- checks = BN_prime_checks_for_size(BN_num_bits(a));
-
- /* first look for small factors */
- if (!BN_is_odd(a))
- /* a is even => a is prime if and only if a == 2 */
- return BN_is_word(a, 2);
- if (do_trial_division)
- {
- for (i = 1; i < NUMPRIMES; i++)
- if (BN_mod_word(a, primes[i]) == 0)
- return 0;
- if(!BN_GENCB_call(cb, 1, -1))
- goto err;
- }
-
- if (ctx_passed != NULL)
- ctx = ctx_passed;
- else
- if ((ctx=BN_CTX_new()) == NULL)
- goto err;
- BN_CTX_start(ctx);
-
- /* A := abs(a) */
- if (a->neg)
- {
- BIGNUM *t;
- if ((t = BN_CTX_get(ctx)) == NULL) goto err;
- BN_copy(t, a);
- t->neg = 0;
- A = t;
- }
- else
- A = a;
- A1 = BN_CTX_get(ctx);
- A1_odd = BN_CTX_get(ctx);
- check = BN_CTX_get(ctx);
- if (check == NULL) goto err;
-
- /* compute A1 := A - 1 */
- if (!BN_copy(A1, A))
- goto err;
- if (!BN_sub_word(A1, 1))
- goto err;
- if (BN_is_zero(A1))
- {
- ret = 0;
- goto err;
- }
-
- /* write A1 as A1_odd * 2^k */
- k = 1;
- while (!BN_is_bit_set(A1, k))
- k++;
- if (!BN_rshift(A1_odd, A1, k))
- goto err;
-
- /* Montgomery setup for computations mod A */
- mont = BN_MONT_CTX_new();
- if (mont == NULL)
- goto err;
- if (!BN_MONT_CTX_set(mont, A, ctx))
- goto err;
-
- for (i = 0; i < checks; i++)
- {
- if (!BN_pseudo_rand_range(check, A1))
- goto err;
- if (!BN_add_word(check, 1))
- goto err;
- /* now 1 <= check < A */
-
- j = witness(check, A, A1, A1_odd, k, ctx, mont);
- if (j == -1) goto err;
- if (j)
- {
- ret=0;
- goto err;
- }
- if(!BN_GENCB_call(cb, 1, i))
- goto err;
- }
- ret=1;
-err:
- if (ctx != NULL)
- {
- BN_CTX_end(ctx);
- if (ctx_passed == NULL)
- BN_CTX_free(ctx);
- }
- if (mont != NULL)
- BN_MONT_CTX_free(mont);
-
- return(ret);
- }
+ int do_trial_division, BN_GENCB *cb)
+{
+ int i, j, ret = -1;
+ int k;
+ BN_CTX *ctx = NULL;
+ BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
+ BN_MONT_CTX *mont = NULL;
+ const BIGNUM *A = NULL;
+
+ if (BN_cmp(a, BN_value_one()) <= 0)
+ return 0;
+
+ if (checks == BN_prime_checks)
+ checks = BN_prime_checks_for_size(BN_num_bits(a));
+
+ /* first look for small factors */
+ if (!BN_is_odd(a))
+ /* a is even => a is prime if and only if a == 2 */
+ return BN_is_word(a, 2);
+ if (do_trial_division) {
+ for (i = 1; i < NUMPRIMES; i++)
+ if (BN_mod_word(a, primes[i]) == 0)
+ return 0;
+ if (!BN_GENCB_call(cb, 1, -1))
+ goto err;
+ }
+
+ if (ctx_passed != NULL)
+ ctx = ctx_passed;
+ else if ((ctx = BN_CTX_new()) == NULL)
+ goto err;
+ BN_CTX_start(ctx);
+
+ /* A := abs(a) */
+ if (a->neg) {
+ BIGNUM *t;
+ if ((t = BN_CTX_get(ctx)) == NULL)
+ goto err;
+ BN_copy(t, a);
+ t->neg = 0;
+ A = t;
+ } else
+ A = a;
+ A1 = BN_CTX_get(ctx);
+ A1_odd = BN_CTX_get(ctx);
+ check = BN_CTX_get(ctx);
+ if (check == NULL)
+ goto err;
+
+ /* compute A1 := A - 1 */
+ if (!BN_copy(A1, A))
+ goto err;
+ if (!BN_sub_word(A1, 1))
+ goto err;
+ if (BN_is_zero(A1)) {
+ ret = 0;
+ goto err;
+ }
+
+ /* write A1 as A1_odd * 2^k */
+ k = 1;
+ while (!BN_is_bit_set(A1, k))
+ k++;
+ if (!BN_rshift(A1_odd, A1, k))
+ goto err;
+
+ /* Montgomery setup for computations mod A */
+ mont = BN_MONT_CTX_new();
+ if (mont == NULL)
+ goto err;
+ if (!BN_MONT_CTX_set(mont, A, ctx))
+ goto err;
+
+ for (i = 0; i < checks; i++) {
+ if (!BN_pseudo_rand_range(check, A1))
+ goto err;
+ if (!BN_add_word(check, 1))
+ goto err;
+ /* now 1 <= check < A */
+
+ j = witness(check, A, A1, A1_odd, k, ctx, mont);
+ if (j == -1)
+ goto err;
+ if (j) {
+ ret = 0;
+ goto err;
+ }
+ if (!BN_GENCB_call(cb, 1, i))
+ goto err;
+ }
+ ret = 1;
+ err:
+ if (ctx != NULL) {
+ BN_CTX_end(ctx);
+ if (ctx_passed == NULL)
+ BN_CTX_free(ctx);
+ }
+ if (mont != NULL)
+ BN_MONT_CTX_free(mont);
+
+ return (ret);
+}
int bn_probable_prime_dh_retry(BIGNUM *rnd, int bits, BN_CTX *ctx)
- {
- int i;
- int ret = 0;
-
-loop:
- if (!BN_rand(rnd, bits, 0, 1)) goto err;
-
- /* we now have a random number 'rand' to test. */
-
- for (i = 1; i < NUMPRIMES; i++)
- {
- /* check that rnd is a prime */
- if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1)
- {
- goto loop;
- }
- }
- ret=1;
-
-err:
- bn_check_top(rnd);
- return(ret);
- }
+{
+ int i;
+ int ret = 0;
+
+ loop:
+ if (!BN_rand(rnd, bits, 0, 1))
+ goto err;
+
+ /* we now have a random number 'rand' to test. */
+
+ for (i = 1; i < NUMPRIMES; i++) {
+ /* check that rnd is a prime */
+ if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) {
+ goto loop;
+ }
+ }
+ ret = 1;
+
+ err:
+ bn_check_top(rnd);
+ return (ret);
+}
int bn_probable_prime_dh_coprime(BIGNUM *rnd, int bits, BN_CTX *ctx)
- {
- int i;
- BIGNUM *offset_index;
- BIGNUM *offset_count;
- int ret = 0;
-
- OPENSSL_assert(bits > prime_multiplier_bits);
-
- BN_CTX_start(ctx);
- if ((offset_index = BN_CTX_get(ctx)) == NULL) goto err;
- if ((offset_count = BN_CTX_get(ctx)) == NULL) goto err;
-
- BN_add_word(offset_count, prime_offset_count);
-
-loop:
- if (!BN_rand(rnd, bits - prime_multiplier_bits, 0, 1)) goto err;
- if (BN_is_bit_set(rnd, bits)) goto loop;
- if (!BN_rand_range(offset_index, offset_count)) goto err;
-
- BN_mul_word(rnd, prime_multiplier);
- BN_add_word(rnd, prime_offsets[BN_get_word(offset_index)]);
-
- /* we now have a random number 'rand' to test. */
-
- /* skip coprimes */
- for (i = first_prime_index; i < NUMPRIMES; i++)
- {
- /* check that rnd is a prime */
- if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1)
- {
- goto loop;
- }
- }
- ret = 1;
-
-err:
- BN_CTX_end(ctx);
- bn_check_top(rnd);
- return ret;
- }
+{
+ int i;
+ BIGNUM *offset_index;
+ BIGNUM *offset_count;
+ int ret = 0;
+
+ OPENSSL_assert(bits > prime_multiplier_bits);
+
+ BN_CTX_start(ctx);
+ if ((offset_index = BN_CTX_get(ctx)) == NULL)
+ goto err;
+ if ((offset_count = BN_CTX_get(ctx)) == NULL)
+ goto err;
+
+ BN_add_word(offset_count, prime_offset_count);
+
+ loop:
+ if (!BN_rand(rnd, bits - prime_multiplier_bits, 0, 1))
+ goto err;
+ if (BN_is_bit_set(rnd, bits))
+ goto loop;
+ if (!BN_rand_range(offset_index, offset_count))
+ goto err;
+
+ BN_mul_word(rnd, prime_multiplier);
+ BN_add_word(rnd, prime_offsets[BN_get_word(offset_index)]);
+
+ /* we now have a random number 'rand' to test. */
+
+ /* skip coprimes */
+ for (i = first_prime_index; i < NUMPRIMES; i++) {
+ /* check that rnd is a prime */
+ if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) {
+ goto loop;
+ }
+ }
+ ret = 1;
+
+ err:
+ BN_CTX_end(ctx);
+ bn_check_top(rnd);
+ return ret;
+}
static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
- const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
- {
- if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
- return -1;
- if (BN_is_one(w))
- return 0; /* probably prime */
- if (BN_cmp(w, a1) == 0)
- return 0; /* w == -1 (mod a), 'a' is probably prime */
- while (--k)
- {
- if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
- return -1;
- if (BN_is_one(w))
- return 1; /* 'a' is composite, otherwise a previous 'w' would
- * have been == -1 (mod 'a') */
- if (BN_cmp(w, a1) == 0)
- return 0; /* w == -1 (mod a), 'a' is probably prime */
- }
- /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
- * and it is neither -1 nor +1 -- so 'a' cannot be prime */
- bn_check_top(w);
- return 1;
- }
+ const BIGNUM *a1_odd, int k, BN_CTX *ctx,
+ BN_MONT_CTX *mont)
+{
+ if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
+ return -1;
+ if (BN_is_one(w))
+ return 0; /* probably prime */
+ if (BN_cmp(w, a1) == 0)
+ return 0; /* w == -1 (mod a), 'a' is probably prime */
+ while (--k) {
+ if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
+ return -1;
+ if (BN_is_one(w))
+ return 1; /* 'a' is composite, otherwise a previous 'w'
+ * would have been == -1 (mod 'a') */
+ if (BN_cmp(w, a1) == 0)
+ return 0; /* w == -1 (mod a), 'a' is probably prime */
+ }
+ /*
+ * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
+ * it is neither -1 nor +1 -- so 'a' cannot be prime
+ */
+ bn_check_top(w);
+ return 1;
+}
static int probable_prime(BIGNUM *rnd, int bits)
- {
- int i;
- prime_t mods[NUMPRIMES];
- BN_ULONG delta;
- BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES-1];
- char is_single_word = bits <= BN_BITS2;
-
-again:
- if (!BN_rand(rnd,bits,1,1)) return(0);
- /* we now have a random number 'rnd' to test. */
- for (i=1; i<NUMPRIMES; i++)
- mods[i]=(prime_t)BN_mod_word(rnd,(BN_ULONG)primes[i]);
- /* If bits is so small that it fits into a single word then we
- * additionally don't want to exceed that many bits. */
- if (is_single_word)
- {
- BN_ULONG size_limit = (((BN_ULONG) 1) << bits) - BN_get_word(rnd) - 1;
- if (size_limit < maxdelta)
- maxdelta = size_limit;
- }
- delta=0;
-loop:
- if (is_single_word)
- {
- BN_ULONG rnd_word = BN_get_word(rnd);
-
- /*-
- * In the case that the candidate prime is a single word then
- * we check that:
- * 1) It's greater than primes[i] because we shouldn't reject
- * 3 as being a prime number because it's a multiple of
- * three.
- * 2) That it's not a multiple of a known prime. We don't
- * check that rnd-1 is also coprime to all the known
- * primes because there aren't many small primes where
- * that's true.
- */
- for (i=1; i<NUMPRIMES && primes[i]<rnd_word; i++)
- {
- if ((mods[i]+delta)%primes[i] == 0)
- {
- delta+=2;
- if (delta > maxdelta) goto again;
- goto loop;
- }
- }
- }
- else
- {
- for (i=1; i<NUMPRIMES; i++)
- {
- /* check that rnd is not a prime and also
- * that gcd(rnd-1,primes) == 1 (except for 2) */
- if (((mods[i]+delta)%primes[i]) <= 1)
- {
- delta+=2;
- if (delta > maxdelta) goto again;
- goto loop;
- }
- }
- }
- if (!BN_add_word(rnd,delta)) return(0);
- if (BN_num_bits(rnd) != bits)
- goto again;
- bn_check_top(rnd);
- return(1);
- }
+{
+ int i;
+ prime_t mods[NUMPRIMES];
+ BN_ULONG delta;
+ BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
+ char is_single_word = bits <= BN_BITS2;
+
+ again:
+ if (!BN_rand(rnd, bits, 1, 1))
+ return (0);
+ /* we now have a random number 'rnd' to test. */
+ for (i = 1; i < NUMPRIMES; i++)
+ mods[i] = (prime_t) BN_mod_word(rnd, (BN_ULONG)primes[i]);
+ /*
+ * If bits is so small that it fits into a single word then we
+ * additionally don't want to exceed that many bits.
+ */
+ if (is_single_word) {
+ BN_ULONG size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1;
+ if (size_limit < maxdelta)
+ maxdelta = size_limit;
+ }
+ delta = 0;
+ loop:
+ if (is_single_word) {
+ BN_ULONG rnd_word = BN_get_word(rnd);
+
+ /*-
+ * In the case that the candidate prime is a single word then
+ * we check that:
+ * 1) It's greater than primes[i] because we shouldn't reject
+ * 3 as being a prime number because it's a multiple of
+ * three.
+ * 2) That it's not a multiple of a known prime. We don't
+ * check that rnd-1 is also coprime to all the known
+ * primes because there aren't many small primes where
+ * that's true.
+ */
+ for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) {
+ if ((mods[i] + delta) % primes[i] == 0) {
+ delta += 2;
+ if (delta > maxdelta)
+ goto again;
+ goto loop;
+ }
+ }
+ } else {
+ for (i = 1; i < NUMPRIMES; i++) {
+ /*
+ * check that rnd is not a prime and also that gcd(rnd-1,primes)
+ * == 1 (except for 2)
+ */
+ if (((mods[i] + delta) % primes[i]) <= 1) {
+ delta += 2;
+ if (delta > maxdelta)
+ goto again;
+ goto loop;
+ }
+ }
+ }
+ if (!BN_add_word(rnd, delta))
+ return (0);
+ if (BN_num_bits(rnd) != bits)
+ goto again;
+ bn_check_top(rnd);
+ return (1);
+}
int bn_probable_prime_dh(BIGNUM *rnd, int bits,
- const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
- {
- int i,ret=0;
- BIGNUM *t1;
-
- BN_CTX_start(ctx);
- if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
-
- if (!BN_rand(rnd,bits,0,1)) goto err;
-
- /* we need ((rnd-rem) % add) == 0 */
-
- if (!BN_mod(t1,rnd,add,ctx)) goto err;
- if (!BN_sub(rnd,rnd,t1)) goto err;
- if (rem == NULL)
- { if (!BN_add_word(rnd,1)) goto err; }
- else
- { if (!BN_add(rnd,rnd,rem)) goto err; }
-
- /* we now have a random number 'rand' to test. */
-
-loop:
- for (i=1; i<NUMPRIMES; i++)
- {
- /* check that rnd is a prime */
- if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1)
- {
- if (!BN_add(rnd,rnd,add)) goto err;
- goto loop;
- }
- }
- ret=1;
-
-err:
- BN_CTX_end(ctx);
- bn_check_top(rnd);
- return(ret);
- }
+ const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
+{
+ int i, ret = 0;
+ BIGNUM *t1;
+
+ BN_CTX_start(ctx);
+ if ((t1 = BN_CTX_get(ctx)) == NULL)
+ goto err;
+
+ if (!BN_rand(rnd, bits, 0, 1))
+ goto err;
+
+ /* we need ((rnd-rem) % add) == 0 */
+
+ if (!BN_mod(t1, rnd, add, ctx))
+ goto err;
+ if (!BN_sub(rnd, rnd, t1))
+ goto err;
+ if (rem == NULL) {
+ if (!BN_add_word(rnd, 1))
+ goto err;
+ } else {
+ if (!BN_add(rnd, rnd, rem))
+ goto err;
+ }
+
+ /* we now have a random number 'rand' to test. */
+
+ loop:
+ for (i = 1; i < NUMPRIMES; i++) {
+ /* check that rnd is a prime */
+ if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) {
+ if (!BN_add(rnd, rnd, add))
+ goto err;
+ goto loop;
+ }
+ }
+ ret = 1;
+
+ err:
+ BN_CTX_end(ctx);
+ bn_check_top(rnd);
+ return (ret);
+}
static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
- const BIGNUM *rem, BN_CTX *ctx)
- {
- int i,ret=0;
- BIGNUM *t1,*qadd,*q;
-
- bits--;
- BN_CTX_start(ctx);
- t1 = BN_CTX_get(ctx);
- q = BN_CTX_get(ctx);
- qadd = BN_CTX_get(ctx);
- if (qadd == NULL) goto err;
-
- if (!BN_rshift1(qadd,padd)) goto err;
-
- if (!BN_rand(q,bits,0,1)) goto err;
-
- /* we need ((rnd-rem) % add) == 0 */
- if (!BN_mod(t1,q,qadd,ctx)) goto err;
- if (!BN_sub(q,q,t1)) goto err;
- if (rem == NULL)
- { if (!BN_add_word(q,1)) goto err; }
- else
- {
- if (!BN_rshift1(t1,rem)) goto err;
- if (!BN_add(q,q,t1)) goto err;
- }
-
- /* we now have a random number 'rand' to test. */
- if (!BN_lshift1(p,q)) goto err;
- if (!BN_add_word(p,1)) goto err;
-
-loop:
- for (i=1; i<NUMPRIMES; i++)
- {
- /* check that p and q are prime */
- /* check that for p and q
- * gcd(p-1,primes) == 1 (except for 2) */
- if ((BN_mod_word(p,(BN_ULONG)primes[i]) == 0) ||
- (BN_mod_word(q,(BN_ULONG)primes[i]) == 0))
- {
- if (!BN_add(p,p,padd)) goto err;
- if (!BN_add(q,q,qadd)) goto err;
- goto loop;
- }
- }
- ret=1;
-
-err:
- BN_CTX_end(ctx);
- bn_check_top(p);
- return(ret);
- }
+ const BIGNUM *rem, BN_CTX *ctx)
+{
+ int i, ret = 0;
+ BIGNUM *t1, *qadd, *q;
+
+ bits--;
+ BN_CTX_start(ctx);
+ t1 = BN_CTX_get(ctx);
+ q = BN_CTX_get(ctx);
+ qadd = BN_CTX_get(ctx);
+ if (qadd == NULL)
+