summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorBilly Brumley <bbrumley@gmail.com>2018-04-19 12:21:51 +0300
committerMatt Caswell <matt@openssl.org>2018-04-23 19:14:25 +0100
commit40e48e54582e46c1a01e184ecf5bd31f4f7f8294 (patch)
tree14b7ee75bcd9a2656dd0ee5bdda25313f9ad307a
parent5b820d785d6b5f9c3fedcf0ce4e4f0476a1bb9c8 (diff)
Elliptic curve scalar multiplication with timing attack defenses
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com> Co-authored-by: Cesar Pereida Garcia <cesar.pereidagarcia@tut.fi> Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com> Reviewed-by: Andy Polyakov <appro@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6009)
-rw-r--r--crypto/bn/bn_lib.c13
-rw-r--r--crypto/ec/ec_mult.c182
2 files changed, 195 insertions, 0 deletions
diff --git a/crypto/bn/bn_lib.c b/crypto/bn/bn_lib.c
index 57fe45288b..a446880ec7 100644
--- a/crypto/bn/bn_lib.c
+++ b/crypto/bn/bn_lib.c
@@ -739,6 +739,19 @@ void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
a->top ^= t;
b->top ^= t;
+ t = (a->neg ^ b->neg) & condition;
+ a->neg ^= t;
+ b->neg ^= t;
+
+ /*
+ * cannot just arbitrarily swap flags.
+ * The way a->d is allocated etc.
+ * BN_FLG_MALLOCED, BN_FLG_STATIC_DATA, ...
+ */
+ t = (a->flags ^ b->flags) & condition & BN_FLG_CONSTTIME;
+ a->flags ^= t;
+ b->flags ^= t;
+
#define BN_CONSTTIME_SWAP(ind) \
do { \
t = (a->d[ind] ^ b->d[ind]) & condition; \
diff --git a/crypto/ec/ec_mult.c b/crypto/ec/ec_mult.c
index ed26b68c30..1b9a4cf2ae 100644
--- a/crypto/ec/ec_mult.c
+++ b/crypto/ec/ec_mult.c
@@ -101,6 +101,166 @@ void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
OPENSSL_free(pre);
}
+#define EC_POINT_set_flags(P, flags) do { \
+ BN_set_flags((P)->X, (flags)); \
+ BN_set_flags((P)->Y, (flags)); \
+ BN_set_flags((P)->Z, (flags)); \
+} while(0)
+
+/*
+ * This functions computes (in constant time) a point multiplication over the
+ * EC group.
+ *
+ * It performs either a fixed scalar point multiplication
+ * (scalar * generator)
+ * when point is NULL, or a generic scalar point multiplication
+ * (scalar * point)
+ * when point is not NULL.
+ *
+ * scalar should be in the range [0,n) otherwise all constant time bets are off.
+ *
+ * NB: This says nothing about EC_POINT_add and EC_POINT_dbl,
+ * which of course are not constant time themselves.
+ *
+ * The product is stored in r.
+ *
+ * Returns 1 on success, 0 otherwise.
+ */
+static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
+ const EC_POINT *point, BN_CTX *ctx)
+{
+ int i, order_bits, group_top, kbit, pbit, Z_is_one, ret;
+ ret = 0;
+ EC_POINT *s = NULL;
+ BIGNUM *k = NULL;
+ BIGNUM *lambda = NULL;
+ BN_CTX *new_ctx = NULL;
+
+ if (ctx == NULL)
+ if ((ctx = new_ctx = BN_CTX_secure_new()) == NULL)
+ return 0;
+
+ if ((group->order == NULL) || (group->field == NULL))
+ goto err;
+
+ order_bits = BN_num_bits(group->order);
+
+ s = EC_POINT_new(group);
+ if (s == NULL)
+ goto err;
+
+ if (point == NULL) {
+ if (group->generator == NULL)
+ goto err;
+ if (!EC_POINT_copy(s, group->generator))
+ goto err;
+ } else {
+ if (!EC_POINT_copy(s, point))
+ goto err;
+ }
+
+ EC_POINT_set_flags(s, BN_FLG_CONSTTIME);
+
+ BN_CTX_start(ctx);
+ lambda = BN_CTX_get(ctx);
+ k = BN_CTX_get(ctx);
+ if (k == NULL)
+ goto err;
+
+ /*
+ * Group orders are often on a word boundary.
+ * So when we pad the scalar, some timing diff might
+ * pop if it needs to be expanded due to carries.
+ * So expand ahead of time.
+ */
+ group_top = bn_get_top(group->order);
+ if ((bn_wexpand(k, group_top + 1) == NULL)
+ || (bn_wexpand(lambda, group_top + 1) == NULL))
+ goto err;
+
+ if (!BN_copy(k, scalar))
+ goto err;
+
+ BN_set_flags(k, BN_FLG_CONSTTIME);
+
+ if ((BN_num_bits(k) > order_bits) || (BN_is_negative(k))) {
+ /*
+ * this is an unusual input, and we don't guarantee
+ * constant-timeness
+ */
+ if(!BN_nnmod(k, k, group->order, ctx))
+ goto err;
+ }
+
+ if (!BN_add(lambda, k, group->order))
+ goto err;
+ BN_set_flags(lambda, BN_FLG_CONSTTIME);
+ if (!BN_add(k, lambda, group->order))
+ goto err;
+ /*
+ * lambda := scalar + order
+ * k := scalar + 2*order
+ */
+ kbit = BN_is_bit_set(lambda, order_bits);
+ BN_consttime_swap(kbit, k, lambda, group_top + 1);
+
+ group_top = bn_get_top(group->field);
+ if ((bn_wexpand(s->X, group_top) == NULL)
+ || (bn_wexpand(s->Y, group_top) == NULL)
+ || (bn_wexpand(s->Z, group_top) == NULL)
+ || (bn_wexpand(r->X, group_top) == NULL)
+ || (bn_wexpand(r->Y, group_top) == NULL)
+ || (bn_wexpand(r->Z, group_top) == NULL))
+ goto err;
+
+ /* top bit is a 1, in a fixed pos */
+ if (!EC_POINT_copy(r, s))
+ goto err;
+
+ EC_POINT_set_flags(r, BN_FLG_CONSTTIME);
+
+ if (!EC_POINT_dbl(group, s, s, ctx))
+ goto err;
+
+ pbit = 0;
+
+#define EC_POINT_CSWAP(c, a, b, w, t) do { \
+ BN_consttime_swap(c, (a)->X, (b)->X, w); \
+ BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
+ BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
+ t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
+ (a)->Z_is_one ^= (t); \
+ (b)->Z_is_one ^= (t); \
+} while(0)
+
+ for (i = order_bits - 1; i >= 0; i--) {
+ kbit = BN_is_bit_set(k, i) ^ pbit;
+ EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
+ if (!EC_POINT_add(group, s, r, s, ctx))
+ goto err;
+ if (!EC_POINT_dbl(group, r, r, ctx))
+ goto err;
+ /*
+ * pbit logic merges this cswap with that of the
+ * next iteration
+ */
+ pbit ^= kbit;
+ }
+ /* one final cswap to move the right value into r */
+ EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
+#undef EC_POINT_CSWAP
+
+ ret = 1;
+
+err:
+ EC_POINT_free(s);
+ BN_CTX_end(ctx);
+ BN_CTX_free(new_ctx);
+
+ return ret;
+}
+#undef EC_POINT_set_flags
+
/*
* TODO: table should be optimised for the wNAF-based implementation,
* sometimes smaller windows will give better performance (thus the
@@ -126,6 +286,28 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
BN_CTX *ctx)
{
+ if ((scalar != NULL) && (num == 0)) {
+ /* In this case we want to compute scalar * GeneratorPoint:
+ * this codepath is reached most prominently by (ephemeral) key
+ * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
+ * ECDH keygen/first half), where the scalar is always secret.
+ * This is why we ignore if BN_FLG_CONSTTIME is actually set and we
+ * always call the constant time version.
+ */
+ return ec_mul_consttime(group, r, scalar, NULL, ctx);
+ }
+
+ if ((scalar == NULL) && (num == 1)) {
+ /* In this case we want to compute scalar * GenericPoint:
+ * this codepath is reached most prominently by the second half of
+ * ECDH, where the secret scalar is multiplied by the peer's public
+ * point.
+ * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
+ * actually set and we always call the constant time version.
+ */
+ return ec_mul_consttime(group, r, scalars[0], points[0], ctx);
+ }
+
BN_CTX *new_ctx = NULL;
const EC_POINT *generator = NULL;
EC_POINT *tmp = NULL;