/* * SPI bridge driver for the Greybus "generic" SPI module. * * Copyright 2014-2015 Google Inc. * Copyright 2014-2015 Linaro Ltd. * * Released under the GPLv2 only. */ #include #include #include #include #include #include "greybus.h" struct gb_spi { struct gb_connection *connection; u16 mode; u16 flags; u32 bits_per_word_mask; u8 num_chipselect; u32 min_speed_hz; u32 max_speed_hz; }; static struct spi_master *get_master_from_spi(struct gb_spi *spi) { return spi->connection->private; } static int tx_header_fit_operation(u32 tx_size, u32 count, size_t data_max) { size_t headers_size; data_max -= sizeof(struct gb_spi_transfer_request); headers_size = (count + 1) * sizeof(struct gb_spi_transfer); return tx_size + headers_size > data_max ? 0 : 1; } static size_t calc_rx_xfer_size(u32 rx_size, u32 *tx_xfer_size, u32 len, size_t data_max) { size_t rx_xfer_size; data_max -= sizeof(struct gb_spi_transfer_response); if (rx_size + len > data_max) rx_xfer_size = data_max - rx_size; else rx_xfer_size = len; /* if this is a write_read, for symmetry read the same as write */ if (*tx_xfer_size && rx_xfer_size > *tx_xfer_size) rx_xfer_size = *tx_xfer_size; if (*tx_xfer_size && rx_xfer_size < *tx_xfer_size) *tx_xfer_size = rx_xfer_size; return rx_xfer_size; } static size_t calc_tx_xfer_size(u32 tx_size, u32 count, size_t len, size_t data_max) { size_t headers_size; data_max -= sizeof(struct gb_spi_transfer_request); headers_size = (count + 1) * sizeof(struct gb_spi_transfer); if (tx_size + headers_size + len > data_max) return data_max - (tx_size + sizeof(struct gb_spi_transfer)); return len; } /* Routines to transfer data */ static struct gb_operation * gb_spi_operation_create(struct gb_connection *connection, struct spi_message *msg, u32 *total_len) { struct gb_spi_transfer_request *request; struct spi_device *dev = msg->spi; struct spi_transfer *xfer; struct gb_spi_transfer *gb_xfer; struct gb_operation *operation; struct spi_transfer *last_xfer = NULL; u32 tx_size = 0, rx_size = 0, count = 0, xfer_len = 0, request_size; u32 tx_xfer_size = 0, rx_xfer_size = 0, last_xfer_size = 0; size_t data_max; void *tx_data; data_max = gb_operation_get_payload_size_max(connection); /* Find number of transfers queued and tx/rx length in the message */ list_for_each_entry(xfer, &msg->transfers, transfer_list) { if (!xfer->tx_buf && !xfer->rx_buf) { dev_err(&connection->bundle->dev, "bufferless transfer, length %u\n", xfer->len); return NULL; } last_xfer = xfer; tx_xfer_size = 0; rx_xfer_size = 0; if (xfer->tx_buf) { if (!tx_header_fit_operation(tx_size, count, data_max)) break; tx_xfer_size = calc_tx_xfer_size(tx_size, count, xfer->len, data_max); last_xfer_size = tx_xfer_size; } if (xfer->rx_buf) { rx_xfer_size = calc_rx_xfer_size(rx_size, &tx_xfer_size, xfer->len, data_max); last_xfer_size = rx_xfer_size; } tx_size += tx_xfer_size; rx_size += rx_xfer_size; *total_len += last_xfer_size; count++; if (xfer->len != last_xfer_size) break; } /* * In addition to space for all message descriptors we need * to have enough to hold all tx data. */ request_size = sizeof(*request); request_size += count * sizeof(*gb_xfer); request_size += tx_size; /* Response consists only of incoming data */ operation = gb_operation_create(connection, GB_SPI_TYPE_TRANSFER, request_size, rx_size, GFP_KERNEL); if (!operation) return NULL; request = operation->request->payload; request->count = cpu_to_le16(count); request->mode = dev->mode; request->chip_select = dev->chip_select; gb_xfer = &request->transfers[0]; tx_data = gb_xfer + count; /* place tx data after last gb_xfer */ /* Fill in the transfers array */ list_for_each_entry(xfer, &msg->transfers, transfer_list) { if (last_xfer && xfer == last_xfer) xfer_len = last_xfer_size; else xfer_len = xfer->len; gb_xfer->speed_hz = cpu_to_le32(xfer->speed_hz); gb_xfer->len = cpu_to_le32(xfer_len); gb_xfer->delay_usecs = cpu_to_le16(xfer->delay_usecs); gb_xfer->cs_change = xfer->cs_change; gb_xfer->bits_per_word = xfer->bits_per_word; /* Copy tx data */ if (xfer->tx_buf) { gb_xfer->rdwr |= GB_SPI_XFER_WRITE; memcpy(tx_data, xfer->tx_buf, xfer_len); tx_data += xfer_len; } if (xfer->rx_buf) gb_xfer->rdwr |= GB_SPI_XFER_READ; if (last_xfer && xfer == last_xfer) break; gb_xfer++; } return operation; } static void gb_spi_decode_response(struct spi_message *msg, struct gb_spi_transfer_response *response) { struct spi_transfer *xfer; void *rx_data = response->data; list_for_each_entry(xfer, &msg->transfers, transfer_list) { /* Copy rx data */ if (xfer->rx_buf) { memcpy(xfer->rx_buf, rx_data, xfer->len); rx_data += xfer->len; } } } static int gb_spi_transfer_one_message(struct spi_master *master, struct spi_message *msg) { struct gb_spi *spi = spi_master_get_devdata(master); struct gb_connection *connection = spi->connection; struct gb_spi_transfer_response *response; struct gb_operation *operation; u32 len = 0; int ret; operation = gb_spi_operation_create(connection, msg, &len); if (!operation) return -ENOMEM; ret = gb_operation_request_send_sync(operation); if (!ret) { response = operation->response->payload; if (response) gb_spi_decode_response(msg, response); } else { pr_err("transfer operation failed (%d)\n", ret); } gb_operation_put(operation); msg->actual_length = len; msg->status = 0; spi_finalize_current_message(master); return ret; } static int gb_spi_setup(struct spi_device *spi) { /* Nothing to do for now */ return 0; } static void gb_spi_cleanup(struct spi_device *spi) { /* Nothing to do for now */ } /* Routines to get controller information */ /* * Map Greybus spi mode bits/flags/bpw into Linux ones. * All bits are same for now and so these macro's return same values. */ #define gb_spi_mode_map(mode) mode #define gb_spi_flags_map(flags) flags static int gb_spi_get_master_config(struct gb_spi *spi) { struct gb_spi_master_config_response response; u16 mode, flags; int ret; ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_MASTER_CONFIG, NULL, 0, &response, sizeof(response)); if (ret < 0) return ret; mode = le16_to_cpu(response.mode); spi->mode = gb_spi_mode_map(mode); flags = le16_to_cpu(response.flags); spi->flags = gb_spi_flags_map(flags); spi->bits_per_word_mask = le32_to_cpu(response.bits_per_word_mask); spi->num_chipselect = response.num_chipselect; spi->min_speed_hz = le32_to_cpu(response.min_speed_hz); spi->max_speed_hz = le32_to_cpu(response.max_speed_hz); return 0; } static int gb_spi_setup_device(struct gb_spi *spi, u8 cs) { struct spi_master *master = get_master_from_spi(spi); struct gb_spi_device_config_request request; struct gb_spi_device_config_response response; struct spi_board_info spi_board = { {0} }; struct spi_device *spidev; int ret; request.chip_select = cs; ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_DEVICE_CONFIG, &request, sizeof(request), &response, sizeof(response)); if (ret < 0) return ret; memcpy(spi_board.modalias, response.name, sizeof(spi_board.modalias)); spi_board.mode = le16_to_cpu(response.mode); spi_board.bus_num = master->bus_num; spi_board.chip_select = cs; spi_board.max_speed_hz = le32_to_cpu(response.max_speed_hz); spidev = spi_new_device(master, &spi_board); if (!spidev) ret = -EINVAL; return 0; } static int gb_spi_connection_init(struct gb_connection *connection) { struct gb_spi *spi; struct spi_master *master; int ret; u8 i; /* Allocate master with space for data */ master = spi_alloc_master(&connection->bundle->dev, sizeof(*spi)); if (!master) { dev_err(&connection->bundle->dev, "cannot alloc SPI master\n"); return -ENOMEM; } spi = spi_master_get_devdata(master); spi->connection = connection; connection->private = master; /* get master configuration */ ret = gb_spi_get_master_config(spi); if (ret) goto out_put_master; master->bus_num = -1; /* Allow spi-core to allocate it dynamically */ master->num_chipselect = spi->num_chipselect; master->mode_bits = spi->mode; master->flags = spi->flags; master->bits_per_word_mask = spi->bits_per_word_mask; /* Attach methods */ master->cleanup = gb_spi_cleanup; master->setup = gb_spi_setup; master->transfer_one_message = gb_spi_transfer_one_message; ret = spi_register_master(master); if (ret < 0) goto out_put_master; /* now, fetch the devices configuration */ for (i = 0; i < spi->num_chipselect; i++) { ret = gb_spi_setup_device(spi, i); if (ret < 0) { dev_err(&connection->bundle->dev, "failed to allocated spi device: %d\n", ret); spi_unregister_master(master); break; } } return ret; out_put_master: spi_master_put(master); return ret; } static void gb_spi_connection_exit(struct gb_connection *connection) { struct spi_master *master = connection->private; spi_unregister_master(master); } static struct gb_protocol spi_protocol = { .name = "spi", .id = GREYBUS_PROTOCOL_SPI, .major = GB_SPI_VERSION_MAJOR, .minor = GB_SPI_VERSION_MINOR, .connection_init = gb_spi_connection_init, .connection_exit = gb_spi_connection_exit, .request_recv = NULL, }; gb_builtin_protocol_driver(spi_protocol);