/* * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc. * * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo * Moved from arch/x86/kernel/apic/io_apic.c. * Jiang Liu * Enable support of hierarchical irqdomains * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include struct apic_chip_data { struct irq_cfg cfg; unsigned int cpu; unsigned int prev_cpu; struct hlist_node clist; cpumask_var_t domain; cpumask_var_t old_domain; u8 move_in_progress : 1; }; struct irq_domain *x86_vector_domain; EXPORT_SYMBOL_GPL(x86_vector_domain); static DEFINE_RAW_SPINLOCK(vector_lock); static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask; static struct irq_chip lapic_controller; #ifdef CONFIG_SMP static DEFINE_PER_CPU(struct hlist_head, cleanup_list); #endif void lock_vector_lock(void) { /* Used to the online set of cpus does not change * during assign_irq_vector. */ raw_spin_lock(&vector_lock); } void unlock_vector_lock(void) { raw_spin_unlock(&vector_lock); } void init_irq_alloc_info(struct irq_alloc_info *info, const struct cpumask *mask) { memset(info, 0, sizeof(*info)); info->mask = mask; } void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) { if (src) *dst = *src; else memset(dst, 0, sizeof(*dst)); } static struct apic_chip_data *apic_chip_data(struct irq_data *irqd) { if (!irqd) return NULL; while (irqd->parent_data) irqd = irqd->parent_data; return irqd->chip_data; } struct irq_cfg *irqd_cfg(struct irq_data *irqd) { struct apic_chip_data *apicd = apic_chip_data(irqd); return apicd ? &apicd->cfg : NULL; } EXPORT_SYMBOL_GPL(irqd_cfg); struct irq_cfg *irq_cfg(unsigned int irq) { return irqd_cfg(irq_get_irq_data(irq)); } static struct apic_chip_data *alloc_apic_chip_data(int node) { struct apic_chip_data *apicd; apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node); if (!apicd) return NULL; if (!zalloc_cpumask_var_node(&apicd->domain, GFP_KERNEL, node)) goto out_data; if (!zalloc_cpumask_var_node(&apicd->old_domain, GFP_KERNEL, node)) goto out_domain; INIT_HLIST_NODE(&apicd->clist); return apicd; out_domain: free_cpumask_var(apicd->domain); out_data: kfree(apicd); return NULL; } static void free_apic_chip_data(struct apic_chip_data *apicd) { if (apicd) { free_cpumask_var(apicd->domain); free_cpumask_var(apicd->old_domain); kfree(apicd); } } static int __assign_irq_vector(int irq, struct apic_chip_data *d, const struct cpumask *mask, struct irq_data *irqd) { /* * NOTE! The local APIC isn't very good at handling * multiple interrupts at the same interrupt level. * As the interrupt level is determined by taking the * vector number and shifting that right by 4, we * want to spread these out a bit so that they don't * all fall in the same interrupt level. * * Also, we've got to be careful not to trash gate * 0x80, because int 0x80 is hm, kind of importantish. ;) */ static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START; static int current_offset = VECTOR_OFFSET_START % 16; int cpu, vector; /* * If there is still a move in progress or the previous move has not * been cleaned up completely, tell the caller to come back later. */ if (d->cfg.old_vector) return -EBUSY; /* Only try and allocate irqs on cpus that are present */ cpumask_clear(d->old_domain); cpumask_clear(searched_cpumask); cpu = cpumask_first_and(mask, cpu_online_mask); while (cpu < nr_cpu_ids) { int new_cpu, offset; cpumask_copy(vector_cpumask, cpumask_of(cpu)); /* * Clear the offline cpus from @vector_cpumask for searching * and verify whether the result overlaps with @mask. If true, * then the call to apic->cpu_mask_to_apicid() will * succeed as well. If not, no point in trying to find a * vector in this mask. */ cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask); if (!cpumask_intersects(vector_searchmask, mask)) goto next_cpu; if (cpumask_subset(vector_cpumask, d->domain)) { if (cpumask_equal(vector_cpumask, d->domain)) goto success; /* * Mark the cpus which are not longer in the mask for * cleanup. */ cpumask_andnot(d->old_domain, d->domain, vector_cpumask); vector = d->cfg.vector; goto update; } vector = current_vector; offset = current_offset; next: vector += 16; if (vector >= FIRST_SYSTEM_VECTOR) { offset = (offset + 1) % 16; vector = FIRST_EXTERNAL_VECTOR + offset; } /* If the search wrapped around, try the next cpu */ if (unlikely(current_vector == vector)) goto next_cpu; if (test_bit(vector, system_vectors)) goto next; for_each_cpu(new_cpu, vector_searchmask) { if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector])) goto next; } /* Found one! */ current_vector = vector; current_offset = offset; /* Schedule the old vector for cleanup on all cpus */ if (d->cfg.vector) cpumask_copy(d->old_domain, d->domain); for_each_cpu(new_cpu, vector_searchmask) per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq); goto update; next_cpu: /* * We exclude the current @vector_cpumask from the requested * @mask and try again with the next online cpu in the * result. We cannot modify @mask, so we use @vector_cpumask * as a temporary buffer here as it will be reassigned when * calling apic->vector_allocation_domain() above. */ cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask); cpumask_andnot(vector_cpumask, mask, searched_cpumask); cpu = cpumask_first_and(vector_cpumask, cpu_online_mask); continue; } return -ENOSPC; update: /* * Exclude offline cpus from the cleanup mask and set the * move_in_progress flag when the result is not empty. */ cpumask_and(d->old_domain, d->old_domain, cpu_online_mask); d->move_in_progress = !cpumask_empty(d->old_domain); d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0; d->prev_cpu = d->cpu; d->cfg.vector = vector; cpumask_copy(d->domain, vector_cpumask); success: /* * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail * as we already established, that mask & d->domain & cpu_online_mask * is not empty. * * vector_searchmask is a subset of d->domain and has the offline * cpus masked out. */ cpumask_and(vector_searchmask, vector_searchmask, mask); BUG_ON(apic->cpu_mask_to_apicid(vector_searchmask, irqd, &d->cfg.dest_apicid)); d->cpu = cpumask_first(vector_searchmask); return 0; } static int assign_irq_vector(int irq, struct apic_chip_data *apicd, const struct cpumask *mask, struct irq_data *irqd) { int err; unsigned long flags; raw_spin_lock_irqsave(&vector_lock, flags); err = __assign_irq_vector(irq, apicd, mask, irqd); raw_spin_unlock_irqrestore(&vector_lock, flags); return err; } static int assign_irq_vector_policy(int irq, int node, struct apic_chip_data *apicd, struct irq_alloc_info *info, struct irq_data *irqd) { if (info->mask) return assign_irq_vector(irq, apicd, info->mask, irqd); if (node != NUMA_NO_NODE && assign_irq_vector(irq, apicd, cpumask_of_node(node), irqd) == 0) return 0; return assign_irq_vector(irq, apicd, cpu_online_mask, irqd); } static void clear_irq_vector(int irq, struct apic_chip_data *apicd) { unsigned int vector = apicd->cfg.vector; if (!vector) return; per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_UNUSED; apicd->cfg.vector = 0; /* Clean up move in progress */ vector = apicd->cfg.old_vector; if (!vector) return; per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED; apicd->move_in_progress = 0; hlist_del_init(&apicd->clist); } static void x86_vector_free_irqs(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct apic_chip_data *apicd; struct irq_data *irqd; unsigned long flags; int i; for (i = 0; i < nr_irqs; i++) { irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i); if (irqd && irqd->chip_data) { raw_spin_lock_irqsave(&vector_lock, flags); clear_irq_vector(virq + i, irqd->chip_data); apicd = irqd->chip_data; irq_domain_reset_irq_data(irqd); raw_spin_unlock_irqrestore(&vector_lock, flags); free_apic_chip_data(apicd); } } } static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct irq_alloc_info *info = arg; struct apic_chip_data *apicd; struct irq_data *irqd; int i, err, node; if (disable_apic) return -ENXIO; /* Currently vector allocator can't guarantee contiguous allocations */ if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1) return -ENOSYS; for (i = 0; i < nr_irqs; i++) { irqd = irq_domain_get_irq_data(domain, virq + i); BUG_ON(!irqd); node = irq_data_get_node(irqd); WARN_ON_ONCE(irqd->chip_data); apicd = alloc_apic_chip_data(node); if (!apicd) { err = -ENOMEM; goto error; } irqd->chip = &lapic_controller; irqd->chip_data = apicd; irqd->hwirq = virq + i; irqd_set_single_target(irqd); /* * Make sure, that the legacy to IOAPIC transition stays on * the same vector. This is required for check_timer() to * work correctly as it might switch back to legacy mode. */ if (info->flags & X86_IRQ_ALLOC_LEGACY) { apicd->cfg.vector = ISA_IRQ_VECTOR(virq + i); apicd->cpu = 0; cpumask_copy(apicd->domain, cpumask_of(0)); } err = assign_irq_vector_policy(virq + i, node, apicd, info, irqd); if (err) goto error; } return 0; error: x86_vector_free_irqs(domain, virq, i + 1); return err; } static const struct irq_domain_ops x86_vector_domain_ops = { .alloc = x86_vector_alloc_irqs, .free = x86_vector_free_irqs, }; int __init arch_probe_nr_irqs(void) { int nr; if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) nr_irqs = NR_VECTORS * nr_cpu_ids; nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ) /* * for MSI and HT dyn irq */ if (gsi_top <= NR_IRQS_LEGACY) nr += 8 * nr_cpu_ids; else nr += gsi_top * 16; #endif if (nr < nr_irqs) nr_irqs = nr; /* * We don't know if PIC is present at this point so we need to do * probe() to get the right number of legacy IRQs. */ return legacy_pic->probe(); } int __init arch_early_irq_init(void) { struct fwnode_handle *fn; fn = irq_domain_alloc_named_fwnode("VECTOR"); BUG_ON(!fn); x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, NULL); BUG_ON(x86_vector_domain == NULL); irq_domain_free_fwnode(fn); irq_set_default_host(x86_vector_domain); arch_init_msi_domain(x86_vector_domain); arch_init_htirq_domain(x86_vector_domain); BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL)); return arch_early_ioapic_init(); } /* Temporary hack to keep things working */ static void vector_update_shutdown_irqs(void) { struct irq_desc *desc; int irq; for_each_irq_desc(irq, desc) { struct irq_data *irqd = irq_desc_get_irq_data(desc); struct apic_chip_data *ad = apic_chip_data(irqd); if (ad && ad->cfg.vector && ad->cpu == smp_processor_id()) this_cpu_write(vector_irq[ad->cfg.vector], desc); } } static struct irq_desc *__setup_vector_irq(int vector) { int isairq = vector - ISA_IRQ_VECTOR(0); /* Check whether the irq is in the legacy space */ if (isairq < 0 || isairq >= nr_legacy_irqs()) return VECTOR_UNUSED; /* Check whether the irq is handled by the IOAPIC */ if (test_bit(isairq, &io_apic_irqs)) return VECTOR_UNUSED; return irq_to_desc(isairq); } /* * Setup the vector to irq mappings. Must be called with vector_lock held. */ void setup_vector_irq(int cpu) { unsigned int vector; lockdep_assert_held(&vector_lock); /* * The interrupt affinity logic never targets interrupts to offline * CPUs. The exception are the legacy PIC interrupts. In general * they are only targeted to CPU0, but depending on the platform * they can be distributed to any online CPU in hardware. The * kernel has no influence on that. So all active legacy vectors * must be installed on all CPUs. All non legacy interrupts can be * cleared. */ for (vector = 0; vector < NR_VECTORS; vector++) this_cpu_write(vector_irq[vector], __setup_vector_irq(vector)); /* * Until the rewrite of the managed interrupt management is in * place it's necessary to walk the irq descriptors and check for * interrupts which are targeted at this CPU. */ vector_update_shutdown_irqs(); } static int apic_retrigger_irq(struct irq_data *irqd) { struct apic_chip_data *apicd = apic_chip_data(irqd); unsigned long flags; raw_spin_lock_irqsave(&vector_lock, flags); apic->send_IPI(apicd->cpu, apicd->cfg.vector); raw_spin_unlock_irqrestore(&vector_lock, flags); return 1; } void apic_ack_edge(struct irq_data *irqd) { irq_complete_move(irqd_cfg(irqd)); irq_move_irq(irqd); ack_APIC_irq(); } static int apic_set_affinity(struct irq_data *irqd, const struct cpumask *dest, bool force) { struct apic_chip_data *apicd = irqd->chip_data; int err, irq = irqd->irq; if (!IS_ENABLED(CONFIG_SMP)) return -EPERM; if (!cpumask_intersects(dest, cpu_online_mask)) return -EINVAL; err = assign_irq_vector(irq, apicd, dest, irqd); return err ? err : IRQ_SET_MASK_OK; } static struct irq_chip lapic_controller = { .name = "APIC", .irq_ack = apic_ack_edge, .irq_set_affinity = apic_set_affinity, .irq_retrigger = apic_retrigger_irq, }; #ifdef CONFIG_SMP asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void) { struct hlist_head *clhead = this_cpu_ptr(&cleanup_list); struct apic_chip_data *apicd; struct hlist_node *tmp; entering_ack_irq(); /* Prevent vectors vanishing under us */ raw_spin_lock(&vector_lock); hlist_for_each_entry_safe(apicd, tmp, clhead, clist) { unsigned int irr, vector = apicd->cfg.old_vector; /* * Paranoia: Check if the vector that needs to be cleaned * up is registered at the APICs IRR. If so, then this is * not the best time to clean it up. Clean it up in the * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest * priority external vector, so on return from this * interrupt the device interrupt will happen first. */ irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); if (irr & (1U << (vector % 32))) { apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR); continue; } hlist_del_init(&apicd->clist); __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); apicd->cfg.old_vector = 0; } raw_spin_unlock(&vector_lock); exiting_irq(); } static void __send_cleanup_vector(struct apic_chip_data *apicd) { unsigned int cpu; raw_spin_lock(&vector_lock); apicd->move_in_progress = 0; cpu = apicd->prev_cpu; if (cpu_online(cpu)) { hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu)); apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR); } else { apicd->cfg.old_vector = 0; } raw_spin_unlock(&vector_lock); } void send_cleanup_vector(struct irq_cfg *cfg) { struct apic_chip_data *apicd; apicd = container_of(cfg, struct apic_chip_data, cfg); if (apicd->move_in_progress) __send_cleanup_vector(apicd); } static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector) { struct apic_chip_data *apicd; apicd = container_of(cfg, struct apic_chip_data, cfg); if (likely(!apicd->move_in_progress)) return; if (vector == apicd->cfg.vector && apicd->cpu == smp_processor_id()) __send_cleanup_vector(apicd); } void irq_complete_move(struct irq_cfg *cfg) { __irq_complete_move(cfg, ~get_irq_regs()->orig_ax); } /* * Called from fixup_irqs() with @desc->lock held and interrupts disabled. */ void irq_force_complete_move(struct irq_desc *desc) { struct apic_chip_data *apicd; struct irq_data *irqd; unsigned int vector; /* * The function is called for all descriptors regardless of which * irqdomain they belong to. For example if an IRQ is provided by * an irq_chip as part of a GPIO driver, the chip data for that * descriptor is specific to the irq_chip in question. * * Check first that the chip_data is what we expect * (apic_chip_data) before touching it any further. */ irqd = irq_domain_get_irq_data(x86_vector_domain, irq_desc_get_irq(desc)); if (!irqd) return; raw_spin_lock(&vector_lock); apicd = apic_chip_data(irqd); if (!apicd) goto unlock; /* * If old_vector is empty, no action required. */ vector = apicd->cfg.old_vector; if (!vector) goto unlock; /* * This is tricky. If the cleanup of the old vector has not been * done yet, then the following setaffinity call will fail with * -EBUSY. This can leave the interrupt in a stale state. * * All CPUs are stuck in stop machine with interrupts disabled so * calling __irq_complete_move() would be completely pointless. * * 1) The interrupt is in move_in_progress state. That means that we * have not seen an interrupt since the io_apic was reprogrammed to * the new vector. * * 2) The interrupt has fired on the new vector, but the cleanup IPIs * have not been processed yet. */ if (apicd->move_in_progress) { /* * In theory there is a race: * * set_ioapic(new_vector) <-- Interrupt is raised before update * is effective, i.e. it's raised on * the old vector. * * So if the target cpu cannot handle that interrupt before * the old vector is cleaned up, we get a spurious interrupt * and in the worst case the ioapic irq line becomes stale. * * But in case of cpu hotplug this should be a non issue * because if the affinity update happens right before all * cpus rendevouz in stop machine, there is no way that the * interrupt can be blocked on the target cpu because all cpus * loops first with interrupts enabled in stop machine, so the * old vector is not yet cleaned up when the interrupt fires. * * So the only way to run into this issue is if the delivery * of the interrupt on the apic/system bus would be delayed * beyond the point where the target cpu disables interrupts * in stop machine. I doubt that it can happen, but at least * there is a theroretical chance. Virtualization might be * able to expose this, but AFAICT the IOAPIC emulation is not * as stupid as the real hardware. * * Anyway, there is nothing we can do about that at this point * w/o refactoring the whole fixup_irq() business completely. * We print at least the irq number and the old vector number, * so we have the necessary information when a problem in that * area arises. */ pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", irqd->irq, vector); } per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED; /* Cleanup the left overs of the (half finished) move */ cpumask_clear(apicd->old_domain); apicd->cfg.old_vector = 0; apicd->move_in_progress = 0; hlist_del_init(&apicd->clist); unlock: raw_spin_unlock(&vector_lock); } #endif static void __init print_APIC_field(int base) { int i; printk(KERN_DEBUG); for (i = 0; i < 8; i++) pr_cont("%08x", apic_read(base + i*0x10)); pr_cont("\n"); } static void __init print_local_APIC(void *dummy) { unsigned int i, v, ver, maxlvt; u64 icr; pr_debug("printing local APIC contents on CPU#%d/%d:\n", smp_processor_id(), hard_smp_processor_id()); v = apic_read(APIC_ID); pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); v = apic_read(APIC_LVR); pr_info("... APIC VERSION: %08x\n", v); ver = GET_APIC_VERSION(v); maxlvt = lapic_get_maxlvt(); v = apic_read(APIC_TASKPRI); pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); /* !82489DX */ if (APIC_INTEGRATED(ver)) { if (!APIC_XAPIC(ver)) { v = apic_read(APIC_ARBPRI); pr_debug("... APIC ARBPRI: %08x (%02x)\n", v, v & APIC_ARBPRI_MASK); } v = apic_read(APIC_PROCPRI); pr_debug("... APIC PROCPRI: %08x\n", v); } /* * Remote read supported only in the 82489DX and local APIC for * Pentium processors. */ if (!APIC_INTEGRATED(ver) || maxlvt == 3) { v = apic_read(APIC_RRR); pr_debug("... APIC RRR: %08x\n", v); } v = apic_read(APIC_LDR); pr_debug("... APIC LDR: %08x\n", v); if (!x2apic_enabled()) { v = apic_read(APIC_DFR); pr_debug("... APIC DFR: %08x\n", v); } v = apic_read(APIC_SPIV); pr_debug("... APIC SPIV: %08x\n", v); pr_debug("... APIC ISR field:\n"); print_APIC_field(APIC_ISR); pr_debug("... APIC TMR field:\n"); print_APIC_field(APIC_TMR); pr_debug("... APIC IRR field:\n"); print_APIC_field(APIC_IRR); /* !82489DX */ if (APIC_INTEGRATED(ver)) { /* Due to the Pentium erratum 3AP. */ if (maxlvt > 3) apic_write(APIC_ESR, 0); v = apic_read(APIC_ESR); pr_debug("... APIC ESR: %08x\n", v); } icr = apic_icr_read(); pr_debug("... APIC ICR: %08x\n", (u32)icr); pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); v = apic_read(APIC_LVTT); pr_debug("... APIC LVTT: %08x\n", v); if (maxlvt > 3) { /* PC is LVT#4. */ v = apic_read(APIC_LVTPC); pr_debug("... APIC LVTPC: %08x\n", v); } v = apic_read(APIC_LVT0); pr_debug("... APIC LVT0: %08x\n", v); v = apic_read(APIC_LVT1); pr_debug("... APIC LVT1: %08x\n", v); if (maxlvt > 2) { /* ERR is LVT#3. */ v = apic_read(APIC_LVTERR); pr_debug("... APIC LVTERR: %08x\n", v); } v = apic_read(APIC_TMICT); pr_debug("... APIC TMICT: %08x\n", v); v = apic_read(APIC_TMCCT); pr_debug("... APIC TMCCT: %08x\n", v); v = apic_read(APIC_TDCR); pr_debug("... APIC TDCR: %08x\n", v); if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { v = apic_read(APIC_EFEAT); maxlvt = (v >> 16) & 0xff; pr_debug("... APIC EFEAT: %08x\n", v); v = apic_read(APIC_ECTRL); pr_debug("... APIC ECTRL: %08x\n", v); for (i = 0; i < maxlvt; i++) { v = apic_read(APIC_EILVTn(i)); pr_debug("... APIC EILVT%d: %08x\n", i, v); } } pr_cont("\n"); } static void __init print_local_APICs(int maxcpu) { int cpu; if (!maxcpu) return; preempt_disable(); for_each_online_cpu(cpu) { if (cpu >= maxcpu) break; smp_call_function_single(cpu, print_local_APIC, NULL, 1); } preempt_enable(); } static void __init print_PIC(void) { unsigned int v; unsigned long flags; if (!nr_legacy_irqs()) return; pr_debug("\nprinting PIC contents\n"); raw_spin_lock_irqsave(&i8259A_lock, flags); v = inb(0xa1) << 8 | inb(0x21); pr_debug("... PIC IMR: %04x\n", v); v = inb(0xa0) << 8 | inb(0x20); pr_debug("... PIC IRR: %04x\n", v); outb(0x0b, 0xa0); outb(0x0b, 0x20); v = inb(0xa0) << 8 | inb(0x20); outb(0x0a, 0xa0); outb(0x0a, 0x20); raw_spin_unlock_irqrestore(&i8259A_lock, flags); pr_debug("... PIC ISR: %04x\n", v); v = inb(0x4d1) << 8 | inb(0x4d0); pr_debug("... PIC ELCR: %04x\n", v); } static int show_lapic __initdata = 1; static __init int setup_show_lapic(char *arg) { int num = -1; if (strcmp(arg, "all") == 0) { show_lapic = CONFIG_NR_CPUS; } else { get_option(&arg, &num); if (num >= 0) show_lapic = num; } return 1; } __setup("show_lapic=", setup_show_lapic); static int __init print_ICs(void) { if (apic_verbosity == APIC_QUIET) return 0; print_PIC(); /* don't print out if apic is not there */ if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) return 0; print_local_APICs(show_lapic); print_IO_APICs(); return 0; } late_initcall(print_ICs);